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Using a model of liquid water in which a molecule, in its
equilibrium position, performs an oscillatory motion for a mean
time r0, and then di8uses by continuous motion for a mean time
~j, and repeats this sort of motion, the differential scattering
cross section for cold neutrons has been calculated. It is found
that the shape of the "quasi-elastic" scattering is, in general, not
Lorentzian. The formula for the broadening of the quasi-elastic
peak assumes a simple form in two limiting cases: In case (i)
~I))r0, it reduces to the formula derived on the simple diffusion
theory; and in case (ii) r&«ro, the broadening is the same as in
case (i) if z'Dro«1, and it approaches the asymptotic value 2A/ro,
if I~'Dv0)&1, where kz is the momentum transferred to the system

and D is the diffusion coef5cient of water. The observed value
of the broadening can be explained for a value of ro ——4&(10 '
sec. Besides, the theoretical quasi-elastic scattering in case (ii)
has certain interesting features which are in general agreement
with experiment. In part II of this paper, inelastic scattering
(hindered translations only) of cold neutrons has been calculated
using two diA'erent models of water: (a) a gas model and (b) a
Debye model; and the results have been compared with experi-
ment.

The general shape of both the quasi-elastic and inelastic
scattering of cold neutrons and the magnitude of the diffusive
broadening seem to support a quasi-crystalline model of water.

L INTRODUCTION

C&~~OLD" neutron scattering has proved to be a~ powerful tool in the study of the dynamics of
atomic motions in solids' and it is only very recently
that this technique has been used to study the atomic
motions in liquid water. ' 4 In contrast to solids, the
atomic motions in liquids are very complex and there
does not exist any satisfactory theory of the liquid
state. Water, as compared with ordinary liquids, has
many anomalous physical properties. It behaves in
some respects more like a solid than like a liquid and
this behavior, fortunately, makes water more easily
amenable to a mathematical treatment. An important
problem is to understand the nature of difFusive motions
of the molecules in water. The present paper is an at-
tempt in this direction and makes use of the available
neutron scattering experimental results.

A general theory of neutron scattering by an arbitrary
system of particles has been given by Van Hove. ' In
this theory, the diGerential scattering cross section is
expressed as a four dimensional Fourier transform of
the generalized distribution function, usually denoted
as G(r, f). In the classical limit, the interpretation of
this function is that given an atom at the origin at
time t=0, it defines the probability of finding an atom
within a unit volume at the point r, and at time t.
The atom at the position (r, t) may be the same that
was at the origin at time 1=0, or may be another atom.
In the case of solids, it is possible to calculate the
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G(r, f) function fairly exactly, which, unfortunately, is
not the case for liquids.

The total scattering can be divided into a coherent
part and an incoherent part, the former is given by
the Fourier transform of G(r, f) and the latter by the
Fourier transform of the self-diffusion function G.(r,t).
G, (r,&) defines the probability of finding a particle at
the point (r,f), if at time k=0, the same particle was
at the origin. In water almost all the scattering is due
to hydrogen for which the scattering is incoherent. The
scattering, in the case of a solid, can be further divided
into an inelastic part (phonon exchange) and an elastic
part (no phonon exchange), the former arising as a
result of rapid fluctuations in the distribution function
for short times (f& 10 "sec); and the latter as a result
of the distribution function being independent of time
for long times (t&)10 "sec). Physically this means that
after a time t&)10 "sec, the mean square displacement
of an atom has attained its equilibrium value or in
other words the atom has fully developed its thermal
cloud. This physical fact is expressed by the familiar
Debye-%aller factor in the expression for the scattering
cross section. In liquids, on the other hand, the mean
position of an atom is not stationary, but moves slowly,
in other words the atom diQ'uses. Such a difFusive
motion of an atom in a liquid gives rise to a broadening
of the elastic peak. Thus in a liquid there is no true
elastic scattering but only "quasi-elastic. " The broad-

ening of the elastic peak depends on the nature of the
difFusive motions. In general, the diffusive motions

may be quite complex but the two simple cases are:
(i) diffusion by large independent jumps and (ii)
difFusion by small motions according to the simple
diffusion equation (continuous diffusion). Using the
expression for the self-difFusion function obtained as a
solution of the classical difFusion equation, ' Vineyard'
has calculated the broadening in case (ii). Earlier,

' G. H. Vineyard, Phys. Rev. 110, 999 (1958).
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Hrockhouse~ had also derived the same expression for
the broadening.

Recent measurements of Br ockh ouse' for water
show that the observed line broadening is somewhat
less than that given by the simple diGusion theory and
he concludes that case (ii) does not completely represent
the mechanism of diffusion in water; and he further
adds that a variety of diffusive motions must occur.
More recent measurements of Hughes and collabo-
rators' indicate that the experimental broadening is at
least less than the theoretical value of Vineyard by a
factor of three if not more. In fact, these authors con-
clude that their experiment shows no evidence of broad-
ening related to diGusive motions and they further add
that their result is in sharp contrast to that of Brock-
house. ' In view of this contradiction and in view of the
importance of the nature of the diffusive motions in the
commonest of all liquids like water, the subject needs
a more detailed theoretical study.

