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We use the Chew and Low analysis of reactions of the form A+8 —+ C+D+Z+, which makes use
of the existence of a pole in the S matrix, to propose an experiment to determine the Zh. relative parity
and the coupling constant for the ZAx interaction. It is found that the sign of the extrapolated cross section
for the reaction Z++d ~ h. +p+p is diferent for the two parity cases. Other applications of the Chew
and Low method to strange particle reactions are briefly looked into.

~++0~ p+p.
A+8 ~ C+D+E+

We assume an unpolarized initial state and no
measurement is made of the final state. 4+2' is the
square of the Dirac matrix element at vertex "a"
averaged over initial spins and summed over 6nal spins.

Evaluating LV= (pz —ps)' in the Z+ rest system, we

get

where the final state has three or more particles.
Their method depends on the existence of a pole in

the S matrix at the position where 6', the four momen-
tum transfer at vertex "a" squared (see Fig. 1), is

equal to minus the square of the mass of a virtual
particle which has the same properties (spin, charge,
etc.) as particles A+8 and as C+D+E+ . The
existence of this pole, although a conjecture, is made
plausible by arguments of Chew' and CL.

At the pole the renormalized' Born approximation is

applicable. The differential cross section valid at the
pole obtained in CL as applied to

bP = 2MxTsr, (Mg —M—s)'.

1'A& is the recoil kinetic energy of the A' in the Z+ rest
system. At the pole

ysro [M s (Mx —Ms)s]/2M'. (8)

TAI,' comes out to be —6 Mev which is unphysical but
not unreasonable for extrapolation purposes.

The recipe to be followed is to extrapolate ()V+M ')'
times the experimental

differential

cross section,
r)'o/&sr)ru' for the reaction Z++d —+A.'+p+p for
fixed 8"' and fixed oP to the pole at iV= —M '; use ex-

perimental data for the cross section o. z(&o); then, by
means of Eq. (3), we can solve for P and thus infer

properties of the reaction at vertex "a,"i.e., the ZA rel-

ative parity and the strength of the coupling for the ZAx

o.s(co)
interaction.

)( (3) The relative parity has been assumed to be positive

(LB+M ')' for several models of strange particle interactions, for
instance, global5 and cosmic' symmetry. Although of

(4) importance for these schemes and for our general

understanding of strange particles, the ZA parity is not

yet known. Several proposals have thus far been

suggested in the literature for its determination. —"
In addition we also propose experiments for the

determination of ZZm and x coupling constants

(5) although the reactions needed here are slightly more

~ M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
6 J. J. Sakurai, Phys. Rev. 113, 1679 (1959).
' D. Amati, Phys. Rev. 113, 1692 (1959).

A. Pais and S. B. Treiman, Phys. Rev. 109, 1759 (1958).
' S. Barshay, Phys. Rev. Letters 1, 177 (1958).
"S. Barshay and S. L. Glashow, Phys. Rev. Letters 2, 371

(1959)."J.G. Taylor, Nuclear Phys. 9, 557 (1958—1959). This list of
references on ZA parity proposals is not complete.
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&++d ~A'+p+p
reads4

[—(u ——(u (Ms+M )+r(M —M ) ]
X [yrs —Mx~ —Mds)/2M/]s —M ps

where
z a—

the P's being 4-momenta. Thus res is the square of the
total energy of the two protons in their barycentric
system and, by conservation of energy, equals the total
barycentric energy of the pion and deuteron.

Jl '= —(pz+ p~)',
*Research supported in part by the joint program of the U. S.

Atomic Energy Commission and the Ofhce of Naval Research.
'G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959),

denoted as CL throughout the rest of the paper.' G. F. Chew, Phys. Rev. 112, 1380 (1958).
3 The corrections to the vertex function and propagation

function can entirely be absorbed in the coupling constant and
in the mass of the virtual particle.

4 We use units where A=c=1.

I that is, t/I/'2 is the total energy in the barycentric system

~~HEW and Low' have proposed a method of of & and deuteron. o s(rd) is the cross section for the~ analyzing reactions of the general type: process
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I zc. 1. Example of reac-
tion where Chew and Low
method is applicable. We
will discuss the reaction
Z++d —& Ao+ p+ p in this
paper.

ERTEX "a

VERT

"unphysical" (in the sense that at the pole the recoil
kinetic energy of the particle at vertex "a"

l
see Eq.

(8)j will be more negative than in Zhs. situation).
This information will serve to determine the correct-

ness of global symmetry. In global symmetry model
the pion baryon coupling constants are assumed to be
the same.

