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unit volume is approximately given by

P=J+,+J„E„+J,E,.

Transport Properties

fmld and magnetic 6eld. Expressions for transport
properties may be found by using suitable sets of
auxilliary conditions.
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The properties of a Bose system of particles with repulsive interactions have previously been treated
using perturbation theory in the formalism of second quantization. Others have also considered this problem
by dealing with the wave function in configuration space, using the theory of cluster expansions. In these
latter papers, variation with respect to a parameter in a trial function for the ground state has been shown
to yield a ground-state energy close to the exact asymptotic expressions obtained from perturbation theory.
The connection between the two methods is not immediately obvious from these cluster expansion treat-
ments. It is shown here that, as one might expect, the cluster integral method can be handled so that it is
completely equivalent to the pair approximation in perturbation theory.

l. INTRODUCTION

HE properties of a Bose system of particles with
repulsive interactions has been treated using the

formalism of second quantization by several investi-
gators. ' ' More recently4 5 the same problem has been
considered dealing directly with the wave function in
configuration space, using the theory of cluster expan-
sions first introduced in statistical mechanics. ' In these
latter treatments the ground-state wave function is
expressed as a product of pair functions. The problem
of evaluating the expectation value for the energy
then becomes analogous to evaluating the classical
partition function for an imperfect gas, expressed in
terms of Mayer's cluster integrals. By considering only
contributions to the energy from ring integrals, a
tractable expression for the ground-state energy at low
densities is obtained. Then a choice for the pair function
is made and subsequent variation with respect to a
parameter in this trial function has been shown to
yield a ground-state energy quite close to the exact
asymptotic expression obtained in references 2 and 3
above, where the contribution to the energy from pair
excitations was calculated exactly.

Now one might naturally ask how this cluster integral
method in configuration space is related to the pertur-

' N. N. Bogoliubov, J.Phys. (V.S.S.R.) 2, 23 (1947).' K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (195/).'T. D. Lee, K. Huang, and C. N. Pang, Phys. Rev. 106, 1135
(1957).

~ F. Iwamoto, Progr. Theoret. Phys. (Kyoto) 19, 59'7 (1958).' J. B.Aviles, Ann. Phys. 5, 251 (1958).' J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley gt Sons, Inc., New York, 1950), Chap. 13.

bation theory calculation using momentum-space
eigenfunctions. An analogous situation exists for the
calculation of the partition function of an ideal Bose
gas, where there is a cluster integral development
which is completely equivalent to the more usual sum-
over-states. ~ One might expect that here as well, the
pair approximation perturbation theory should have
its exact counterpart in a coniguration space cluster
integral development. Our purpose is to show' that this
expectation is indeed fulfilled. The cluster integral
calculations previously made are not directly com-
parable to the perturbation theory calculations simply
because the class of ring integrals which were taken as
contributing to the ground-state energy do not corre-
spond to the pair approximation of perturbation
theory. The pair approximation yields a ground state
which in configuration space has the form [see Eq.
(A.21) of Appendix II of reference 3$

where the prime denotes that in the expanded product
for 4 all terms with repeated particle indices are
omitted. The prohibition of repeated indices is essential
for the pair approximation, since the Fourier transform
of a term with one repeated index, such as f(r~s) f(res)
shows that this term refers to excitation of three
particles having momenta kr, ks, ks with k~1k,+ks= 0.'
The previous cluster integral developments do not

s B.Kahn and G. E. Vhlenbeck, Physica 5, 399 (1938).
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impose this constraint of nonrepeated indices in the
ground-state wave function. As a result, they include
(but only partially) excitations of three and more
particles in addition to pair excitations. The net effect
is to give an approximate expression for the ground-
state energy which is not ordered in the same sense as
the perturbation theory calculation, and hence, not
directly comparable. With the constraint of non-
repeated indices, the cluster integral development
becomes equivalent to the pair approximation pertur-
bation theory, and the solution of the variational
problem for the pair function f(r;;) and ground-state
energy yields again the same results as perturbation
theory. This is demonstrated in the next section.