Using a model of liquid water in which a molecule
executes an oscillatory motion for a mean time v p, and
then diffuses by continuous motion for a mean time v &,

and then repeats this sort of motion, we have calculated
the diGerential scattering cross section for cold neutrons.
The general formula for the broadening of the quasi-
elastic component of the scattering that we have
derived reduces in the case (i) rr))rp to the formula
for the simple diffusion broadening deduced earlier by
Vineyard'; and in the case (ii) rr((rp, to a somewhat
more complicated formula. The latter has some inter-
esting features which shouM be checked experimentally
and gives for r() 4&10 "sec a value of the broadening
which is consistent with the experimental value of the
Brookhaven group. ' This value of the time rp is sup-
ported by other independent experimental observations.
An important feature of the theory is that it does not
depend on the details of the model assumed. Cold
neutron scattering in water should in principle enable
us to determine not only the diGusion coeScient but
also the mechanism of diffusion. The form of the
quasi-elastic scattering and the magnitude of the line
broadening seem to suggest a quasi-crystalline model of
water, originally proposed many years ago by Bernal
and Fowler. ' In part II of this paper inelastic scattering
of cold neutrons for a quasi-crystalline model and a gas
model of water has been calculated and compared with
the experiments of Hughes et a1.4 On the basis of this
comparison, we conclude that a gas model for water
for low neutron energies is a poor approximation and
that a quasi-crystalline model is a better one to use.

2. MODEL FOR WATER

The model of water that has received considerable
attention is the one originally proposed by Bernal and
Fowlers and later modified by Lennard Jones and

~ B.N. Brockhouse, Acta Cryst. 10, 827 (1957}.
P J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1„515(1933).

Pople. ' In this model each water molecule is surrounded
tetrahedrally by four other water molecules held
together by hydrogen bonds, which can bend. The
higher the temperature, the more is the bending. In
water such a network of bonds extends throughout the
liquid and they are continually breaking and reforming
such that at any given instant all the molecules have
their full quota of bonds. Based on such a model,
Pople" was able to explain satisfactorily the tempera-
ture variation of the dielectric constant of water. It
has also been proposed by Frank" that in contrast to
the model of Lennard Jones and Pople, liquid water
consists of Qickering clusters of bonded molecules
mixed with nonbonded Quid. In the former model one
wouM expect that the diGusion mechanism will be
primarily through big jumps corresponding to the mean
distance between water molecules, whereas in the latter
model the diffusion mechanism will be more complex.
In Frank's model, a water molecule besides making an
oscillatory motion, will also move as a free diGusing
particle for a finite length of time. The parametric
times 7 p and 7& introduced in the present theory would
take care of this fact.

3. MATHEMATICAL FORMULATION

Van Hove' has shown that the incoherent differential
scattering cross section per atom per unit solid angle 0
and per unit energy A~ is given by

expLi(rp r pat) JG, (r,t)—drdt, (1)

where a is the bound incoherent scattering length, kp

and k denote, respectively, the initial and 6nal wave
vectors of the neutron. The energy and momentum
transfers are, respectively, given by

Ara= (is'/2') (kp' —P), Ax= h(kp —k), (2)

m being the mass of the neutron. The self-diGusion
function G, (r, t) is complex if quantum effects are taken
care of and satisfies the relation'

The main problem is to calculate G, (r,t) or its
Fourier transform. It is the latter which we shall
calculate in the classical limit. Ke shall first de6ne the
following quantities: (a) g(r, t) is the probability of
finding a particle at the position r at time f, when it is
performing an oscillatory motion about an equilibrium
position, starting from the origin at time t=O; (b)
starting from an oscillatory motion at time t=O, p(t)
gives the probability that the particle remains in the
same oscillatory state at a later time t; (c) h(r, t) is the
probabihty of ending a particle at the position r at

P J. Lennard Jones and J. A. Pople, Proc. Roy. Soc. (London)
A205, 155 (1951).

rP J. A. Pople, Proc. Roy. Soc. (London) A205, 163 (1951).'
n H. S. Frank„Proc. Roy. Soc. (London) A247., 481 (1958).
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time t, when it is performing a diffusive motion between
two equilibrium positions, starting from the origin at
time t=0; (d) starting from a state of diffusive motion
at time t=0, q(t) gives the probability that the particle
remains in the same state of diGusive motion at a later
time t; (e) p(t) —p(t+dt)= p'(—t)dt gives the proba-
bility that the particle has left its oscillatory state
during the time interval t and t+dt, and has gone into
the diffusive state; and (f) q(t) q(t+—dt)= q'(t—)dt
gives the probability that the particle has left its
diffusive state during the time interval t and t+dt,
and has gone into the oscillatory state.

