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Dispersion relations appropriate to the scattering of electrons by hydrogen atoms are deduced, and applied
to actual measurements in the 0-10 ev energy range. Two such experiments exist, yielding quite different
results. Dispersion relations indicate that only certain angular distributions at low energy are consistent
with these low-energy total cross-section measurements; this suggests experiments which could be used as

checks on the accuracy of the existing measurements.

I. INTRODUCTION

LTHOUGH dispersion relations—expressions

which relate the real and the imaginary parts
of a scattering amplitude—have long been used by
workers in meson physics to help analyze the results
of high-energy nuclear scattering experiments, their
possible utility in investigations of atomic scattering
processes has been unexplored. In atomic scattering
problems spin-orbit forces generally are negligible, so
that the forces can be supposed wholly Coulombic,
ergo known. Thus applications of dispersion relations
to atomic reactions will not be hampered by difficulties,
common in nuclear applications, stemming from in-
adequate understanding of the forces involved. More-
over, even in the simplest atomic reactions, e.g., the
collisions of electrons with atomic hydrogen, it is not
yet practical to compute exactly the expected cross
sections from the known forces; in fact almost nothing
is known concerning the limits of error of commonly
employed approximations.

For the aforementioned reasons it may be hoped
that dispersion relations can prove a useful tool in
analysis of atomic scattering experiments. In the
present work we first develop the dispersion relations
appropriate to the elastic scattering of electrons by
atomic hydrogen, and then use these relations to
analyze two conflicting experiments in the (incident
electron) energy range below 10 ev.

II. DISPERSION RELATIONS FOR
POTENTIAL SCATTERING

The dispersion relations for nonrelativistic scattering
of a particle by a fixed potential have been derived
lucidly by Klein and Zemach.! Denote the incident
wave by ¢.=exp(ik;-r), representing a free particle
incident along k;=*kn; with energy E=%%?/2m; define
Yr=exp(ik;-r), ky=Fkn;; and let ¥;*) denote the
solution to the complete Schrodinger equation

(H—E)Y=[— #/2m)V*+V—-EJ¥=0, 1)
with incident wave ¥; and everywhere outgoing

* Research on controlled thermonuclear reactions is a joint
program carried out by General Atomic and the Texas Atomic
Energy Research Foundation.

1 A. Klein and C. Zemach, Ann. Phys. 7, 365 (1959).

scattered waves. It is known that
m
j6.0=—— [ aurvems @
2mrh?

is the exact amplitude for scattering of the particle
into the direction n; making an angle § with n;. The
(first) Born approximation to f(8,E) is

m
o &)=~ f ayAVO. ()

Then in effect Klein and Zemach show that with
n;=n; the function

Q(E)=1(0,E)—fporm (0,E) )

is an analytic function of E in the complex energy
plane with the properties: (i) Q(E) has poles at negative
real energies corresponding to bound states of the
particle in the force field V(r); (ii) Q(£) has a branch
point at E=0; (iii) in the domain 0<argE<2m, i.e.,
with a branch cut along the positive real E axis, Q(E)
is analytic except at the aforementioned poles and
branch point, and vanishes at large complex E.
It follows that

1 p QENIE
QE)=— f —
2r Jey E—E
1 [ QE)E
=— | ——— 2 R;(E),
27t j;z E'—E Z:: &, 6

where the contours Cy, C; are given in Fig. 1, and R;
are the residues of (E'—E)™!Q(E’) at the poles E'=E;.
The integrals above and below the cut do not cancel.
Rather, from Egs. (1)-(4), the relation**

TP =Ty, (©)
H—E—ie

and the definition of % in terms of E, it is inferred that

2B. A. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).

3M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

4 E. Gerjuoy, Ann. Phys. 5, 58 (1958).
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F1c. 1. Contours of integration in the complex energy plane;
the function to be integrated has poles at E, Ei, E, ---E; and
has a branch point at the origin.