2. CLUSTER EXPANSIONS AND RING INTEGRALS

Our aim is to evaluate the ground-state energy by
variation of (H), the expectation value for the Hamil-
tonian of the Bose system of X interacting particles,
given by

(~) @o@drN

where dr =dridrs . dr~, and V(r;;) is the two-body
potential energy. The ground-state wave function 4'
will finally be written in the form of Eq. (1), but for
the present we write it as a product of pair functions
with no constraint,

is related to the pair distribution function N&(r») by

pV(r») C(r») =~s(r»). (6)

The function C(ris) can be expressed in a cluster
expansion in powers of the density

where
j. 1

(„(r»)=—,Q II h(r;;)dr, dr„+,,
nf~

(V)
V(rls)'p(ris)C(ris)dr12 ~

ar
(9)

Without the restriction of nonrepeated indices on the
ground-state wave function, the evaluation of the
integrals in Eq. (9) corresponding to clusters of con-
siderable numbers of particles becomes prohibitively
diKcult. However, the nonrepreated indices require-
ment uniquely selects out of this original set of cluster
integrals a simple subset of so-called ring integrals. To
show this, first denote by Cv(r») the C function for the
potential energy part modified by the hypothesis of
nonrepeated indices. Since f(r;;)=1+f(r;;), we can
write Eq. (9) in the form

h(r;;) =P(r;;)—1=2f(r;;)+f'(r;;),

and the integrand P II h(r;;) indicates the sum of all
connected products for which each particle of the set n
is connected to particles one and two by an independent
path. The potential energy contribution is given by

We examine first the cluster expansion of Cvi(ris):

V C 2V C
The cluster integrals are introduced by first reducing

1V 2&
the multidimensional integral in Eq. (2) to an inte- +V(r»)f'(r i)sCvs(r»)}dris. (10)
gration over the relative distance between any pair

. of particles, say particles 1 and 2. This gives, for the
expectation value of the energy per particle5

pk
Q (r12)&'p(r12)]C(r12)

2trt

+-',p(r„)Vlt (ris) VC(r„)

where

Cvi(ris) =1+ P p"g„i(r»),
tp I

1
$„i(r»)=— P II h(r;, )drs ~ dr„+s, .

St ~ (1)
(12)

rN

V(r12)lt (r12)C(r12) 'dr12 (4)

where the function C(r»), defined by

E(X—1)
C(r») = II tt '(r;,i)dr der~

p'P(r„) ~ '(t-i

Ã

II '(IrI;;) r di driv, (5)

and the integrand P ti& II h(r, ;) indicates the sum of all
connected products for which each particle of the set n
is connected to particles one and two by an independent
path and only those connected products are allowed
which are consistent with the assumption of non-
repeated indices in +. As a erst consequence of the
latter, only ring-connected products are allowed. Those
connected products with internal connections are not

e See, e.g., J. deBoer, RePorts oN Progress il Physics (The
Physical Society, London, 1948-49), Vol. 12, p. 335.
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n+2

n+)
n+2

4*.Hence,

P g f(r, ,) =2(e!)f(rrs) f(rs4)
Xf(m+1, n+2) f(rn+s, 2), (14)

involved. For example a ring product such as is illus-
trated in Fig. 1(a) is allowed, whereas a product with an
internal connection t such as is illustrated in Fig. 1(b)j
would imply the existence of repeated indices in 0'.
We further note that the f'(r,;) term in k(r;,) is elimi-
nated by the assumption of nonrepeated indices. In
the cluster expansion where repeated indices are
allowed, the factor 2f(r;,) in Eq. (8) for h(r;, ) indicates
that there are two places in any cluster from which
each f(r;;) may come, i.e., from @or O'*. In our case of
nonrepeated indices, this particular degeneracy is not
present. For example, a ring of order m=3 contains the
product f(r») f(r34) f(r4&) f(r») U(r»). The pair func-
tions f(rrs) and f(r4s) may come from 0' while f(rs4)
and f(rss) must then come from%'*. Thus,

1
p„t(rr&) =—,"g g f(r;,)drs' ' 'dr +2.

et~
(13)

All the connected ring products illustrated in Fig. 2
are allowed, but except for those in the erst row they
may be shown to contribute in the final result to a
higher order. As a result, we include only those
connected products in the first row of Fig. 2.