We now ask the question: what is the probability of
finding a particle at the point r at time t, if at time t=0,

the particle under consideration was at the origin; i.e.,
we ask for G, (r,t) P Let us divide the motion into steps
numbering 0, 1, 2, ~ ~ 2S, ~ ~ . Starting from the origin
where we assume that the particle is making an oscil-
latory motion, it could have arrived at the point r in

time t after making 0, I, 2, ~ steps. The zeroth step
corresponds to the oscillatory motion, step 1 to the
succeeding diffusive motion, step 2 again to the oscil-

latory motion, step 3 to the diffusive motion and so on.
Then G, (r,t) is given by

G, (r,t)=g; F;(r,t), t)0;
where the various F s are given by

Step 0, F,(r,t) =g(r, t)p(t),

Step 1, Fl(r t) = dtl drl q(t —tl)h(r —rl t tl)p—(tl)g(rl tl)
J

Step 2,
t tg

F&(r,t) = (—1)' " dt2 " dt&J~dr2dr& P(t t&)g(r—r2, t——t2)q'(t& —t&)h(r& —r&, 4 4)P—'(4)g(r&, 4),
o "o

&tgg tg

S'tep 2X, PoN(r t) = ( 1) dt2X dt2%—1' ' ' dt's ' ' ' dr2Ãdr2% 1' ' 'dr—l
J

Xp(t 4N)g(r rox t t2N)q (t2iv t2N —l)h(r2% r2N 1 t2Ã t2N —1)' '—'p (tl)g(rl tl)

An important assumption which has been made in
writing the expression (5) is that when the particle
makes a transition from one step into the other, say
from an oscillatory motion into a diGusive motion or
vice versa, there is no correlation between the motions
in the two steps. This seems to be a reasonable assump-
tion in the particular case of water where the mean
life time for the oscillatory motion is assumed to be
large ( 10 "sec) compared to the period of vibration

( 10 "sec) and where the diffusion, as we shall see,
is mainly through big jumps.

By substituting (5) in (4), it is possible in principle
to calculate G, (r,t). However, what we are interested
in is not G, (r,t) but its Fourier transform and therefore
the I'ourier transforms of the F s, which are easy to
handle.

Let us consider the integral

t'
dt dr F2~(r, t) exp/i(r. r —&ot)j,

which can be written as

dr2or+1 dr2N' ' ' drl d(2M+1 42K' '
~ d~~l

Xp(r2N+1)g((2N+1 r2N~1)q (r2N)h((2x r2x) ~ ~ ~ p (rl)g((1 rl) exp[i(L' ~ r—cdt) j. (6)

Expression (6) follows immediately by making the following change of variables for the time integrals;

t2N 7 2N+I t2N t2N—I ~2N ' ' ' t2 tl 72 tl 7 1

and a similar change of variables for the space integrals. Hence,

f"
dt dr expLi(x r—&ot)]F2~(r,t) = dr dg expLi(x g o&r))p(r)g(f, r—)

J

X — dr' d('expLi(r. ('—co 'r)) p( 'r) g((', r')
~o J

dr" dg" expLi(x E"—cur")] q(r" )h((",r") =AC~D~' (7)
J
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and similarly, it can be shown that

A = dt dr expLi(x r—cut)gp(t)g(r, t),

and

B= dt dr expc i(x r —o)t) jq(t)h(r, t),
dp

dt) dr expLi(r. r —(ot) Jp'(t)g(r, t),
0

(9)

D= — dt dr expLi(x r—o&t)jq'(t)k(r, t).

f+o0 ~+00 00

dt dr exp/i(x r—cA)g Q~,FN(r, t)
—ce Ã-p

=A g (CD)"+BCP (CD)~+c.c.

A+BC
+c.c.,j.—cD

where we have made use of the relation (3).
In deriving (10) we have tacitly assumed that at

time t=0, all particles start with, an osciHatory motion.
This is in general not true and some of the particles
will start their motion as free particles (i.e., with
diffusing motion). In this case, following the same
procedure as above, it can be shown that the corre-
sponding expression to (10) is B+AD/1 CD+c.c. —
Hence, the differential scattering cross section, using
(10) and (1), is given by

d'o as k
[

rp (A+BC)
dQda) Zs. ks!rg+rs 5 1—CD)

(B+ADi
1+ ! !+c.c. . (11)

r +r, (1—CD)

In (11), rs/(rq+rs) gives the fraction of particles
performing an oscillatory motion, and rq/(ran+re) gives
the fraction of particles performing a diGusive motion
at time t=0.

