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Theory of Adiabatic Susceptibility*
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A general proof of the equivalence between xz and y;„ is presented in the framework of statistical
thermodynamics. It is based on the observation that transitions do occur during adiabatic processes due
to the neglected small interactions which can hardly be included in the acutal Hamiltonian. A new expression
is found for y;„which is proved to coincide with xz and which is rederived straightforwardly from the ergodic.
theorem. As an example, a system of spins with a magnetic interaction under a strong magnetic Geld is
considered by means of the perturbation method and shown to give consistent results.

which is derived from thermodynamic considerations, '
did not coincide with the "isolated" susceptibility
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which is a direct consequence of statistical mechanics.
Here xz is the isothermal susceptibility, (M) the
observed value of the magnetic moment, /= 1/kT,
8 the Helmholtz free energy, M„ the diagonal element
of the magnetic moment in the eth eigenstate with
the energy 8" of the Hamiltonian and B the constant
magnetic field applied to the spin system. Since then
the two quantities, pz and x;.„have been distinguished
from each other. In particular, Broer4 presented a
rather general discussion according to which yg and
x;„agree with each other in the case of classical
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I. INTRODUCTION

INCE Casimir and Du Pre's classical work' the
so-called adiabatic susceptibility, xz, has played an

important role in investigations on paramagnetic re-
laxation processes. A considerable amount of knowledge
has accumulated about this quantity from both the
experimental and theoretical sides. ' However, an
interesting theoretical problem has been left unsolved
for about ten years. Namely, Wright, ' Broer, 4 and
Caspers' calculated the susceptibility in the case of
spin systems weakly coupled by a magnetic interaction
under a strong magnetic field by means of the standard
method of perturbation theory. They found that the
"adiabatic" susceptibility
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systems but rot in the case of quantum-mechanical
systems. Recently Caspers gave a solution to this
problem by an ingenious calculation. He supposed
that the discrepancy between x8 and x;„was due to
the misuse of the perturbation method because in
macroscopic systems it is associated with a divergence
difficulty~ which comes from the long-range magnetic
interaction between spins. Avoiding use of the perturba-
tion method, he succeeded in proving the equivalence
of yg and x;., Although he had to appeal to two
hypotheses concerning the strucutre of the energy
levels, his theory can be said to have given a correct
answer to the present problem in the case of the
particular spin systems considered, i.e., spins weakly
coupled by magnetic interaction.

However, the following two points have still been
left unsolved. First, the original problem, as proposed
by Broer, 4 is not restricted to a particular type of spin
system but is concerned with any kind of susceptibility,
electric, compressional or magnetic. This means that
the problem has to be solved on the same general basis
as that on which the whole scheme of statistical
thermodynamics stands. Second, there remains the
question as to whether the perturbation method can
really be applied to the evaluation of the adiabatic
susceptibility. According to Broer's calculation, 4 a
definite discrepancy between p& and x;,o is expected
even in the case of interactions such as an exchange
interaction which has no divergence difhculty. Further-
more, the result for xq obtained through the perturba-
tion method for magnetic interaction is not in
contradiction with that given by Caspers. ' Therefore
the divergence difhculty associated with magnetic
interaction should be considered another problem not
directly connected with the present problem.

The purpose of the present paper is to discuss the
two points stated in the preceding paragraph. We
will provide a general proof of the equivalence between

x~ and x;„ in Sec. II. Thereby a new expression for
x;„, more practical than (1.2), will be found through
statistical mechanical considerations. In Sec. III
adiabatic changes will be discussed from the principles
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of quantum statistical mechanics and the same ex-
pression for y;„, given in Sec. II, will be rederived.
We will study in Sec. IV spin systems with magnetic
interaction on the basis of the discussion given in
Sec. II and show that the perturbation method yields
a consistent result with respect to xs and x;„.

II. A GENERAL PROOF OF THE EQUIVALENCE
BETWEEN g8 AND gi.o

The purpose of this section is to prove generally the
equivalence between ys and x;., within the framework
of statistical thermodynamics. We will use the language
of magnetism but, of course, it can at once be applied
to any other kind of susceptibility.