Q(E,) is the complex conjugate of Q(E_) where E,, E_
denote corresponding points immediately above and
below the cut. Thus, since Q(E) vanishes at infinity

Q(ENIE" 1 p~  QES) 1 p=
B (kY B 7 | ar
rive, E—E  2mi E—E 2mi
QES) 1 = ImQ(E)
X =-f dE'———— (7)
E—E =+ E'—E

Taking the real part of Eq. (5), employing Eq. (7),
noting that fsom(0,E) is real, and remarking that
(as will be shown later) the residues R; are purely real,
we have

Ref(O,E)szom(O)E) fr o
1 Imf(0,E’
il f ™) s vy, ®
0 E'—E i

which is the desired dispersion relation. The integral
is evaluated from the experimental data with the aid
of the optical theorem for cross sections

Imf(0,E) = (k/4m)o (E), ©)

where ¢ is the total scattering cross section for incident
particles of energy E and f is the elastic forward
scattering amplitude.

III. DISPERSION RELATIONS FOR
e-H SCATTERING
The above derivation of the dispersion relation for
potential scattering has the virtue that it is conveniently
applicable to many-particle collisions involving re-
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arrangement. When electrons are incident on atomic
hydrgen, the differential cross section for elastic scatter-
ing along ny is®

(doa/d)e=1f—gl*+1|f+8l% (10)
where the ordinary amplitude f and exchange amplitude

g are given by

m
fO,E)=—— f drydry Yro* Vi(r1,12) ¥, ),
2mh?

(11)
m
g(0,E)= o f dridrs Yy ¥V (11, 10) ¥,
In Egs. (11)
i=exp(ikn;-11)uo(r2),
Yro=exp(ikn;-11)uo(r2),
Yre(t,02) =Yso(ra,r1) = exp(ikny-1)uo(ry),  (12)
i=—(&/r)+é/|n—r),
Vi=—(&/r)+e/|ti—r1,,
1
iD=y —— Vi, (13)
H—E+13.6—1e

and #o(7) is the wave function of atomic hydrogen in
its ground state. The energy E is the total energy of
the system measured relative to the binding energy of
atomic hydrogen in its ground state, so that

k= (2m/7?)}E}, (14)

when (as in the present case) an electron is incident on
a ground-state hydrogen atom.

The dispersion relations for e—H scattering now are
readily obtainable provided one assumes that the
Green’s function of the complete (spin-independent)
Hamiltonian (H—E+13.6—i¢)™': (i) has poles at
negative real energies corresponding to bound states
of the total Hamiltonian, i.e., to bound states of H—;
(ii) has branch points at every energy E, corresponding
to the threshold of a new reaction channel, e.g., at
incoming electron energy E=0, at E= (4)13 6 (excita-
tion of first excited state), etc.; (iii) is single-valued
and analytic except at the aforementloned poles and
branch points if a branch cut, starting at E=0 is
drawn in the positive direction along the real axis,
with the specification that O0<arg(E—E,)<2r for
every threshold energy E;; (iv) has the (coordinate
space) representation (E;—E) 'w;(r)w;*(r') in the
vicinity of each pole E; where w;(r) is the space-
dependent part of the eigenfunction corresponding to
energy E;. These assumptions have not been proved,
but are consistent: with what is known about the
behavior of the Green’s function for one-particle
potential scattering; with the belief that H is self-

5N. I. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press, Oxford, 1952), p.
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adjoint; and with the known asymptotic behavior of
(H—E+13.6—1i¢)!, which in any reaction channel is
~7r1exp(iksr) at large r, where ky=[ (2m/#2) (E— E,) ]}
The same assumptions ‘lead directly® to well-known
and accepted formulas for many-particle scattering,
e.g., Egs. (12)-(14).

The first three assumptions above imply that the
ordinary function Q,(E), defined as in Eq. (4), and the
corresponding exchange function

Qe(E)=g(07E)_gB0rn(07E), (15)

have the properties (i), (i), (iii) used previously.
Proceeding as in the case of potential scattering, one
obtains

Ref(O,E) =fBorn (O E)

+- f —Z Ro(E), (16a)
Reg (0,E)= &Born (0,E)
Img(O E)
i f —z Ro(E). (16b)
7
Substituting Eq. (13) in Eq. (11),
0uB)=—— [ drudruy, !
o =— 1ty VeV,
e T B4 13.6—ie
17)
0B = [ arsdrsprV——— vy
() =— ridroyse Vi—————Vi,
wied T B 13.6—ie

so that, making use of the assumption (iv) above,

jo (E) = drldr2

E—E; 2x#h?

