
P HVSICAL REVIEW VOLUME 119, NUMBER 3 AUGUST i, l960

Soluble Three-Dimensional Model for Townsend's n*

G. W. STUART AND E. GERJUOY
John Jay Hopkins Laboratory for lettre and Applied Science, General Atomic, San Dt'ego, California

(Received March 18, 1960)

A model gas is considered in which all electron-molecule cross sections are isotropic and depend inversely
on the velocity e. Collisional energy loss is neglected. The Boltzmann equation for the model is solved for
the collision density, where the collision density is the number of collisions that an individual electron makes
between v and e+dv over its entire history. The Townsend n is obtained from the collision density, and it is
found that a/p is inversely proportional to E/p. It is argued that this model furnishes an upper bound to the
true n/p for all E/p; therefore it is concluded that this model demonstrates that at suKciently high E/p the
observed a/p for any real gas must decrease with increasing E/p. The results also shed light on the way
electron energy balance or lack oi energy balance affects u/p and the drift velocity vn; it is shown that energy
balance is not possible at arbitrarily large E/p. Numerical applications of these results to Hz are discussed.

I. INTRODUCTION

~ '0%NSEND'S erst coefficient 0. is defined' as the
average number of secondary electrons produced

in a gas at pressure p by a primary electron which
advances one cm along an impressed electric field E.
The Boltzmann equation (B.K.) implies that for any
one gas the quantity ot/p is a function of E/p only.
Experimental curves of tr/p vs E/p have been obtained
in a variety of gases, ' with E/p ranging from zero to
several thousand volts/cm-mm Hg (the conventional
units). Typically ct/p increases monotonically with
increasing E/p throughout the entire observed range
of E/p. Experiments exhibiting a maximum in the
tr/p vs E/p curve exist, but these are atypical and have
not gained general acceptance. ' Reported theoretical
derivations' of the dependence of tr/p on E/p all
predict a/p increases monotonically with E/p, in
agreement with the typical experimental 6ndings.

Qn the other hand the following seemingly generally
accepted' ' simple argument indicates cr/p should
decrease with increasing E/p at high E/p: At high

E/p an electron gains more energy from the field during
a mean free path than it can surrender either elastically
or inelastically in a collision with a gas molecule, so
that at high E/p an electron rapidly accelerates to high
energies, where ionization and total cross sections
decrease with increasing electron energy4; hence with
increasingly large E/p ct/p (essentially the number of
secondary electrons produced per gas molecule en-

countered in one cm advance along E) decreases because
the electron ionization rate decreases while its mean
free path (in other words its rate of drift down the

*This work was done under a joint General Atomic-Texas
Atomic Energy Research Foundation program on controlled
thermonuclear reactions.' A. von Engel, Ionized Gases (Clarendon Press, ,Oxford, 1955),
pp. 155-157.' L. B.Loeb, Basic Processes of Gaseous ELectrolics (University
of California Press, Berkeley, California, 1955), pp. 652 and 668.

3 T. J. Lewis, Proc. Roy. Soc. (London) A244, 166 (1958), who
computes u/p vs E/p for Hz, gives references to previous theories
oi a/p vs E/p.

4 H. S. W. Massey and K. H. S. Burhop, ELectrorlic and tome
Impact Phenomena (Clarendon Press, Oxford, 1952), pp. 30—188.

field) increases. In fact we have been able to construct
several one-dimensional (electrons move only parallel
or antiparallel to applied E) models of ionization
growth for which the B.E. can be solved exactly, '
without any further approximation beyond the simpli6-
cations originally introduced into the models. These
models all showed ct/p decreasing at high E/p, as
expected from the above simple argument.

The present work. is motivated by recent eGorts
aimed at producing high-energy plasmas for thermo-
nuclear research. To properly understand these experi-
ments the behavior of cr/p at very large E/p is required.