To evaluate ger(rrs), note that permuting the rr

particles produces mt configurations, while there are
also two ways of drawing the configuration from% and

(b)

PIG. 1. Graphs representing contributions to the ground-state
energy. (a) A typical connected product. (b) A connected product
not allowed by the requirement of nonrepeated indices.

41(r12) 2 tf(rls)f(r34) ' ' ' f(rny2, 2)drs ' ' 'dr +s. (15)

Introduce y(k), the Fourier transform of f(r),

y(k) = f(r)e '"'d-r

Then the function fnr(rts) becomes

4r(rts) = Ly(k) j"+'e'"'~md',

and thus

(17)

V(r») f(rrr)Cvs(rrs). (20)

We note that C&2 may also be expanded in a cluster
expansion,

Cvs=1+ Q p"( s(rrs),
n=l

2
Cvt(rrs) = 1+ g [y~(k)$n+&e~& md/ (1g)

(2s)'p n r~=
Interchanging the order of summation and integration,
we have if

~ p7(k) j &1

2p t' q'(k)
Cvt(rr&) = 1+

(2s)' " 1—pv(k)

We next consider the second term in (V)jlV given in
Eq. (10), i.e.,

3 -0 4

iag 02
l2 l2

iu q o2
i2

io V o2
l2

2

FIG. 2. Graphs representing the
contributions to (V) from the term
V(rn)Cvi(rn) in Eq. (&f))
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where
1

(„2(r12)=—
~ P g f(r;;)drs dr„y2,

~lg
(22)

I 0 Og
V)z f)2

I V 0
Vi~'a

in accordance with our previous remarks in discussing
the expansion of Cvr(rts). In this case, we are consider-
ing terms of the type V(r») f(r») g f(r;,) (see Fig. 3).
Nonrepeated indices require that

and

P g f(r;;) =0, for n odd,
(2)

(23) I

Va'fa

This gives us the result for $„2(r12),

(442(f12) =0 n odd first term in this series, i.e., single pair excitations and
their interaction with the ground state, in a direct
calculation' yields the result cited by Brueckner and
8awada.

Now for nonrepeated indices the expectation value
for the kinetic energy per particle is'e from Eq. (4),

1
"b (&)jm+leik rssdk n even

(22r)s " (25)

a,nd, if
~
psy2(k)

~
& 1

p' t- ys(k) (T) —
pals t.

Cvs(r12) =1+ ~ e'"'»dk. (26) =, p(r12)V'f(r12)CT(r12)dr12
(22r)s J 1—psps(P) g 2ns 0

f(T, ,) (n ))f(yrs) f(T 2 2) for n even (24) FIG 3 (a) (c) GraPhs rePresenting the successive contributions
to (U) from the term U(r42)f(r42)Cvs(r») in Eq. (10). (d) A
typical contribution for odd ss (42=3) which vanishes for non-
repeated indices.