Xexp(—ajng-11)uo(rs) Vi(ts,r2)w;(rs,r2)

Xf drlldl’2’ wj*(rl’,rg')_Vi(rl',rz’)

Xexp(—amn; -1 )uo(ry). (18)
In Eq. (18)

= (2m/7*)| E;|*, (19)

where | E;| is the electron affinity of the jth H~ state,
equal to 0.7 ev for the known ground singlet 1s?
state. The appearance of the exponential factors
exp(—a;ns-r1) and exp(—am;-ri’) in Eq. (18) is a
consequence of the above assumption (iii), which
implies argF; is «. In other words, when the expressions
(17) are analytically continued to the negative energy
E;, argk of Eq. (14) becomes i7, meaning & becomes

§ E. Gerjuoy, Phys. Rev. 109, 1806 (1958).
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positive imaginary. Similarly

Rej(E) =— f drler
E—E; 2rh?

Xexp(—ajng - 12)uo(r1) Vi (r1,rs)w;(r1,72)

Xf dry'dry’ wiF (et ) V(s xs)
Xexp(—a;n; 11 )uo(r’). (20)

With ny=n,, the residue for the ordinary amplitude is
1
fdl’ldl'g
E—E; 22
Xexp(—ajn;-11)uo(r:) Vi(ry,ra)w;(ryts) |, (21)

Roy’ (E) =

2

which is real, as stated previously. Moreover, for
singlet states of H—, w;(ry,rs) is symmetric in the
coordinates ry,r0; for triplet states w; is antisymmetric.
Thus

R.i(E)=£Ro;(E)==+R;(E), (22)
the upper and lower signs referring to singlet and
triplet, respectively. Adding and subtracting Egs. (16),
Tm( fig)

/

Re(fg) = (f-£g)pom—+— f B

— 2 (Ri%=Ry)— Z (R;FR;), (23)

where s,/ indicate sums over singlet and triplet bound
states, respectively, and it is understood that f,g refer
to the forward direction 6=0. Equation (23) agrees with
the expectation that the triplet amplitude f—g has
poles corresponding to triplet bound states of H~ but
not to singlet bound states, and similarly for the
singlet amplitude f+4-g.

The forward triplet and singlet amplitudes obey the
cross-section theorem

Im (fd:g)og(): (k/4m)o L (E),

with o, (E) representing the total cross section, elastic
plus inelastic, integrated over all angles, for incident
electrons in singlet (+) or triplet (—) spin states rela-
tive to the H atom in its ground state. Equation (24),
like Eq. (6), merely expresses conservation of total
particle current, and can be proved by procedures
similar to those employed to demonstrate the cross
section theorem for colliding systems of many spinless
particles.* The measured total cross section ¢, is given
by the usual combination of triplet and singlet con-
tributions, i.e.,

(24)

(25)

—3 1
gi=%0_t304
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Fic. 2. Elastic scattering cross sections for electrons incident
on hydrogen atoms, as measured by Bederson et al. (reference 7)
and Fite et al. (reference 8); kao=1 corresponds to an energy of
13.6 ev. Broken lines show cross sections extrapolated to zero
energy. .

implying
ey Im(f—3g)= (k/4m)o(E). (26)

Subtracting half of (16b) from (16a) we obtain finally
a dispersion relation which is useful for comparison
with experimental e— H scattering observations, namely

kaou(E)
E'—E

Re(/—3g)= (/— b¢) +1f°°dE' iR, (27)
ef 2g'—f 24)Born 47|-20 2.(

In Eq. (27) we have explicitly included only the
residue R=R,; corresponding to the singlet ground
(j=1) state of H-. Remarks concerning the possible
existence of other bound states, and the effects on our
conclusions of neglect of such states, are deferred until
later.