Thus
gz~&a(p~)»(pz).

r.aa'=-', gz~' 2 I tl~(P~)»(Pz) l',
SP1I1S

r....'= sgz~' 2 l tl~(p~)Vsgz(pz) l'
SP1llS

(12)

By the usual methods of inserting projection operators
we evaluate P

gz~' ( /1'+Mzs+Mg' )r. '=- l+M M+
2MzMs ( 2

2=~even

(13)
gzx' t' dP+ Mz'+ My' )—MzMs+

23fg3fg E 2 )
At the pole we insert 6'= —3l '. Using"

3f~——1190 Mev, 3f~=1115Mev, M =139.6 Mev,

we obtain that at the pole for a given value of the

"J.D. Jackson, The Physics of Elementary Particles (Princeton
University Press, Princeton, New Jersey, 1958), p. 51.

Consider the reaction Z++d —+cV+p+p. Let Z+ be
the incident particle and the deuteron be the target
since this is experimentally the more likely situation.
Then 6' and co' and 8" can be determined from experi-
mental data by means of the equations

Ms' M—z' 2p—srpzr, —cos8zq+ 2Eqr, Ezz, ,

re'= —6'+M„'+2Ezr, Md 2EsrM~, (9)
llrs Mzs+Mds+ 2MdEzL ~

The Dirac part of the matrix element for the 2Am

interaction for the case of even relative parity between
the Z and A. is, in analogy with the nucleon-nucleon
pion interaction,

igzgug(pg)ys»(pz), (10)

where the I's are Dirac spinors.
If the relative parity between the Z and A is odd,

we have an additional y5,

IO-
~0
C g .
D 8-
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coupling constant

r.a(P/r„, „'=2647/( —6.93)= —382. (14)

The presence of the minus sign will enable us to deter-
mine both the relative parity of the ZA system and the
coupling constant for the 2Am interaction. For odd
parity (6+M ')'8'o/Bh'r)ce' will be positive at the
pole; for even parity it will be negative l

the remaining
factors in Eq. (3) are always positive for re correspond-
ing to a real physical process n.++d~ p+pJ. Once
the relative parity has been determined by observing
the sign, Eq. (3) will give us the coupling constant.
Assuming that odd and even coupling constants are
not too much diferent, we note there is a large magni-
tude difference between the two parity cases. Hence
even fairly crude data could give us a good indication
of the ZA parity.

The amount of extrapolation depends on which co'

and which 8" is used. An estimate of the "unphysical-
ness" of the situation is given by Eq. (8), T&r,' —6
Mev.

A summary of experimental data with a graph of
the total cross section for the process p+p —+2+m+
plotted against pion momentum in barycentric system
is given by Sachs et al." The cross section we need
may be obtained by detailed balance. Also a semi-
empirical formula has been derived for p+p ~ d+7r+
cross section near threshold. ""

Using the best ht to the experimental data for
p+ p ~ d+~+ we have drawn a graph for the quantity
(5'+M ')'r)'o/r)LVr)re' versus re' at the pole for odd
parity assuming the coupling constant squared is equal
to unity in the approximation of neglecting the recoil
motion of the A' in the Z+ rest system (see Fig. 2).
This approximation follows from Eq. (8) where we see

"A. H. Sachs, H. Winick, and B. Wooten, Phys. Rev. 109,
1733 (1958).

'4 M. Gell-Mann and K. M. Watson, Annual Review of Nuclear
Science (Annual Reviews, Inc. , Palo Alto, California, 1954),
Vol. 4, p. 219."D.B. Lichtenberg, Phys. Rev. 105, 1084 (1957).

FIG. 2. (6 +M ) 8 o/86 Bco versus oP/(M +My) at the pole
for odd ZA parity assuming gp+2=1 in the approximation of
neglecting the recoil motion of the h. in the Z+ rest system.
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FIG. 5. Z++P~A0+P+&+

Fio. 3. (&AD+M~')'8'cr/86'Bra' versus c9/M„' in the Born
approximation for odd ZA. parity for co'/(3/I +3fd)'=1.01 and
TyL, =1197 Mev assuming gap'= 1.

TAJ «Ms. On expanding co and usingEzr, Ii„,,Mz/=Md,
we get in this approximation

8A'BoP against lV using the Born approximation" for
odd and even parity for the specific case Tzl, ——1197
Mev and co'=1.01(M +Mq)' assuming grq'=1. This
may be useful in showing a possible trend for the
experimental data.

Another possible process from which we might hope
to attain the ZA parity is

Mz (co'—M '—Md')
~ZL

Mg 2(Mr —Ms)
(15)
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The graph for even parity will give the same curve
times —1/382. These results can be compared with the
experimental extrapolated quantity for the determi-
nation of the coupling constant. I Note: This approxi-
mation requires that the experiments must be done
with Tzr, &1025 Mev in order that o. d(co) describe a
physical process. "$

In Figs. 3 and 4, we have graphed (6'+M ')'cl'o/

Z++ p ~A'+ p+rr+. (16)

This has the advantage that o (co) at vertex "b" now
describes pion proton scattering p+rr+ ~ p+rr+ which
has been studied more fully experimentally than
rr++d —+ p+ p. However, now we have the added
complication of a second diagram that interferes with
the first having a pole in the same neighborhood as the
first (see Fig. 5). Therefore we conclude that Z++d —+

A'+p+p would be more reliable in determining the
ZA parity than Z++ p ~ p+7r++A".