II. MODEL

In the present paper we examine a three-dimensional
model of ionization growth. In particular, we assume:
(i) electrons start out with velocity tt= 0 from a uniform
infinite (along x and y) plane cathode at s=0, emitting
at a constant rate; (ii) the electric field is constant
and antiparallel to s, so that between collisions the
electrons move with uniform acceleration tJ=eE/m
along positive s; (iii) the electrons collide only with
the in6nitely massive molecules of a neutral gas, in
such a fashion that either they make a purely elastic
collision or else they ionize the neutrals —no other types
of collisions take place; (iv) all ionized electrons start
out with zero velocity, and the incident ionizing electron
loses no energy in the process of creating a secondary—
thus every electron is created at zero energy and there-
after gains or loses energy only through motion along
or against the applied electric field; (v) the total cross
section 0. and the ionization cross section 0.; for collisions
between an electron and a neutral molecule are each
spherically symmetric and inversely proportional to the
incident electron speed v.

III. DISCUSSION

Our neglect of electron-electron and electron-ion
collisions, and of electronic and ionic contributions to
the electric Geld, does not restrict the utility of the above
model, since it is implicit in the definition of Town-

5 E. Gerjuoy and G. W. Stuart (to be published).
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send's 0, that the electron density is small. In other
respects our assumptions are very restrictive however,
particularly our assumption that the ionization rate
er; and the total collision rate eg. per gas molecule are
constant. With this restriction on the energy dependence
of o. and o; (a restriction which is unnecessary in our
one-dimensional models) we Gnd, essentially exactly,

~= (s/«') (~'/~), (1)

where the constant r= (Petr) ' is the mean free time for
collision, with E of course the number of gas molecules
per cc. The quantity s is about equal to 3, but is a
function of o,/o. . Equation (1) implies

rr/p = 19.2s (o,o W) (E/p)
—', (2)

lo—

gB

gA

where p is in mm Hg, E is in volts/cm, o, and o are in
units of ~ao' ——8.8X&0-" cm' and 8' is the energy, in
electron volts, at which 0.; and o. are evaluated.

Equation (2) shows that our three-dimensional
model, like our one-dimensional models but unlike
previous theories, makes rr/p a decreasing function
of E/p at high E/p. In fact n/p is inversely proportional
to E/p at all E/p, according to Eq. (2). We make no
claim that this simple result, a consequence of the
excessive simplicity of our model, represents the
variation with E/p of the actual values of n/p in a
real discharge. We do claim however that at any E/p
Eq. (2) predicts values of n/p exceeding the real values,
provided the tt '-proportional o, and o. of Eq. (2) are
so chosen that they exceed the actual cross sections at
all energies, i.e., provided o, (W) &o.,'(W), o (W)) o'(W)
at every t/t/', where the primes denote the actual
measured cross sections. More specifically we are
claiming that with o.; and r chosen as described, our
model surely overestimates the rate at which electrons
ionize, and equally certainly underestimates the rate at
which electrons drift down the applied field. There is no
virtue in defending these claims at low E/p, where the
values of rr/p obtained from (2) are ridiculously large.
At high E/p however, where Eq. (2) yields small values
of a/p, these claims are more meaningful and we are
constrained to defend them. The key fact is that at
large v actual cross sections 0' and 0- are not isotropic
and inversely proportional to e ', but instead' peak
forward and decrease as v 'inn. It follows that in an
actual high' E/p discharge: (a) electrons reach high
energy more readily than our model assumes; (b) a
high speed electron moving toward the anode has much
less chance than in our model of being turned back
toward the chathode, and thereby of being slowed
down by motion in the direction of increasing potential
energy. These effects (a) and (b) mean that in an
actual high E/p discharge electrons drift down the
applied Geld more rapidly than our model predicts, as
claimed above, and also that: (c) electrons remain at
high energy more readily than our model predicts, at
which energies they ionize less readily (again as claimed
above) because the actual high energy o. decreases

lo
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FIG. 1. Comparison of our theoretical values of n/p with
experiment. The solid curve is the experimental result. Curve A is a
theoretical upper bound on n/p. Curve P is a less extreme upper
bound. s=3.75 Lace discussion under (16)g.