IV. APPLICATION

The primary utility of Eq. (27) is as a consistency
check on a given experimental measurement of o;; the
particular fashion in which Eq. (27) is employed
depends on the kind of information about f and g
which is available. For instance, taking E large enough
so that the exchange amplitude g is small, we have

Ref_fBorn [ 1 fwv klo't (E,)dE, 1 —l 1
- = R
fBOl”“ 4r? 0 E'—E 2 JfBom

which gives the error in Born approximation at energy
E as a function of the total cross section at other
energies. If theory or measurement gives a reliable
independent prediction of this error, then Eq. (28)
provides a test of the accuracy with which ¢, is known.
More realistically, it may be possible to use angular

» (28)
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distribution measurements as a check on the reliability
of the often more difficult total cross section measure-
ments. From the measured elastic scattering angular
distribution one can compute the ‘“directivity” (AQ),
defined in terms of the total elastic cross section e
and the differential cross section in the forward direction
by the relation
d(rel

Oe1= f dQd
aQ

The quantity (AQ) is interpretable as the solid angle
within which the elastic scattering remains about as
large as it is in the forward direction, assuming the
elastic angular distribution is peaked (as usual) in the
forward direction. Employing Eq. (10) for (doe/d)
at #=0, noting that

=gl +ilf+el

da'el

(AQ).

0=0

(29)

0

=[Re(f—3g) P+Im(f—-39) P+ilgl* (30)
and using Eq. (26),
ga={[Re(f—3g) P+[ko:/4r P+1|g|?}A0), (31)

wherein all quantities are evaluated at the same energy
E. Consequently

(A <caf[Re(f—3g) P+[ko/4n P} (32)

Through Eq. (27) the right side of Eq. (32) is known
in terms of measured cross sections, whose accuracies
therefore are tested by experimental determination of
(AQ). For example, if at some energy the elastic angular
distribution is isotropic meaning (AQ)=4r, the meas-
ured total cross sections cannot be accurate unless the
right side of Eq. (32) turns out to exceed 4.

Egs. (28) and (32) have been applied to the analysis
of two conflicting experiments,”® both intended to
yield the total cross section for electron scattering
from atomic hydrogen at energies below 10 ev. The
results of their measurements are indicated in Fig. 2.
Our calculations are summarized in Table I, which for
Bederson’s data (B) and Fite’s (F) lists, as a function
of incident electron energy E, the values of : (f—%£)Borm}
Im(f—3g), from the total cross sections; Re(f—3g),
computed from Eq. (27); and (6), computed from the
right side of Eq. (32) via the definition sin?3(f)
= (47)"KAQ). The wave number % is in units of 1/ao
= (#?/me*)™, f and g are in units of a@o; fBom equals ao
at all energies. The definition equates (f) to the half
angle of a cone subtending the solid angle {(AQ). We
tabulate (f) rather than (AQ) because it is more easily
approximately estimated from a glance at a given
angular distribution; if the angular distribution peaks
in the forward direction, {(f) is the polar angle outside
of which the differential cross section should be small.

7B. Bedersen, J. M. Hammer, and H. Malamud, New York
University College of Engineering Research Division Technical
Report No. 2, Electron Scattering Project, 1958 (unpublished).

8 R. Brackmann, W. Fite, and R. Neynaber, Phys. Rev. 112,
1157 (1958).
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TABLE I. Scattering amplitudes and maximum widths in the angular distribution for various values of incoming electron momentum
hk. Subscripts B and F refer to use of experimental cross sections due to Bederson and Fite (Fig. 2) below 13 ev. Cross sections used

above 13 ev are indicated in Fig. 3 by the solid line.

kao 0.1 0.5 0.7 0.8 0.9 1.0 1.5 2 3 6
E(ev) 0.14 34 6.7 8.7 11 13.6 306 54 120 500
(f—3%8)Born —2 0 0.6 0.75 0.83 0.9 1 1 1 1
Im(f—3g)s 0.6 3.5 2.0 1.2 0.8 0.4 035 05 0.5 0.3
Re(f—4g)s 3.7 24 —08 —11 e 1.0 2.2 2.2 1.8 1.2
Im(f—3g)r 0.44 052 042 04 0.4 0.4 035 05 0.5 0.3
Re(f—3g)r —-15 1.2 2.5 2.8 2.8 2.8 2.8 2.5 1.97 1.2