We may determine the ZZm and "m coupling
constants by using the following diagrams (see Fig. 6).
Equation (8) (applied to these cases gives about —8
Mev for Fig. 6(A) and about —7.5 Mev for Fig. 6(B)
for extrapolation in recoil kinetic energy.

Within the framework of our approach, we note also
that the reaction X++I~X'+p+p can be used to
determine the X+X'relative parity. (As Pais" remarked,

„b ~"3
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FIG. 6. (A) &++d &'+p+P

(Q) -+dt —+ 0+n+n.

Fio 4 (n&+ M ')sS'cr/Sit'SoP versus rt'/M ' in the Born
approximation for even ZA. parity for co'/{3l +M&)'=1.01 and
Tyg=1197 Mev assuming gag'=1.

'6 For Tg& 1025 Mev we may still hope to get an indication of
the ZA relative parity from the sign of the extrapolated quantity
as before. (This would not be so if there were any zero, of cr z(ca)
in the extrapolated region. ) We could not, however, calculate
gras since we cannot estimate the magnitude of o. q(cu) for c0

corresponding to a nonphysical value of ~++8 —+ p+p.

(8)

"The pion is o6 the mass shell away from the pole. In the
lowest order, when not too far from the pole we take the pion
to be real and use the experimental cross sections in reference 13.

A. Pais, Phys. Rev. 112, 624 (1958).
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this is not necessarily even. ) For even parity the
extrapolated quantity in the case of a virtual pion
should be identically zero, since the vertex EEx is
forbidden. (We are, in effect, extrapolating to a pole
where no pole exists; hence, the extrapolated quantity
is zero. ) For odd parity the EEir vertex is allowed but
since odd relative parity implies charge independence
is violated, the g~~ coupling constant is small. How-

ever experimental methods are not precise enough to
deal with such a small effect.
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The mathematical and physical meaning of the commutation relations of nonrelativistic quantum me-
chanics is discussed in terms of the representation of translations, Galilean transformations, and rotations
of the coordinate system by unitary transformations acting on the unitary vector space of quantum states.

INTRODUCTION

HE discussion of this paper is confined to state-
ments concerning part of the conceptual structure

of the nonrelativistic quantum mechanics of particles,
even though the arguments may be extended to the
discussion of relativistic quantum 6eld theories. This
restriction makes it possible to study the, essential
points that are involved without the use of cumbersome
formulas.

Most treatises on quantum mechanics include among
the various postulates of the theory a statement of the
fundamental commutation relations between the Car-
tesian components of the coordinate and the canonical
momentum of a particle:

(x;,P;)= iM;;

Quite naturally, a great deal of attention is paid to the
physical consequences of these relations as expressed
by the Heisenberg uncertainty principle. However, with
few exceptions, ' ' there is little discussion of the mathe-
matical and physical ideas which underlie them. These
ideas are concerned with the representation of trans-
lations, Galilean transformations, and rotations of the
coordinate system by unitary transformations acting
on the unitary vector space of quantum states.

The author has discussed the commutation relations
with many physicists during the past few years and
has found that only the most sophisticated among them
are familiar with the ideas involved. The present article

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

~ Hermann Acyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, New York, 1931),p. 175 and p. 272. Trans-
lated from second revised German edition by H. P. Robertson.' P. A. M. Dirac, The pri zciples of Quantum Mechanics (Oxford
University Press, Oxford, 1947), 3rd ed. , p. 89 and p. 99.

is concerned with an attempt to present them in a
simple and concise fashion to a wider audience. It
should be remarked here that this situation has been
clearly recognized by Schwinger, ' who has given a
concise and complete statement of the laws of quantum
physics in terms of his general dynamical principle, the
quantum analog of Hamilton's principle. His discussion
has not appeared in textbook form, however. Further-
more, Schwinger deals with the most general situation
appropriate to relativistic, localizable field theories.
Consequently, it is not easy to divide his arguments
into their various parts in order to clearly recognize
the concepts that are involved because the generality
of the problem that he attacks requires the use of
elaborate mathematical techniques, which are not
necessary for the analysis of the simpler problem to be
discussed here.

RELATION BETWEEN THE COORDINATE SYSTEM
AND UNITARY VECTOR SPACE OP

QUANTUM STATES

The basic postulates of quantum mechanics assert
that a physical system is described by a vector which
is an element of a linear unitary vector space and that
observables are represented by Hermitian operators
whose eigenvectors may be used to define a coordinate
system in this space. They also assert that if

~

A') is an
eigenvector corresponding to the eigenvalue A' of an
observable A, then the probability that a measurement
of 2 will lead to A' when the system is in the state

~
ib)

is the absolute square of the scalar product (3')P).
This leads to the requirement that (ib~ib) be unity and

is, in fact, the reason why the transformations of

e Julian S. Schwinger, Phys. Rev. 82, 914 (1957).