Suppose we have a spin system of macroscopic size.
The interaction between spins need not be specified
here. I et us assume that we know the true Hamiltonian
of the system. Now we apply a weak magnetic Q.eld
that is increased from zero quite slowly. According to
quantum mechanics, the system which is assumed to
exist originally in a certain eigenstate of the
Hamiltonian does not make a quantum transition into
another eigenstate provided that the change of the
6eld is suKciently slow. Thus we are at once led to the
expression (1.2) for the susceptibility. However, the
important point is the fact that (1.2) does refer to the
true Hamiltonian of the system which is not generally
tractable. That is, (1.2) is not convenient for practical
applications.

Now suppose we know an approximate Hamiltonian
of the system, many possible small disturbances being
ignored. The system consists of a large number of
identical spins, and thus the approximate Hamiltonian
involves tremendous degeneracies. We then have to
expect that the system makes continual transitions
among degenerate eigenstates due to the neglected
disturbances. This is also true when the magnetic
field is changing slowly. We can now see that the
expression (1.2), as it stands, ceases to be valid for
such an approximate Hamiltonian. When we have a
statistical ensemble which is subjected to an adiabatic
change, it is not the weight of the individual eigenstate

of the approximate Hamiltonian but the total weight

of all the degenerate eigenstates belonging to a single

energy value which is preserved during the adiabatic

change. In the case of a canonical ensemble, the

quantities which are kept constant are not the
Boltzmann factors et"" ~") of each of the approximate

eigenstates but the sums of them over all the degenerate

states corresponding to each of the allowed energy

values.
The discussion given above leads us to the following

expression for x;., for an approximate Hamiltonian:

(2.1)

where 3f is the average of 3f„over all the degenerate
states with energy 5'„. It may be called the micro-
canonical average of M, after Gibbs. The only difference
between (1.2) and (2.1) is, mathematically speaking,
that the order of the differentiation with respect to H
and the microcanonical averaging is reversed. Physi-
cally speaking, (1.2) excludes all mixing processes
among the degenerate states, each of which does not
always have the same magnetic moment, whereas
(2.1) does not. Thus we will have different results
from (1.2) and (2.1). (2.1) can also be derived straight-
forwardly from the ergodic theorem. This derivation
will be given in the next section.

The proof of the equivalence between xs, given by
(1.1), and x;„, given by (2.1), can readily be carried
out if we proceed in the same way as Broer did in his
classical proof. ' Therefore we may merely outline the
proof here. I'irst the relation between x;„and xz is
found as follows:

=P[((3I)')—(M)'j, (2.2)

XS—XiSO (2.5)

We see now that there is no reason to distinguish
I;„from gs so long as we remain within the framework
of statistical thermodynamics. Henceforth we will not
distinguish (2.1) from (1.1), the common notation,
xs, being used for both expressions. Of course this
does not exclude the possibility that x;„, given by
(1.2), might correspond to a real quantity experi-
mentally observable in some situations, as was
suggested by Caspers. ' However, such a possibility
clearly falls outside of the range of applicability of
statistical thermodynamics and it should be discussed
on the basis of a dynamical theory such as that given by
Kubo and Tomita. '

III. FORMAL DERIVATION OF THE EXPRESSION
(2.1) FOR gg

The expression (2.1) for x8 will be derived here in a
straightforward way from the principles of quantum

8 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

where ( ) means the canonical average. The difference
between xs and yz is given as

xr —Xs= 8((~W)—(M)(W))'/((W') —(W)'-). (2.3)

Next, we approximate all the canonical averages in
(2.2) and (2.3) using the following expansion formula
due to Gibbs:

(G)=6is &+ ', ((W')-(W)'—)8'(G)/ciW' (2.4)

where 6 is the operator corresponding to an arbitrary
extensive quantity. Since (2.4) is quite satisfactory
for any macroscopic system which obeys the laws of
statistical thermodynamics, its application does not
cause any appreciable errors. From (2.2), (2.3) and
(2.4) we finally reach the required result
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mechanics and statistical mechanics to make the
discussion given in the preceding section more definite.