0)s 80° 80°  102°  100°  180+° 72° 26°

{O)r 180+°  110° 35° 30° 28° 26° 20°

Equation (28) is useful only at energies E where
fBor 1s expected to be a good approximation, at which
energies a deviation of (f—fBorm)/fBom from unity would
be meaningful. Table I shows that at energies above
50 volts there is no significant difference between
Re(f—3%g)s and Re(f—3g)r; both these amplitudes
rapidly approach the Born value of unity as the energv
is increased. Since the differences between the measured
or and op are very large, it appears that Eq. (28) is
not useful for evaluating low-energy data, although it
may be able to check measurements at higher energies.
The computed values of (§) do have some interesting
features. In particular (AQ)s becomes very large
(>4m) at an energy near 13.6 ev, and then rapidly
decreases to a value corresponding to (f)s=226° at
E=30 ev; on the other hand (f)r decreases smoothly
as the energy increases. Now Eq. (32) is an inequality
instead of an equality only because £|g|2 was neglected,
and |g|Bom® Is quite negligible at k=1 (as can be
inferred from (f—3%g)Bora in Table I). We infer: if
experiment F is correct the elastic scattering angular
distribution should change smoothly with energy; if
experiment B is correct the angular distribution must
be very broad and may even peak sideways in a narrow
range of energies near 13.6 ev.

It is important to note that these distinctly different
predicted features of the angular distributions con-
sistent with experiments F and B are not altered by
small changes in or and os. Instead very severe changes
are required; so angular distribution measurements
really can confirm or contradict the qualitative correct-
ness, within reasonable experimental error, or experi-
ments F or B. As can be seen from Table I and Eq.
(32), the larger (AQ)g in the range £=0.5 to 1.0, and
especially the feature that the angular distribution is
a rapid function of energy in a narrow energy band,
occur mainly because in the range 0.5<%k<1.0
Re(f—1g)s changes sign and is smaller in absolute
magnitude than Re(f—3g)r. In turn these negative
values of Re(f—3g)s occur because op has a so much
larger negative slope than op in 0.5<%k<1.0; without
drastic reduction in the magnitude of the slope, these
negative Re(f—1g)s cannot be eliminated. For instance,
if Bederson’s curve in Fig. 2 is retained for £2>0.62,
but is reduced to the constant value o=S50ras’® for

0<k<0.62, then at k=0.8 Re(f—3g)s in Table I is
increased only to —0.5. We also observe that (f)p are
rather smaller than one might expect in the energy
range 7-13 ev, although sharp low-energy forward
peaking, supposedly resulting from polarization of the
atom by the incident electron, has been observed in
electron scattering from He and other atoms.? These
small (f)r would be increased by increasing oF, as
comparison of (f)r and (f)s shows. In this connection
it is of interest that experiment F measured the
scattering into a cone of resticted angle centered at
polar angle §=90° The total cross section inferred
from this experiment depends therefore on assumptions
concerning the angular distribution, as Fite et al.®
themselves point out; the distributions they assume
are considerably broader than those deduced here. If
they had assumed somewhat sharper angular distribu-
tions they would have inferred larger total cross
sections than they did, though certainly not as large
as Bedersen’s.

In computing Table I certain approximations have
been made, whose effects must be discussed. These
approximations are: (i) extrapolation of the measured
cross sections to zero energy and to higher energies,
so as to make possible computation of the integral;
(ii) the use of approximate H~ wave functions in
computing the residue; (iii) the neglect of all H~
bound states other than the ground state. The low-
energy end point 80ra® employed to compute Table I
was chosen because it seemed consistent with the low-
energy trends of the measurements and with theoretical
estimates of this end point.}*!* Changing this end point
from 80rag to 60mas® changes the tabulated values of
Table I by at most a few percent.!? The total cross
sections g; above ten volts were extrapolated so as to
join smoothly with Born approximation calculations'®