more rapidly than e '. %'e recognize that we also have
neglected inelastic and elastic energy losses, which
tend to keep the electron speeds low, and which there-
fore in a high E/p high electron energy discharge tend
to raise the ionization rate. At high E/p however, when
the collisional energy loss per mean free path is much
less than the energy gained from the field, collisions
should decrease the mean electron energy by only a
few'percent, and therefore should increase the ionization
rate by only an equally small percentage. Consequently
we judge this last eGect to be unimportant compared to
the aforementioned effects (a), (b), and (c). Moreover,
as will be discussed in a moment, neglecting collisional
energy loss terms in the Boltzmann equation can (and
in our model seems to) decrease the electron drift
velocity down the Geld, therewith at high E/p further
increasing our model's predicted n/p beyond the real
values.

We conclude that Eq. (2) demonstrates the actual
values of o./p for a real gas must decrease with increasing

E/p at suKciently high E/p, as expected from the
argument given in the second paragraph. The import
of this conclusion is illustrated in Fig. 1, wherein the
solid line is the experimentally observed' curve of
cr/p vs E/p for Hs, and the upper dashed curve A is a
plot of Eq. (2), using o;= 13.6 and o =34 at W= 1 ev;
these values of o, and o. satisfy the requirement o, (W)
)o,'(W), o.(W)&o'(W) at all energies. Curve A shows

rr/p for Hs must begin to decrease somewhere between
E/p=1000 and E/p=7500; at E/p=/500, the height
of curve A equals the observed n/p at E/p=1000.
Actually the discussion of the previous paragraph
strongly suggests it is not necessary to have cr;&0,',

' D. J. Rose, Phys. Rev. 104, 273 (1956).
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o)o' at all 8' in order that at high E/p the a/p from
(2) assuredly exceed the real n/p. Curve 8 of Fig. 1,
which should be a less extreme upper bound than A
to the real high E/p values of cr/p in Hs, is obtained
using in Eq. (2) more realistic w

' fits to the measuredr '
cross sections, namely a,=7.2 and o.=18 at 8'=1 ev.
Curves 8 of Fig 1.suggests cr/p in Hs begins to decrease
somewhere between E/p= 1000 and E/p=2000. These
estimates from Fig. 1 of the value of Z/p where cr/p
in H2 begins to decrease agree with estimates based on
our one-dimensional models. '

f
cr= ' dv No;nf dv n f,

~J
(3)

together with the assumptions: (i) the electron velocity
distribution is independent of s, i.e.,

f(s,v) =n(s)g(v);

(ii) ionization has a negligible effect on f, i.e., ionization
terms are dropped from the Boltzmann equation (B.E.)
determining f; (iii) g(v) deviates only slightly from
spherical symmetry, so that a truncated spherical
harmonic expansion can be employed to find g. %e
have no objections per se to Eqs. (3) and (4). As our
one-dimensional models explicitly demonstrate, when
cr/0 Eq. (4) must hold at suKciently large s, in which
event it follows rigorously from the v,' moment of the
B.E. including ionization that n(s) =no exp(ns), with
n given by (3). On the other hand, as our one-
dimensional models also demonstrate, g depends on 0.
and therefore cannot be independent of cr, , i.e., dropping
the ionization terms from the B.E. may greatly alter
the electron distribution function. In fact if the electrons
gain energy from the electric field more rapidly than
they lose energy by collision, as in the case of our
three-dimensional model which lacks any collisional
energy loss mechanism, then with no ionization (cr=0)
all electrons originate at s=0 and the electron velocity
distribution never becomes independent of s. Moreover
the assumption that g (v) is nearly spherically symmetric
seems particularly dangerous at high E/p, where an
electron acquires large momentum along the field
between every pair of collisions.

For these reasons we stress that our derivation of
(1), given in the following section, makes none of the
above assumptions (i)—(iii), and obtains n without

' C. E. Normand, Phys, Rev. 35, 121.7 (1930).' J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).