%e shaH now assume the following forms for the
various functions occurring in (9):

g(r, t) =LZ~V(t) j ' expL —~/Zv(t) j,
p(t) s tiro-

h(r, t) = (4nD~t) 1 exp) —r'/4D~ j, t(12)

f"
dt dr expLi(x r &ot—)]Fs~+~(r,t) =BC~+'DN, (8)

Jp

where

and
q(t) =e-'t'&,

where y(t) is the same as in a solid.
The form assumed for the function g(r, t) is the same

as for an atom in a solid. It is thus possible to calculate
this function rigorously. It is reasonable to take such a
form for water, since we assume that during the time
~p the motion of the molecule is very similar to what
occurs in a solid. The time rp is much greater than the
period of vibration. Physically, this means that the
thermal cloud of the atom has fully developed long
before it had the chance to leave the oscillatory motion.
For a normal liquid such a form of g(r, t) will probably
be incorrect. The function h(r, t) is the solution of the
usual classical equation of diffusion. In evaluating the
expressions B and D in (9), we need to know the
function h(r, t) for all times from 0 to ~. But the form
of h(r, t) assumed here is valid only for large times.
For small times (t«10 "sec), we know that the square
of the width of the Gaussian distribution should vary
as the square of the time; whereas for the function
h(r, t) it varies linearly with time. Thus, our h(r, t)
does not have the right form for very small times. To
rectify this defect, one could use the distribution
function obtained from the solution of the classical
Langevin's equation, which forms the basis of the theory
of the Brownian motion. The distribution function" so
obtained has the correct limiting form for times both
large and small compared to the characteristic time"
p-' of the liquid. It does not, however, mean that the
distribution function for intermediate times is the
correct one since the validity of the simple I angevin's
equation for a liquid, where there are strong correlation
effects, is rather doubtful. Besides, it is a classical
equation of motion. An exact solution of the problem
is probably very involved and has not been attempted
so far. Fortunately, for water for which the foregoing
theory is intended to be applied, the form of h(r, t) as
given by (12) is quite satisfactory. The use of the
assumed h(r, t) gives a correction to the broadening of
the quasi-elastic peak Lsee Eq. (19))which is of second
order, the erst order term depends only on 7'p.

Ke have treated the scattering classically, but it can
be shown that quantum effects are negligible in the
present case where we are interested in diGusion
broadening which corresponds to an energy transfer
much less than k~T.

Using (12), the integrals in (9) are easily evaluated
and we get

Vp

A =exp) ——,'sent(~ )g
1+icoro

8
(1+IPDgrg)+Adrs

C= (1/rs)A,
D= (1/rg)B.

n S. Chandrasehhar, Revs. Modern Phys. 15, 1 (1943).



DIFFUSIVE MOTIONS OF HpO IN NEUTRON SCATTERING 867

2lF= p«'y(op). (14)

Substituting the values of 2, 8, C, and D from (13) in
(11) and using (14) we obtain, after some simplification,

(c+dvproo) bd 0 6 k 8 ~TO

, (15a)
da&~ or ko 1+ra/ro &'+~'ro'(f+co'rp'g)

In evaluating the expression 3 we have written
exp) ——',z'7(t) j as expC ——,'~'y(op)$ exp f ——,'«'Ly(t)
—y(oo) j),and have expanded exp( ——,'~'Ly(t) —y(oo) j}
as a power series and have retained only the erst term.
The erst term gives the whole of the elastic peak in the
broadening of which we are interested. The higher
terms, which correspond to inelastic scattering, give
only a smooth background.

The Debye-%aller factor in a solid, usually denoted
by 25' is defined by the equation

Now from (14), we have

2'= ~~K'R'

|o' 6Ti

&2MkgO 0) (20)

From (20) and (21), we have

2W =PDr p (R'/P) «pro.
If o."Dro&&1, (19) reduces to

(22)

which follows from an analogy with solid. 0~ is the
Debye temperature of quasi-crystalline water, M is the
mass of the water molecule, T is the temperature and
k~ is the Boltzmann's constant. Expression (20) is
valid for T) 0~, which is true for water (0~=135'K,
see Part II). Also

«'Dr p= dP/6. (21)

where
b=1+e"Dgrg —e '~,
c=1+~'D&ri+2ri/ro+ (rP/ro') e',
= (r o/r 2) eow

f= (1+eD,rc)'+rP/ro'+2(rr/rp)e-'~,

g = rg'/rp'.

he= 2AK'D (23)

6p= 2i't/ro. (24)

the broadening, which, as we shall see, is obtained
when one uses the simple dift'usion theory. If, however,
g'Drp))1, the broadening approaches the asymptotic
value

Jt.'+to
D—

6(rp+rg)
(16)

where E' is the mean square radius of the fully devel-
oped thermal cloud in the oscillatory motion. (16)
follows directly from our G, (r,t) for large values of
time. From (16) follows the relation

Dyrx Dro(1+ re/—ro), (17)
since E'&gP.

We shall now consider the two limiting cases of
(15a): (i) rg«rp and (ii) rg))ro.