9H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, 1956), Chap. IIL.
1S, Borowitz and H. Greenberg, Phys. Rev. 108, 716 (1957).
1 M., J. Seaton, Proc. Roy. Soc. (London) A241, 522 (1957).
12 Note added in proof. L. Rosenberg, L. Spruch, and T. F.
O'Malley, Phys. Rev. 118, 184 (1960), obtained an upper bound
on the end point even lower than 60mae?, but using this lower
value of the zero energy o would not modify our conclusions in
any significant way. The dispersion integral at intermediate
energies is quite insensitive to the values of o near zero energy.
13 Reference 9, p. 178.
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TasLE II. Effect on the dispersion integral I, and the maximum angular width (9) of changing extrapolated cross sections above
13 ev. Subscripts B and F refer to the use of cross sections below 13 ev due to Bederson and Fite. Subscripts o1, o, o5 refer to cross
sections above 13 ev in Fig. 3. For comparison, the residue 3R is also shown.

k 0.1 0.5 0.7 0.8 0.9 1.0 15
E 0.14 3.4 6.7 8.7 11 13.6 30.6
Iv 5.1 2.5 2.4 2.45 2.3 2.2 2.0
In 10.3 3.7 —0.9 —1.45 —0.48 0.4 14
I(e1)—I(o) 0.5 0.5 0.4 0.3 0.5 0.7 0.4
I(o2)—1(o) —02 —02 —0.4 —04 —-05 —08 —0.6
iR 46 13 0.5 0.4 0.35 0.3 0.2
(6)s spread 90°-70° 80°-70° 95°-115° 80°-120° 180+° 180+ °-35° 37°-20°
(6)r spread 180+° 130°-70° 48°- 31° 33°- 29° 32°-25° 34°-21° 25°-17°

of the elastic, excitation, and ionization cross sections;
the extrapolations employed are shown in Fig. 3
(solid line). Figure 3 also shows two reasonable alter-
native extrapolations (dashed lines), based on the
assumption that Born approximation is accurate above
500 volts. Table II lists: the dispersion integral,
namely the second term on the right side of Eq. (27),
computed for ¢r and op using the intermediate solid
line extrapolation of Fig. 3; the changes (the same for
F and B) in the integral produced by using the upper
(1) or lower (2) extrapolations; #R (the same for F
and B); and the spread in the computed (§) which,
for F and B, result from using extrapolated cross
sections in the range between curves 1 and 2 of Fig. 3.
The quantities R and the integral are in units of ao.
Comparing Tables I and II, it appears that reasonable
alternative extrapolations of the measured cross
sections would not qualitatively modify the discussion
of the previous paragraph. Table II suggests that
once the total cross section at low energies is known
accurately, the measured angular distributions at low
energies can indicate whether the total cross sections
at higher energies lie above or below the Born approxi-
mation. Sharper angular distributions would be
consistent with larger high energy cross sections when

F1c. 3. Extrapolated cross sections for energies above 13 ev.
The solid line indicates values used to compute Table I. The
broken lines indicate alternate extrapolations. The effect of these
changes is indicated in Table II. These values represent total
(elastic and inelastic) cross sections for electrons on hydrogen.

(as is usually the case in Table I) Re(f—3g) is com-
puted to be positive.

The residue R was calculated analytically using H~-
wave functions of the type discussed by Geltman.!
The residue could be changed as much as 209, by
drastic alteration of the H~ wave function, e.g., by
using an unsymmetrized product wave function of
the form
(33)

where a is defined by Eq. (19) for the ground state.
Except at the very lowest energies, and except where
Re(f—3g) is close to zero, as in case B near £=0.9,
this change in R makes only a few percent change in
the values of Table I; near £=0.9 this change in R
slightly shifts the energy where (AQ)s becomes larger
than 4w, but does not otherwise qualitatively modify
the energy dependence of s and fy.

The question of the existence of other bound states
of H~ is a knotty one. There is no experimental evidence
for such states, but if additional positive electron
affinity bound states (X,<0) occur, they make the
computed Re(f—3g) in Table I more negative. This
is so because every R,; is positive, Eq. (21), and
because Egs. (17) and (22) imply that singlet bound
states 7 add 3R,; to the 3R in Eq. (27), while triplet
bound states add 3R,;. Tt follows that such additional
bound states would not alter the qualitative feature
that (AQ)s becomes very large and then small at same
energy <13.6 ev, but would tend to increase 6f, i.e.,
would make Fite’s cross sections consistent with
broader angular distributions than indicated in Table I.
Any large effect would require a large number of
bound states.