We will consider the same system as in Sec. II.
It is assumed to exist at t=O in the state which is
described by a canonical ensemble po with temperature
k/p. The system is also assumed to be isolated from
its surroundings. In order to measure the adiabatic
susceptibility, a weak magnetic field ~(t) is applied
which increases linearly from zero at t=0 to ~ at
t=t. The rate of change of magnetic field is assumed
to be infinitesimally small so that even after a sufIj.-
ciently long time ddt is still a small quantity. We may
take into consideration only first order e8ects in AH.
The equation of motion is now

Bp/Bt = (i/lt) Q,Se—~(t)M), (3.1)

where 3C is the true Hamiltonian of the isolated system.
Equation (3.1) is integrated in the approximation
referred to above with the result

p(t) =po+-hH ' dt'~ 1——~LM( —3'),poj. (3.2)
a &, 4 ~i

( ) on the right-hand side of (3.3) refers to the initial
canonical ensemble, po. After rewriting (3.3) in the
representation diagonalizing K, and making some
elementary calculations, we obtain the following
expression for the susceptibility:

~P ~t )tt
dX (MM(if&A)}—lim — ' di' dX

t~ao ] J J

X(M(~')M(i@)). (3.4)

Now we have reached the stage where we can introduce
the ergodic theorem due to von Neumann. ' Namely
the time average of M over a long time is replaced by
its microcanonical average M. The operator M is
defined as follows: The true Hamiltonian K is approxi-
mated by a suitable operator K' with tremendous
degeneracies. The diagonal elements of M in the
representation diagonalizing K' are averaged within
each degenerate subspace of K'. With these values as
its eigenvalues, the operator M is defined so that it
commutes with 3."."The adiabatic susceptibility thus
turns out to be

„= " dX &MM('a~))-p((M)~). (3.S)

9 J. von Neumann, Z. Physik 57, 30 (1929).
'0 An example of X' and of M will be shown in the next section.

M( —t') is the magnetic moment at t= t' in the-
Heisenberg picture. The increment in the average
value of the magnetic moment at t becomes

(~M)(~) =-aa d~'~ 1—~((M(~') Mj). (3.3)
i p' ( t)
trt, & r)

Incidentally the isothermal susceptibility, xy, can also
be obtained from (3.4) if we replace the time average
of M by its canonical average. Thus we have

pP

yr = dh, (MM(iA)) P—(M)'
~o

(3 6)

This result was first found by Kubo and Tomita~
through consideration of the response of the system
to an oscillating field. (3.6) can easily be verified to
agree with the original definition of yr= (B(M}/BH)r,
which may be approximated by using R' in it instead
of 3C. From the resulting expression for xz, together
with (3.5) and (3.6), we finally arrive at the required
expression (2.1) for zs, if we identify the energy
values W„ in (2.1) with those of the approximate
Hamiltonian 3Co.

]3efore closing the discussion in this section, two
comments may be added. First, it should be emphasized
that mixing processes among the degenerate states
have been taken into account through the ergodic
theorem. It is this theorem which allows us to ignore
many kinds of small hidden disturbances within the
system which are extremely hard to know anything
about. Without this theorem, as is easily confirmed,
we would be led to the expression (1.2), y;„, which
obviously is much more inconvenient for practical,
applications than (2.1). Second, the mixing processes,
referred to above, do not lead to any change in the
value of the entropy, insofar as first order effects in
~P are concerned. This is simply because the entropy
already has its maximum value at t=O so that any
first order redistribution in the ensemble can not
affect it. From this fact we can obtain a most vivid
impression of the physical significance of the principle
of maximum entropy.