Case (i). ~~&&~p

Using (17) and neglecting r&/ro compared to unity,
(15a) reduces to

Pp go k L1 e o~/(1+g~Drp)j
~
—2%' (18)

de(o or ko oo'ro'+L1 —e ' /(1+~'Dro)g'

The shape of the quasi-elastic peak is Lorentrian whose
width at half maximum is given by

We observe from (15a) that the shape of the quasi-
elastic scattering is, in general, not Lorentzian.

The diffusion coefficient D~ as it occurs in (12) is
defined by P/67 &, where P is the mean square displace-
ment in time z~ during which continuous diffusion takes
place. The actual diffusion coefficient D is given by

Case (ii). ~~))~p

In this case, using (17), (15a) reduces to

where

y(t) = (2D/P) (Pt—1+e e') t)0 (27)

and where the characteristic time P ' is given by

P= AT/MD.

Substituting the foregoing expression for G, (r,t) in
(1), it is easy to show that

d~a' S~ k K~D

or ko (~'D)'+~'

The broadening is thus given by

66=25K D, (26)

The expressions (25) and (26) were obtained earlier
by Vineyard. 6

Equation (25) follows immediately from (1) if we
take for G, (r,t), the function h(r, t) given by (12). We
had mentioned earlier that h(r, t) does not have the
correct form for small times. Below, we shall derive
an expression corresponding to (25) using for G, (r,t)
the function as obtained from the solution of the
Langevin's equation. The expression for G, (r,t) can be
put in the form" /see Eq. (175), page 26 of reference
12].

G.(r,t) =L2~v(t)3 'expt: —r'/»( )3t

25t' e'~

rp L 1+pPDrp)
(19)

k '(—1)"
=a'—e* P x"G„(oo),

$p vM vl
(28)
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where
1 s+p

G, (M) =-
prp (@+v)'+(u'p ' (29)

x=z'D/p (3o)

The term corresponding to i =0 in (28) is the same as
(25). The higher terms give a correction to the simple
diffusion formula (25). The broadening is less than
that given by (26). The magnitude of the correction
depends on the value of x and is on the whole very small.

4. DISCUSSION

Formula (15a) for the differential scattering cross
section is somewhat involved to see the main features
of the scattering. I et us now compare the expressions
(18) and (25), the former is valid for case (i) p-i«p-p,

and the latter for case (ii) ri)&rp. There is an important
difFerence between the two formulas, (18) has a form
factor t, '~, analogous to that in a solid, whereas in
formula (25) there is no such factor. If we integrate
(18) and (25) over an energy interval Ado~ around the
incident neutron energy such that kh~ is greater than
the width of the quasi-elastic peak and if ~ can be
taken as constant within the range of integration, it
will be seen that the intensity as given by (25) is
independent of the scattering angle, whereas the
intensity from formula (18) depends on the scattering
angle through the factor e '~. Thus by measuring the
intensity as a function of the scattering angle of the
quasi-elastic peak, it shouM be possible to decide which
of the two formulas (18) and (25) confirms to obser-
vations. Brockhouse, ' using neutrons of wavelength
1.52 A has, indeed, observed that in the case of ordinary
water the angular distribution of the quasi-elastic
scattering is governed by a factor of the type t,''~ and
has also estimated the numerical value of 25'. Further,
the measurements of Brockhouse indicate that the
temperature dependence of the form factor is consistent
with our equation (20). It would be worthwhile to
repeat these experiments.

We shall now consider the broadening of the quasi-
elastic peak which has been measured recently by
Srockhouse' and Hughes and collaborators' and com-
pare it with our theory. If we compare the two expres-
sions (19) and (26) for the broadening, it is clear that
they are very different. An important difference between
the two is that the broadening given by (19) is, for
z'Dro))1, nearly independent of the scattering angle;
whereas the broadening given by (26) is directly
proportional to sin'(P/2), P being the scattering angle,
The angle dependence of Ae in (19) comes through the
factor e 'w/(1+a'Drp), which is in itself small. For
«'Drp«1, (19) and (26) give the same broadening and
its angle dependence is given by sin'(P/2). Thus an
accurate experimental determination of the angular
variation of the broadening would provide a test which
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Fzo. 1. Broadening Ac of the "quasi-elastic" peak versus ~~Dv 0,
for D=I.SSX10 P cm'/sec and rp=3.6X10 " sec. The lower
scale on the abscissa represents the corresponding scattering angle
for neutrons of incident wavelength of 4 A. Curve a is plotted for
vt)=3.6X10 sec, and rI=O. Curve b is plotted for v'I=op=3. 6
X10 ~ sec. Curve c is plotted for ~0=1.8)&10 "sec, and TI=O;
the value of the abscissa for curve c is half of what is shown in
the figure. Curve d is based on simple diffusion model, formula
(26).

"J.H. Simpson and H. Y. Carr, Phys. Rev. 111, 1201 (1958).

of the two formulas (19) and (26) confirms to obser-
vations.