There remains the possibility that there exist bound
states of H~ with negative electron affinity (F;>0),
which for some reason do not autoionize,’® as in the
well-known He™ “Pj state'®; if the states autoionize
they are not bound, do not correspond to real energies
E;, and therefore cannot have poles in the complex
energy plane defined by the aforementioned assump-
tions (i) to (iv), wherein the Green’s function is

w (71172) =g /ﬂoe“m‘z’

14 S, Geltman, Phys. Rev. 104, 346 (1956).
15 E. Holgien, J. Chem. Phys. 29, 676 (1958).
16 E, Holgien, Proc. Phys. Soc. (London) 71, 357 (1958).



DISPERSION RELATIONS IN ATOMIC SCATTERING

presumed to be the inverse of a Hermitian (real
eigenvalues) operator. Nonautoionizing states with
E;>0 have poles on the branch cut and could modify
the conclusions which have been drawn, since for such
states the sign of E—E; appearing in Eq. (21) need
not be positive. It can be proved however that for
such states the integrals appearing in Eq. (20) neces-
sarily vanish [note «; is now imaginary, equals ik;,
where k; is defined in terms of E; by Eq. (14)7]. Con-
sequently such nonautoionizing states cannot contribute
to the dispersion relations.

V. CONCLUSIONS

In the light of the foregoing discussion the following
assertions seem justified. If experiment F is taken to
be correct the angular distribution should change
smoothly with energy, and must be considerably
peaked at low energies. If experiment B is correct, the
angular distribution must change rapidly from a very
broad or even sideways peaked shape to a highly
forward peaked distribution, in a narrow range of
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energies near 13.6 ev. Dispersion relations are not
able to rule out either experiment B or F, but do
suggest the experiment which will distinguish between
them, namely: angular distribution measurements at
low energies. A closer distinction would be possible if
there were more accurate measurements of the total
cross sections at high energies, which would obviate
the need for extrapolations and increase the reliability
of the computed dispersion integral. Direct information
on combinations of f and g other than f—3g, eg.,
direct measurement of |g|? by polarized atomic beam
techniques,'” also would be helpful.
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The cross section for the formation of He** by electron impact has been measured relative to that of
He for electron energies between 100 ev and 2400 ev. A relative minimum in the measured ratio of the
yields of Het to He™* at an energy of about 600 ev is believed to be real. For incident energies above 1400
ev the results are consistent with a constant value of 145 for this ratio.

INTRODUCTION

HE cross section for ionization of helium by
electron impact has been measured by Smith! for
electron energies between the appearance potential and
about 4000 ev. Since the quantity actually measured
by Smith is the ratio of positive-ion current produced
in the helium gas to the current of the penetrating
electrons, it is necessary to know the fraction of the
positive current associated with each type of ion, Het
and He**, in order to deduce the cross sections Q; and
Qs for single and double ionization, respectively.
Apparently the only measurement of this ratio is that
reported in 1936 by Bleakney and Smith.? These latter
authors measured the relative yield of doubly-charged
helium ions for a range of incident electron energies

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1P, T. Smith, Phys. Rev. 36, 1292 (1930). Experimental
points determined by W. Hanle and D. Riede, Z. Physik 133,
537 (1952) are included in Fig. 1.

2 W. Bleakney and L. Smith, Phys. Rev. 49, 402 (1936).

from 100 ev to 500 ev. In order to relate these measure-
ments to an absolute cross section, they measured the
ratio of the yields of Het to Het* at an energy of 300 ev.

The only theoretical calculation pertaining to the
process of double ionization in helium seems to be
Ninti’s? estimate of an upper limit for the sum of
oscillator strengths for simultanecus excitation or
ionization involving both electrons. As pointed out by
Miller,* a value of the oscillator strength for double
excitation of the order of magnitude of Ninti’s estimate
would indicate that double excitations play a consider-
able role in many processes, particularly those that
depend sensitively on the energy transfer between
initial and final states.

In this paper are described the results of measure-
ments of the ratio of yields of Het and He** for electron
energies between 100 ev and 2400 ev. One problem
considered for these measurements at higher energies

3 J. P. Ninti, Phys. Rev. 42, 632 (1932).

¢ William F. Miller, Ph.D. thesis, Purdue University, January,
1956 (unpublished).