IV. ENERGY BALANCE

Confining our attention to steady time-independent
dc discharges, with the cathode at s=0 and the electron
distribution function f(s,v) independent of x, y, we
observe that previous theories' have computed o. from
the relation (equivalent to the definition of cr at the
beginning of this paper)

where we have specialized to constant mean free time
and spherically symmetric cross sections; in this
circumstance the ionization cross section rigorously
disappears from (6). Now when the first term in (6)
vanishes, as when there is no ionization and the elec-
trons are in energy balance, Eq. (6) implies the usual
vg=ar. Neglecting ionization however, at each s all
electrons have the same kinetic energy in our model,
namely e'= 2as; consequently, making the further
assumption that the distribution function is nearly
sPherically symmetric, (w.s), =rsv'=seas, which substi-
tuted in (6) yields v& ——raus. We remark that since the
first term in (6) does not vanish when there is ionization
growth or when there is no electron energy balance, it
is not true that for constant mean free time quantities
of physical interest like v& always can be obtained"
merely from moments of the B.E.

Since f need not be nearly spherically symmetric,
and is s dependent when cx/0, the simple argument
of the preceding paragraph hard1. y can be the whole
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PiG. 2. Electron energy balance. Curve A shows the energy at
which the right side of (7) equals eEVJD. Curve 8 shows the energy
at which the right side of (9) equals -,'.

e W. P. Allis, Handbttch der Physih (Springer-Verlag, Berlin,
1956), Vol, XXI, p. 421."J.C. Maxwell, Collected Papers (Dover, New York, 1952),Vol.
II, p. 40.

using (3) and without explicit determination of f.
Especially noteworthy is the importance of not assuming
electron energy balance. For our model Eq. (3) yields

ot'= o g o v'&g)&

where the drift velocity vD customarily is supposed to
equal cv in the case of constant mean free time. Thus
Eq. (5) does not seem to agree with (1); rather (1)
seems to require eD—-', av.. To elucidate this apparent
discrepancy, consider the ~, moment' of the B.E.

8 p p f
dvs, 'f a—dv f+r '~ dv v,f=0,

as~
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d8' dS' 4xe'g 2W
=v —v ln

dt dx 8" I (7)

story, but it seems clear that the factor s in (1) is
connected with the tendency for e& to equal ~3cr
in our model, instead of a~. The first term in (6)
represents a back pressure from electrons which are
diffusing back to lower energy (smaller s) after making
collisions at higher energy (larger z); this back diffusion
is diminished by collisional energy losses, which
prevent the electrons from penetrating to as small z as
they would without losses. Evidently in an actual
discharge as well as in our idealized model, failure to
achieve energy balance tends to make e& less, and a
correspondingly larger, than might otherwise have
been expected. Thus it is consequential that the elec-
trons in an actual discharge cannot remain in energy
balance as E/p ~~, since in this limit so and therefore
the rate of energy gain eE~D is increasing, whereas the
increasing average electron energy decreases the rate
of energy loss. In H2 for instance, the rate of energy loss

by an electron of high energy 5'= ~nse~ is"

ing 40 ev, the upper energy limit of measurement. For
given E/p, an electron starting at v=0 has probability
equal to 2 of reaching an energy W& W2 before making
its first collision. Comparison of curves A and 8 of
Fig. 2 indicates that in an H2 discharge electrons
probably are in energy balance at E/p's( 500, but
are unlikely to be in energy balance at higher E/p's.

V. DERIVATION OF e

Let us compute the total number cV(Z) of electrons
produced on our model in the interval 0&z&Z as a
consequence of the emission of a single primary electron
from the cathode at s=0. Suppose rs(s)ds is the number
of secondaries produced by the primary in the interval
s to s+ds. Each secondary is created with speed zero,
so that a secondary created at z= z~ never can be found
at z &z~, moreover in moving from z~ to Z the secondary
born at z& causes the ultimate creation of exactly as
many electrons as would the original primary in moving
from the cathode to z=Z —z~. Thus

fQ Z 2

X(Z) = ds N(s)+ ~ ds rt(s)E(Z —s). (10)