IV. SYSTEM OF SPINS WEAKLY COUPLED gY
MAGNETIC INTERACTION UNDER A

STRONG MAGNETIC FIELD

The general discussion given in the preceding sections
will be applied to simple spin systems. The purpose js
to show that the standard perturbation methpd js
really applicable for the calculation of (2.1) to get the
same result as that obtained from (1.1). To this end,
we may confine ourselves to as simple systems as
possible. Namely the Hamiltonian consists only pf a
Zeeman term and a magnetic dipole-dipole interactipn.
The latter will be treated as a small perturbation, the
magnetic field being assumed sufficiently strong.

Our principal task is to find the expression for I„.
As is well known, the evaluation of a microcanonical
average is generally far more dificult than finding the
corresponding canonical average. In fact the micro-
canonical averaging requires detailed information about
the structure of the energy levels. Caspers' calculation'
can indeed be supposed to have been done in this way.
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( )' means to take the average over the canorucal
distribution whose temperature P' is determined so
that the average energy (W)' is equal to W. Now we
have to re-express the right-hand side of (4.1) as a
function of H and 8'.

We may refer to the original paper by Broer' con-
cerning the expressions for the energy levels and the
free energy of our system due to the second order
perturbational calculation: the energy levels are given
as

W„=—HM„'+V +8 /H,

or more conveniently in the operator form

W = HM'+V—+B/H;

(4.2)

(4.3)

the free energy is then

F(P H) rP(Hs((Mo)s) Av+(Vs)av —2(M'B)s, ) (4.4)

in the high-temperature approximation. The first term
on the right-hand side of each of (4.2), (4.3), and (4.4)
corresponds to the Zeeman energy, the second term to
the first order perturbation energy due to the diagonal
interaction and the third term to the second order
perturbation energy due to the non-diagonal interaction.
All the operators W, M', V, and B are diagonal and
their eigenfunctions need not be specified here. The
angular brackets in (4.4) mean taking the average over
all the eigenstates of W with equal weight.

We can calculate from (4.4) the average energy
(W)'=W corresponding to the temperature P'. The
resulting equation is solved for P':

H'((M')') s„+(V')„„—2(M'B) A,

(4.5)

Again from (4.4) we can obtain

(M)'= —(BF(P',H)/BH) s,

Here we will take another approach to get an approxi-
mate result by a perturbation calculation. We will
make use of the expansion formula (2.4) in its reversed
form:

M I =(M)'—-'((W') —(W)')8'(M)'/BW' (4.1)

which can be rewritten by use of (4.5) as follows:

M=M'
V B Me

H H' H'((Mo)s), „

X ((V'),—2(M'B),). (4.7)

After differentiating (4.7) with respect to H and
putting the result into (2.1), we ftnally obtain in the
present approximation

»= (&/H')((V')" —2(M'B)A.) (4 g)

This is just the result which Broer derived from (1.1)
in the same approximation. 4 We recall that, when
Broer calculated (1.2), on the other hand, he got a
result which lacked the 6rst term on the right-hand
side of (4.8), the contribution from the diagonal inter-
action. His result is not hard to understand, because
(1.2) does not imply mixing processes among the
degenerate states. Hence, the only processes which
can change the value of the magnetic moment during
adiabatic processes are due to the nondiagonal inter-
action explicitly involved in the Hamiltonian W.

The calculation presented in this section can be
said to show the applicability of the perturbation
method even to spin systems with magnetic interaction
as well as to provide an illustrative example of the
general proof given in Sec. II.

ACKNOWLEDGMENTS

The author is greatly indebted to Professor T. L.
Hill, University of Oregon, and to Professor N. Saito,
Waseda University, for their stimulating and helpful
discussions and for reading the manuscript. He also
wishes to express his appreciation for the hospitality
of the Department of Chemistry, University of Oregon.

"W, given by (4.3), and M, given above, correspond to K'
and M in the preceding section, respectively.

(M)'= — $H'((M')') A,

H'((M')')s„ —(V )„+2(MoB).,7. (4.6)

Inserting (4.6) into (4.1) we get the required expression
for Mw."