In Fig. 1, the broadening he is plotted as a function
of ~'Dro. Curve a corresponds to the values F0=3.6
&(10 "sec and 7'i/rp= 0, and curve b to the same value
of rp but ri/rp= 1. Curve c is plotted for p p 1.8——X 10
sec and ri/r p=0. In the same figure, curve oi represents
the broadening given by formula (26) corresponding to
case (ii), i.e., what one would expect on the simple
diffusion theory. Curves a and c correspond to case (i)
and, therefore, give the broadening expected on a
purely jump mechanism of diffusion (formula 19).
Curve b would correspond to a mechanism of diffusion
between the above two extremes. It is clearly seen that
for ~'Dro(&1, all the four curves give the same broad-
ening. For ~'Dvo&&1, curves a and c approach to an
asymptotic value 2A/rp of the broadening. For values
0&ri/rp&1, the broadening will lie between the two
curves a and b. It is interesting to observe that even
for a value of ri/rp=1, the increase in the broadening
over that corresponding to 7i/p-p ——0, is not more than
twenty percent. In plotting these curves, we have
taken the value" of the diffusion coeKcient D=1.85
&(10 ' cm' sec ' for 20'C temperature of water, and
for 2W a value given by (20) for 0" =135'K.

One immediately sees from the curves of Fig. 1 that
for ~'Duo&1, the broadening as given by the curves a
and c is much less than that given by curve d. Using
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the sharp edge at 5.2)&10 ' ev of the beryllium filtered
neutrons, Hughes and collaborators' have measured the
energy distribution of the neutrons scattered at 90'.
These authors And that the broadening of the quasi-
elastic peak is certainly less than 0.3)&10 ' ev (limit
of their resolution), whereas we should expect a value
of 1.1)&10 ' ev (for D=1.85)&10 ' cm'/sec) on the
basis of the simple diffusion theory formula (26). If we
now take rr/re=0, and take the upper limit of the
observed broadening as 0.3&(10 ' ev, we can explain
this broadening for a value of rp~4&(10 " sec. The
experimental conditions of these authors correspond to
a value of a Drp —3. We shall see that the above value
of rp is supported by other independent experimental
observations.

If one could improve the present experimental
resolution, it should be possible to determine the
diffusion coeKcient D by measuring the broadening for
small angles of scattering (a'Drs&1). Measurements of
the broadening for large angles of scattering such that
K Drp))1, would give approximately the time rp. It
seems, however, dificult to determine both rj and rp

uniquely from an experimental curve of broadening
versus x'Dr p.

If we take for ro the value 4)&10 "sec and D=1.85
&&10

—' cm'/sec, and use the relation D=P/6rs, we get
for l a value 2.2 A, which is reasonable since the mean
distance between water molecules is nearly 3 A. The
question is: is there any independent experimental evi-
dence for such a value of 7p? Hall" has attempted to
explain the excess ultrasonic absorption in water as the
result of a lag in the rearrangement of the molecules
during an acoustic compression. The structural relaxa-
tion time for the rearrangement process which involves
the breaking of intermolecular bonds in water has been
estimated by him to be 2X10 "sec at room tempera-
ture. Hall has also given an expression for the relaxation
time as a function of the temperature of water. If we
take the temperature variation of rp as given by Hall
and plot logos )see Eq. (24)) as a function of 1/T
where T is the temperature, we get a straight line whose
slope is the same as the slope of the experimental curve
(Fig. 2, reference 3) of Brockhouse. ' In view of the
fact that the observed broadening is much greater than
that predicted by our formula (24), it is difEcult to say
whether the above agreement has any significance. If
we extrapolate the value of r p for 100'C from the values
given by Hall, we would estimate from formula (19) a
diffusion broadening which is nearly six times the
broadening for room temperature. The theoretical
broadening at 100'C is estimated to be 2)&10 ' ev,
assuming that for 20'C the broadening is 3)&10 4 ev.
From the experimenta12 energy distribution of 30.8
X10 ' ev neutrons scattered through 28.3' by water at
100'C t Fig. 12(b) of reference 2), we estimate a
broadening of 1.8&(10 ' ev. Thus, the theory is in

'4 L. Hall, Phys. Rev. 75, 775 (1948).

agreement with experiment. And this agreement is,
indeed, signi6cant in view of the fact that the broad-
ening at 100'C is very large and as such the relative
contribution of the experimental errors will be small.

In nuclear magnetic resonance experiments, the spin-
lattice relaxation time Tj in liquids is inversely propor-
tional to the correlation time r. (for cor.«1, ar being the
I.armor frequency). Bloembergen, Purcell, and Pound"
have estimated that for water at 20'C, r, is nearly
3.5&&10 "sec and that this time is consistent with the
observed value of T~.