where I=13.6 ev, and we have assumed one hydrogen
molecule is equivalent to two hydrogen atoms. The
solid portion of curve A of Fig. 2 plots vs E/p the
energy W, in ev at which the right side of (7) equals
eEeD, using the smaller possibility v&= 3a7 to compen-
sate for the fact that the high-energy formula (7)
probably considerably underestimates the energy loss
at the low energies of interest here; r= (Sos) ' was
computed using 0 =18 at an energy of 1 ev, as in curve
8 of Fig. 1. For given E/p, energy balance is possible
only for electrons with energies W(Wr. For 8/p) 470,
the form (7) implies the energy gain exceeds the energy
loss at all electron energies, but the true curve 2
presumably continues on to higher E/p as indicated
by the dashed extrapolation. The probability that an
electron starting at @=0goes a time t without making a
collision is'

where e=at'. Hence the probability that an electron
starting with zero energy attains an energy 5' in ev
before making its erst collision is

t2Wy&- p " 1
Q ~ ~

=exp —3.1— dW'0 (W'), (9)
(ma') I Ej s

Suppose now that in the course of its entire history
an electron makes P(s)ds collisions during the times
when its speed was between z and v+de; f(v) is termed
the collision density. On our model

&
—v/aryv t'dy

P(s) = 3+ —— . (11a)
(ar)' "& y' (1—y tanh 'y)'+(2rry)'

This result is derived below. Eq. (11a) is plotted as
curve 2 in Fig. 3. We plot

v 0.738ar
0(s)=—,3+

(ar)' s

I

exp[ —1.25~'/(ar)'), (11b)

as curve B. This fit to the exact P(s) is used in the
subsequent analysis. Because there is no energy loss on
our model, the primary speed at z=z&, is uniquely
determined, so that by the definition of P(v)

m(s)ds= (o,/a)P(s)ds,

where v'(s) =2as.
We now solve the integral equation (10). Straight-

forward application of Laplace transforms" presents

1 t Q(X)dX
x(z) = (13a)

2~i &, a[t —y(a)g

where, using (12), the Laplace transform of N(s) is

where the units are as in Eq. (2), and we have used
dW=mrtds=msadt. Curve 8 of Fig. 2 plots vs E/p the
energy W& at which Q= —',, with the integral (9) com-
puted from the observed' o. for electrons on H2, plus a
reasonable extrapolation' therefrom at energies exceed-

y(X) = ' ds e—"'rt (z)

o'f t'
ds exp( —Xv'/2a) f (v). (13b)

"N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press& Oxford& 1949), p. 252,

'2 P. M. Morse and H. Feshbach, Methods of Theoretical I'hysics
(McGr@w-Hill Book Company, New York, 1953)& pp. 97$—It).
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where
Ir =W—I/Gr, (15b)

and Eo is a number independent of Z. Suppose next
that the cathode has been emitting electrons uniformly
for a su% ciently long time that a steady state has been
attained in the region 0&s&Z. Then the net number of
electrons per second crossing the surface s =Z in the
direction of increasing s is steady and must equal
EOe times the number of electrons emitted from the
cathode per second. In other words, the current density
in our model discharge is

i(Z) = ape s, (16)

V/a z

rIG. 3. Electron collision density. Curve A is the exact (11a) .
Curve 8 is the form (11b). Also plotted is the asymptote (line
through the origin) which orrP (p) approaches at large v/ar.

Explicitly, with (11b) in (13b), Eq. (13a) becomes

1 f ItlII
E(Z) = exp (toZ/ar')

21) Z 4 g 'M

( 3x(m+2.5)l+0.738'(pr/2)'w
xi (14)

E (w —3x) (w+ 2.5)*'—0.738x (w/2) &w)

x= o.,/o,

where the contour of integration is the vertical line F
shown in Fig. 4 and the real part of (w+2.5)k is &0.
The integrand of (14) has a branch point at w= —2.5
and poles at m =0 and at the three roots of the de-
nominator within the bracket. It can be shown that
all three roots are real, but only one is positive. Closing
the contour at inanity and around the branch line, the
pole due to the single positive root m ~ contributes a
term to (14) which increases exponentially with Z. The
other singularities contribute terms to (14) which are
either constant (the pole at ttt =0), exponentially
decreasing (the negative poles), or integrals whose

integrands are exponentially decreasing with Z (the
branch line integrals). Thus as Z —+ oo, the total
number of electrons produced in 0&s&Z as a conse-
quence of emission of a single primary from the cathode
1S

so that n defined by (15b) is Townsend's first coefficient.
The wI which corresponds to our Hp values o;/o
= 13.6/34 = 7.2/18 =0.4, is wI ——1.5. For Hp then,
s= 1.5/0. 4=3.75 in (1). When the integral in (11a) is
neglected, s=3. The same result s =3 is obtained in the
limit o ~/o -+ 0.