The last term in (V)/X is

V (T12)f (T12)CV3(T12) ~

—pk2
' (L~'f(")X'T (» )

2m

+(f(T12)V'f(T12) jCT2(~12))dr12 (28)

(29)

f „;(r12)=— Q Q f(r,;)dr dr„~2
el (')

(30)
(V)

V(T12)
~

1+2f(T12)
Examination of these expansions (see Fig. 4) yields

Nonrepeated indices require Cvs(r») =1 inasmuch as
one f(r12) must come from @ and the other from 11I*,

In a similar manner to the treatment of (V)/N, we may
'm o ibl . W dro thi t m w ll th o d make a cluster expansion of CT;(T12) yielding

term in Eq. (26), since they may both be shown to
contribute to a higher order in the final result for the CT'(T12) 1+ Q p f '(+12)

energy. n=l

Combining the above results, the expectation value where
for the potential energy per particle is

; v'(~)
e'"'»dk ~dr». (27) P g f(rs)=0, for n odd

(22r)s & 1—py(k)

(31)

The first term in the integral on the right side of Eq.
(27) represents the interaction between unexcited
particles one and two shown graphically by the first
term in the 6rst row' of Fig. 2. The next term refers to
the excitation and de-excitation of the pair (1,2)
from and to the free particle ground state. The third
and last term represents the sum of all contributions
depicted by the remaining graphs shown in the First
row of Fig. 2, corresponding to multiple pair excitations
and their interaction with the unexcited particles.

The inclusion of only the integral obtained from the

Z II f(r'4)

=n!f(rrs) f(rs4) f(r„+2,2) fOr n eVen, (32)

9 V. H. Smith and H. A. Gersch, Bu11. Am. Phys. Soc. 4, 386
(1959).

The absence of a term Vf VC should be noted. Such a term
arises from products such as

v 4'Lf (r1..)f(rss)f (r44)j
=Vs Lf(rss)f(r44)Vsf(r»)+f(rss)f(r44)Vsf(r») j
=Lvs f(rss)gf(rss)f(r44)+f(r»)f(r44)vs f(rss)

+2f(r44)Vsf(rss) Vsf(rss)
But such products are missing in +, due to nonrepeated indices.
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where the + sign is chosen in front of the radical to
satisfy the condition that

I pp(k) I
&1. Substituting for

y(k) in Eq. (35) we obtain

QR f 2
l2 fl

(a) (b)

Fxo. 4. Graphs representing contributions to the kinetic energy
from the term Vsf(r~s)Cry(res) in Eq. (28). (a) A term with odd rs,
(rs=j) which vanishes for nonrepeated indices. (b) A term with
even n (I=4) which gives a nonvanishing contribution.

and

(B) 2+ak'p ci

11 lim —r y(k)e'"'dk .~ar ~

Evaluating the integral yields the result

ck' 128
Ep= (H) =2srlp 1+ (pa')'*,

m 15 x

(39)

E II f(r,,) =O, (33)

and thus the expectation value for the kinetic energy
may anally be written as

(T) pris t.—
,

V'f(r t)sI 1+f(rrs)E 2m~

v'(k)
e'"'&'dk Idrrs. (34)

(2w)s ~ 1—p'y'(k)

V(r) =g8(r) (8/Br) (r ), g=4sraks/m, (35)

where a is the hard sphere diameter. Actually, one can
use the form V(r)=gb(r), and switch to the correct
form given in Eq. (35) at the end of the calculation.
The expression for (II) is considerably simplified by
transforming the pair function f(rts) to momentum
space. As shown in the Appendix, the result is

p&' (gt 1 t' (k'+ pgl)v'(k)+glv(k)
I
—+ dk I,g 2m ( 2 (2s)s" 1—psys(k)

where g&= Ssra. Varying (H)/E with respect to p(k) we
obtain the Euler equation:

gn 'v'(k)+2(k'+pgrb(k)+gt
=O. (37)

L1-p'v'(k)3'

Its solution for y (k) is

The expectation value for the energy per particle is
then obtained by adding Eq. (27) and Eq. (34).

To make connection with the results from the pertur-
bation theory calculation for hard spheres, we now use
for V(r) the pseudopotential shown by Lee, Huang,
and Yang' to be applicable to this interaction at the-
low densities considered here. As they have shown, it is
essential, in order to remove spurious in6nities, to use
the correct pseudopotential,

which is the result previously obtained from pertur-
bation theory. ' ' Using our solution for y(k), the
neglected terms in the development for the potential
energy are easily shown to contribute to the energy in
the order p'a4, and hence in a higher approximation.
Calculations of other ground-state characteristics such
as the pair distribution function are also in agreement.