M. Eigen and L. DeMaeyer" have considered various
mechanisms of the protonic charge transport in water
and have arrived at the conclusion that the rate deter-
mining step is the structural diffusion of the hydration
complex (HsOs+). The structural diGusion involves the
formation (and disappearance) of several H bonds and
a corresponding reorientation of the water molecules at
the periphery of the complex. The average time of this
process is of the order of 2)&10 " sec, which seems to
account well for the mobility of the proton. This time
is also related to the dielectric relaxation times, which
also involve the liberation of a water molecule from
its structure and its reorientation. The largest dielectric
relaxation time for water observed by Lane and Saxton'7'
is nearly 10 "sec corresponding to an activation energy
of 4.5 kcal/mole. These authors have also observed a
relaxation time &10 ~ sec, corresponding to an orien-
tation of more weakly bound H20 molecules.

Thus, the structural relaxation time for excess ultra-
sonic absorption, the dielectric relaxation time, the
time. decisive for the drift mobility of the proton and
the time rs of the present theory are all of the same
order of magnitude, as one mould expect on physical
grounds.

We had mentioned earlier in the introduction that
there exists, according to Hughes and collaborators, ' a
real contradiction between their experimental value of
the broadening of the quasi-elastic peak and that meas-
ured by Brockhouse. ' Since the former authors used the
sharp edge at 5.2X10 ' ev of the beryllium Altered
neutrons, they were able to resolve the two small peaks
near the incident energy and corresponding to an energy
gain and loss of 0.7&10—' ev, and which peaks Brock-
house has been unable to detect. Unfortunately, it so
happens that the energy separation of these peaks from
the incident energy is of the same order of magnitude as
the theoretical diffusion broadening expected on the
simple diffusion theory. It is very probable that Brock-
house has included these peaks in what he calls diffusion
broadening and which indeed is not. Besides, we under-
stand from Brockhouse' that his line patterns contain

~~N. Bloembergen, K. M. Purcell, and R. U. Pound, Phys.
Rev. 73, 679 (1948)."M. Eigen and L. DeMaeyer, Proc. Roy. Soc. (London)
A247, 505 (1958).

. A. Lane and J. A. Saxton, Proc. Roy. Soc. (London)
A21, 400 (1952)."Private communication.
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as much as 30/o contribution from multiple scattering,
which gives extra broadening. It is, therefore, under-
standable that Brockhouse has overestimated the diGu-
sion broadening.

PART II: 1. INELASTIC SCATTERING

Here, we shall calculate the inelastic scattering of
beryllium Qltered neutrons (cutoff at X=3.96A) on
the basis of two different models of water: (u) gas
model and (b) Debye model, and compare the theo-
retical scattering with that observed by Hughes and
collaborators. 4 It has almost become customary, chiefly
among reactor physicists, to use for water a gas model
of mass 18 for the calculations of thermal neutron
spectra, which do give a very good 6t with experiment.
However, such calculations are a very insensitive test
for deciding between a quasi-crystalline model and a
gas model of water, since what one is looking for is an
average eGect and besides the mean neutron energy in
a thermal spectrum is greater than knO', where 0' is
the Debye temperature of the quasi-crystalline model.
We shall see that for coM neutron scattering, a gas
model of water is not at all satisfactory and a quasi-
crystalline model is a better one.

if the scattering angle is 90, and

En =kii0~. (36)

For a gas model the diGerential scattering cross
section (including both elastic and inelastic scattering)
is, as is well known, given by"

d'o. a'2(2m)' E'

dQdA, h QEp (2prd)&

PE Ep+—(Ns/M) (E+Ep)j'
gexp— (37)

where
6= (m/M) (E+Ep)2knT, (38)

and where in (37) and (38) the scattering angle has
been taken to be 90'.

g(X) =4Xp'/X' for X &~Xp,

=0 for X(AO,
(39)

3. CALCULATIONS

The incident neutron spectrum as used in the experi-
ments of Hughes and collaborators4 can be approxi-
mately represented by

2. MATHEMATICAL FORMULAS

Assuming that for a quasi-crystalline model of water,
the formula" for the diGerential inelastic scattering
cross section is the same as that for a solid, we have

2 (2rrs) & E'
=8 g

—2W'—P(Z—Ep)

k (Ep) &Eg)

~ (2W)"
g„(E Ep), (31)—

n=j NI

where X0=3.96 A.
Formula (31) does not include the quasi-elastic

scattering which is given by (18).For the Debye model
we have made calculations for three diGerent Debye
temperatures 0~=125', 135', and 150'K. For com-
parison with the observed spectrum both (31) and (37)
are integrated over the incident neutron spectrum (39).
Of the three calculations, we And that the diGerential
scattering cross section corresponding to 0'=135'K
gives a most reasonable Gt with the experimental values.