We do not maintain that replacing (11a) with (11b)
yields a Laplace transform of X(Z) Lintegrand of (14))
with the correct behavior in the entire complex m-plane.
The essential point is that the behavior of E(Z) at
large Z is determined solely by the largest value of
)I=III/ar' solving p (X) = 1 in (13a) . Because ip (n) is
everywhere positive, on the positive real X axis the
values of P(X) from (13b) are only slightly changed by
the slight approximation involved in replacing (11a)
by (11b), so that the largest positive root of (14)
necessarily is very close to the largest root of the
exact p()%) = 1.The accuracy of the fit of (11b) to (11a)
could be improved by employing a series of several
Gaussians, with only an increase in the algebraic
complexity of the equation p(X) = 1. However we
believe that (11b) reproduces (11a) with sufficient

X(Z)=%pe x, (15a) FIG. 4. Contour of integration in rp plane for (14).
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precision to allow us to term our result for o. essentially
exact.

The ratio a.,/0 need not be taken constant. Equation
(13b) can be evaluated, at least numerically, for 0; an
arbitrary function of v consistent with the 1/v nature
of 0. The n comes, as before, from the (positive) root
of y(X) =1.

VI. COLLISION DENSITY

There remains the problem of deriving (12). The
quantity f(v) is defined in terms of the history (in
velocity space) of any one electron. This history does
not depend on the location (in coordinate space) of the
point where the electron is born. Thus for the purposes
of finding P(v) we imagine a uniformly distributed
(from z= —~ to z=+ pa in coordinate space) initial
distribution fp(v) =—f(v,0) of electrons at t=0, for
which the distribution function f(v, t) at later times,
after colliding with the in6nitely massive neutral gas
molecules, satis6es the B.E.,

Bf Bf—+a = Nva(v) f+— d.v'f(v')Nv'o(v' ~ v), . (17)
Bt Bv,

where the total cross section o.(v) and the ionization
cross section a;(v) satisfy

the solution to (17), which corresponds to a spatially
uniform nonionizing ensemble of electrons drifting
down the applied electric field. Furthermore the possible
utility of (20) depends entirely on whether or not the
cross sections, which have not yet been specified in
(17), are such that an electron can attain energy
balance. If energy balance occurs, an electron spends
all its time at finite speeds and (20) is infinite; con-
versely if energy balance is not attained the integral
(20) converges, since then the probability of finding
the electron with a finite velocity e becomes vanishingly
small as t ~~. Hence it is precisely because our model
has no collision loss mechanisms, a feature which might
ordinarily be regarded as a deficiency, that we are able
to introduce usefully the concept of the collision
density.

The probable number of electrons with velocity v at
t equals the probable number of electrons furnished at
t =0 which can reach v at t without collision, plus the
probable number of electrons reaching v, t which made
their last collisions at intermediate times T, 0&T&t.
Therefore, referring to Eq. (8), Eq. (17) is satisfied
(as performing the indicated differentiations will verify)
by the solution to the integral equation

t

f(v, t) = ~" dr dv'Nv'f(v', 7) )v' v a(t r))— —
ItJ p

0 (v) = dv'~(v ~ v'), (18a)
Xexp

~o

t'—T

dt'Nv(t')aLv(t') j +fp(v at)—
o, (v) =

~
"dv'p;(v ~ v'). (18b) t

Xexp — I dt'Nv(t')oLv(t')$, (21)

Although o(v~ v') includes a, (v-+ v'), terms corre-
sponding to creation of electrons by ionization are
omitted from the right side of (17), since we are
interested in the history of ae electron, not in the
electrons this original electron creates. Hence, substi-
tuting (18a) in (17)

where in the exponential under the integral sign

v(t') = v —a(t —T—t'),

and in the exponential multiplying fp

v(t') =v —a(t —t,').