3. DISCUSSION

We have shown how the cluster integral formalism
may be treated to produce results equivalent to those
obtained from perturbation theory. Our interest in the
equivalence is not so much in presenting the cluster
integral development as an alternative to the second
quantization procedure; as we have employed it here
at least, the cluster integral formalism appears con-
siderably more cumbersome. Of greater interest,
perhaps, is the underlying reason for the possibility
of making an exact asymptotic calculation for the
ground-state energy in the two procedures. In the
second quantization formalism, the pair approximation
reduces the Hamiltonian operator from a complicated
quadri-linear form in the plane wave creation and
destruction operators to a simple bilinear form, which
can then be diagonalized by a canonical transformation
to new operators. The cluster integral formalism
without the equivalent of the pair approximation is also
quite intractible because of the complicated nature of
admissible graphs contributing to the pair distribution
function. The equivalent of the pair approximation,
namely the restriction to nonrepeated indices, selects
out the original hierarchy of graphs only the ring
integrals. These have a particularly simple structure
which enables evaluating exactly their contribution to
the pair distribution function. This fact, utilized

previously, for example, in the Debye-Huckel theory
of electrolytes, " in the Kahn-Uhlenbeck treatment of
the perfect Bose-Einstein gas, ~ and in the Born-Green
theory of liquids, " here again forms the basis for the
possibility of the present calculation.

k'y k
py(k) =—

I
1+ I+ (k'+2pg )', (38)

"J.E. Mayer, J. Chem. Phys. 18, 1426 (1950).
n M. Born and H. S. Green, A general Eenetee Theory of Isqleds

(Cambridge University Press, Cambridge, 1949), Chap. II.
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APPENDIX

In this Appendix, we derive Eq. (36). To do this, we
consider the sum of Eq. (27) and Eq. (34) term by term,
using for V(r) the pseudopotential given by Eq. (35)
and by transforming the pair function f(r») to mo-
mentum space: 2m

&'f(ri2)«u=o (AS)

We next consider the 6rst term of Eq. (34). It vanishes,

since f(r12) has no zero momentum components. Hence,

f(r») = y(k)e'2'»dk
(22r)2 ~

Equation (A1) is in accordance with Eq. (16)

y(k) = f(ri2)e ""'«u

Considering each term of Eq. (27), we have

(A1) Considering the remaining terms of Eq. (34), we find

—pk' t.
f(r12) V f(r12)«12

2m ~

—ph2r ( 1
dr»I +(k')e—'&' n2dk'

2m 4 E(22r)' &

p p Pg
V(r12)dr12 g|i(r12)dr12

2~ 2 ~ 2'

p
2V(ru) f(ru)«12

r (=p g5(r )I, y(k)e'"' dk Idr
&(22r)2 ~

(A2) &&
—k2q(k)e" '12dk

I

pk2
k2y2(k)dk,

2m (2~)2 ~

p%2 I
— ( 1 t p'(k)

dr12v2f(r, 2) I

2m & E (22r)2 " 1—p2y2(k) )

(A6)

pg
y(k)dk,

(2~)»

V2(k)
V(r12) I

' e' '»dk Idru
2 & (22r)2 0& 1—py(k) j

v'(k)
g&(ru) I

e'" "'dk Idr12
(22r)2 ~ 4 J 1—py(k) j
p'g t v'(k)

dk.
(2~)'" 1—pv(k)

(A3) —p'5' ( f'

dr»I
2m (22r)' "

—k"q(k')e-'""»dk'

t' p'(k)e"'

1—p2y2(k) )
r k2y4(k)

dk.
2m (22r)2 J 1—p2y2(k)

pVP
(A7)

(A4)
Summing Eqs. (A2) through (A7) we obtain Eq. (36).