1.76 3.10 ~E—Epq '
(33)2N(En i

g„(E—E,)= exp—
(2prN)&

where Eo and E are, respectively, the energies of the
incident and scattered neutrons and I, is the neutron
wavelength corresponding to energy E.m is the neutron
mass, h is Planck's constant and e is the incoherent
scattering length. For a Debye model of a solid 0„
functions are approximately (if T/0') 1) given by

C,(E E,)=-', , for I—E—E,I/En&1,
=0 for IE—E, I/E&)1, (32)
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Fxo. 2. Differential scattering cross section, in arbitrary units,
(34) of beryllium filtered neutrons (cutoff at 3.96 A) versus outgoing

neutron energy for 90' scattering angle. The lower scale on the
abscissa represents the time of flight. Curve u is calculated on a
free~gas model of mass 18. Curve b is calculated on a Debye
model of a solid with 0~= j.35'K. Experimental points of Hughes
et al.» are marked with circles. The arrows in the Ggure indicate
the energies at which various peaks have been observed by
these authors.
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4. DISCUSSION

Results of these calculations are shown in Fig. 2
where d'o/dQD, for 90' scattering angle is plotted, in
arbitrary units, against the outgoing neutron energy
(also flight time). Curve a shows the results for a gas
model and curve b for a Debye model (0=135'K).

Experimental points of Hughes and collaborators'
are marked with circles in the same figure. In plotting
these points we have used the normalization that the
experimental point at the top of the cutoG coincides
with the corresponding theoretical value. In comparing
the theoretical curves with the experimental curve, it
must be borne in mind that the former do not include
the contribution from any of the hindered rotations of
the water molecule. What the theoretical curve b

represents is the scattering arising from the continuous
frequency distribution of the hindered translations
(intermolecular), analogous to what occurs in a solid.
On this continuum of frequencies, there may be super-
imposed a few more or less discrete frequencies.

Besides the well-known hindered rotation peak at
66X10 ' ev (not shown in Fig. 2; see Fig. 1 of reference
4), which has also been observed in the infrared spec-
trum, the experimental curve shows some other peaks
whose positions have been indicated by arrows in Fig. 2.
The peak at 26X10 ' ev tactual energy is (26—5.2)
X10 ' evj has also been observed in the infrared
spectrum of ordinary ice (v 160 cm ') and may be
assigned to another hindered rotation. The low fre-
quency Raman spectrum of ordinary ice also shows a
peak at 213 cm '. We should indeed compare our
theoretical curve b with the experimental curve after
subtracting from the latter the contribution of the above
mentioned two hindered rotations. These peaks will,
obviously, be fairly broad. If we assume that the
contribution to the scattering from the hindered rota-
tion at 26&10 ' ev does not extend below 15)(10 ' ev,
the agreement between the theoretical curve and the
experimental curve is indeed good. The peak at 13
)(10 ' ev in the observed curve occurs almost nearly at
the same energy as the maximum in the theoretical
curve which corresponds mainly to one phonon peak.
The occurrence of the other small peak at 10)&10 ' ev

in the experimental curve may be attributed, in analogy
to a solid, to a subsidiary maximum in the actual
frequency spectrum of quasi-crystalline water and
corresponding to transverse vibrations. Such a bump
will not obviously occur in the theoretical curve since
we have assumed a Debye frequency spectrum for
water. A slightly higher theoretical value at 13&(10 ' ev
is also understandable on the same grounds. Thus, it
appears to us that these two peaks are perhaps not the
result of hindered rotations of the water molecule but
are the manifestations of the corresponding two
maxima in the true frequency spectrum of water as a
pseudocrystalline substance.

In the energy range between 'lX10 ' ev and 5.5
&(10 ' ev, the experimental points lie above the
theoretical curve. This discrepancy we attribute to the
occurrence of a small peak at 5.9)(10 ' ev in the
observed curve. If we assume that the scattering
intensity due to the motion corresponding to this peak
is the same as that given by the theoretical curve b and
if we further assume that the half-width of this peak is
the same as the energy transfer (0.7X10 ' ev) to the
neutron, we shall find that the resultant theoretical
curve would agree very well with the experimental
curve. The above remarks regarding the observed peak
at 5.9X10 s ev (in fact, there have been observed two
peaks, the other is at 4.5X10 ' ev) are at present a
mere guesswork since the reason of the occurrence'0 of
the peak is not understood.

Even a casual inspection of Fig. 2 will show that the
general shape of the scattering on the gas model
(curve a) is very different from that given by the
experimental curve.

In conclusion we would like to say that the inelastic
scattering of cold neutrons can be understood better on
a quasi-crystalline model of water than on a gas model.
Further, as seen in Part I, the observed features of the
quasi-elastic scattering are also consistent with such a
model.

so In a recent letter to the Physical Review L4, 131 (1960)j
Sorst has attempted to explain the occurrence of these two peaks
(corresponding to an energy transfer of &0.7)&10 ' ev) as the
result of an ortho-para transition in liquid water similar to what
occurs in H2. This seems to us rather unlikely.