(22a)

(22b)

P(v)dv=v'dv dt) dn Nva (v) f(vri, t). (20)

We remark that electron indistinguishability in the
ionization process is inconsequential; it doesn't matter
which of the two outgoing electrons is termed the
primary and which the secondary, provided that (19)
holds and that the integral on the right of (18b) yields
the correct total ionization cross section 0,(v).

The definition of f(v) implies

We Bow specialize to our constant mean free time
model, for which

(v v') =(1/4 )(1/")~( —") () (23a)

fp(v) = (1/4prvp')5(v —vp), (23b,)

wherein 8 (x) is the one-dimensional Dirac delta function.
Equation (23a) is in agreement with (18a) and the
assumption of isotropic collisions without energy loss;
in Eq. (23b) vp is a small positive quantity which
ultimately is permitted to approach zero, in agreement
with the assumption that every electron is born with
zero speed. Introducing the Laplace transform of f,

Equation (20) has the noteworthy feature that P(v)
for the original discharge, which contains a source at
s=0 and electron creation processes, is obtained from

g(v, X) = ' dt e "'f(v, t)
Jo

(24)
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Equations (21)—(24) yield where the kernel

g(v, )~) =
"o

f(v', T)
dt e—"' dT ' dv' E(v,n', )%.) =

27'8 4 p I 4 iv—oui

~oo e—u/V e
—t u tV+au

dQ dy h (y —v'). (31)

Xbfv' —
i
v —a(t —T) i)e—" Since the integral over the 5 function in (31) vanishes

unless
Bf fv —at/ —v,)+ dte —"' (25)

pep'4o

In the multiple integration of (25) first interchange the
order of integration of t and T, so that t is integrated
between T and ~; then introduce the variable u= t—T.
Thus we obtain an integral equation for g, namely

in —aui (v'(v+au,
it follows that, for any positive e and v'

~&+")/- dl
K(v, n', X) = e—u/ve —Xu

28T ~ iv—v'i/a I
() r+1) in —v'i

(32)

g(v, X) =
Jo

g (v', X)
du dv'e ""e "', bfv' —Iv —aul)

bf i
v —aui —ve)

+ due" e (26)

(Xr+1)(v+v')
~1 (33)

4o 4n-Vp' with E~ the exponential integral

Next we integrate (26) over all directions n of v=vn.
This integration is performed introducing the new
variable

e
—su oo e—u

Z,(.)= I' d. I (34)

y= I v aul —= (vs+asus 2av»)l

dy = —(avu/y) dtt,
(27)

CO ~OO

dn g(v, X) =— du e '*'e "' d-v', J,
2~ p+" y

X dn'g(v', )t)— dy 5(v' —y)
kr ~ [v—aui GIN

in place of p, —=cos8, where of course dn= sin8d8dclt= dttdrtt

We find

VII. CONNECTION WITH NEUTRON
TRANSPORT THEORY

It now can be seen that Eq. (30) is identical with an
integral equation which occurs in a much-studied
neutron transport problem, namely the problem of the
neutron density in a homogeneous isotropic scattering
medium containing an isotropic point source of neu-
trons; in fact the results for the neutron transport
problem immediately yield the solution to Eq. (30),
and thereby yield the collision density lt (v), since from
Eqs. (20), (24), and (29),

lt (n) =nB(v,0). (35)
f' 27)

+ ~ due ""e "t'

p
v+ou y

X dy 5(y—.,). (28)
J (v—au) avu

Case, de Hoffmann and Placzek" solve the integral
equation

e
—Ir—r'l

p(r) = dr' cp(r')+ 5(r') . (36)
r —r

a&p'
p(r, c)= — e ~o"

4n-r Bc

In Eq. (28) v and a are no longer vectors, i.e., i
v —au

i

They show p is spherically symmetric, and when

is simply the absolute magnitude of the number v —aN, 4& ~ s g've by
with e, a, I all intrinsically positive.

With the de6nition

H(n, ) )=— dn g(v, X),

Eq. (29) can be put in the form

(29) isa I gp
e—r/tt, (37)

p,
' (1—ctt tanh 'tt)'+ (-',trctt)'.

"K. M. Case, F. de Hoffmann, and G. Placsek, Itttrodgctton to
the Theory of Neltrol DQttmtoN (Los Alamos Scientific Laboratory,
Los Alamos, New Mexico, 1953), Vol. I, Chap. 4, esp. pp. 55—58,
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where E0 is given by

E0/tanh 'Eo=c.

In the limit c= 1, ED=0 and BE02/Bc= —3 in (37).
In Kq. (36), recalling p is spherically symmetric, the

integral over all directions n' of r'=r'n' can be per-
formed by the same device as in (27), i.e., by introducing
the new variable

y= lr —r'I = (r'+r"—2rr'ti)&, (39)

in place of @=x r'/rr' The.rewith we discover Kq. (36)
is equivalent to

Equations (35) and (46) yield the previously quoted
(12).

We comment finally that the integral equation for
H(v, O), or equivalently for P(v), can be formulated from
first principles, without recourse to the B.K. (17). In
the course of its entire history the number of collisions
made by an electron when its speed is e equals the
integral over all v' of the number of times the electron
receives speed v' (by collision or in the process of
creation) multiplied by the probability E(vlv') that
an electron starting with speed e' makes its next
collision at speed ~. Hence

, 00

P(r, c) = ~' dr'LEi(lr —r'I) —Ei(r+r') 1
2 0

P(v) = '

dv'E(v
I
v')! P(v')+B(v) j, (47)

where

X cP(r,c)+ v(r'), (—40)
r'

P(r,c) =4v.rp(r, c). (41)

where the 6 function expresses the fact that the electron
is created at zero speed. Recalling (8), the probability
E(vl v') that 'a particle starting with velocity v' makes
its next collision at speed e is

(42) E(vlv') =)" dt X~!v(t))v(t)
0

r= (ar) '(Xr+1)v,

in Kqs. (30) and (33) converts (30) to

Xexp — dt'1A(t')o. Lv(t') j BLv(t) —vj, (48)

On the other hand in the limit v0 —+ 0, the substitution

e(r,~) =- «'I &i(lr —r'l) —&i(r+r')]
0

-e(r', X) (X.+1)S(r')-
X + — — —, (43).Xr+1 (ar)' r'

with

( arr
e(r,~)=el

(Xr+1 E(v
I
v') =—

~

"dn'E(v/v'n'). (49)

where v(t) =v'+at and the B function in (48) picks out
these instants at which the particle attains speed v after
starting with velocity v'. When the scattering cross
section is isotropic, the initial direction n' of v'=e'n' is
random, and

Equations (40) and (43) mean
Direct integration of (48) and (49) for our constant
mean free time model yields

45
Xr+1 p 1

e(,~)=
(ar)' 0 Xr+1) 1 1 v flv —v'l1 f'v+v'qE('lv')=, ~'I I ~'I I (50)

2arv' & ar ) & ar)because the source in (43) is (ar) '(Xr+1) times the
source in (40). Thus, recalling Kqs. (24) and (29), we
have obtained an explicit expression for the spherically
symmetric part of the Laplace transform of f(v, t) In.
particular for X=0

Using (50), Kq. (47) is seen to be equivalent to Kq.
(30) for H(v, O) and indeed E(v,v', 0) of Kq, (33) now is
interpretable from the relation

E(v,v', 0) = (v'/v) E (v I
v'). (51)

ACKNOWLEDGMENTS

1 ( r ) 1 'dtti
H(r, 0)= Pl —,1 I= 3+ e "t-~—-

(ar)' I,ar ) (a&)' ~ 0 p'

IX--
(1—y, tanh —'ti)'1 (-,'vp)'

The authors wish to acknowledge a number of
(46) illuminating discussions with K. M. Case and M. N.

Rosenbluth.


