
PHYSICAL REVIEW VOLUME 119, NUMBER 1 J ULV 1, 1960

Theory of Nuclear Quadrupole Interaction in Beryllium Metal*f
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The theory of the origin of the field gradient at nuclei in metals has been analyzed. The contributions of
the ion cores and conduction electrons have been separately considered. In the case of beryllium metal, using
orthogonalized plane wave functions, the conduction electrons are shown to enhance, by about eight percent,
the Geld gradient due to the ion cores. Combining the results of our calculations with Knight's experimental
value of 48 kc/sec for the Be' coupling constant e'gQ/h, a value of Q=0.032)&10 "cm' is obtained. The
dependence of the potential for the conduction electrons on the model chosen is analyzed in some detail.
The various uncertainties in our field-gradient calculation and the theoretical value of the Knight shift in
beryllium metal are discussed.

INTRODUCTION

HE nuclear magnetic resonance in powdered
metallic beryllium has been studied by Knight. '

He found that the resonance signal had two equally
spaced satellites in addition to a central signal, char-
acteristic' of a nucleus with spin —, and a finite nuclear
quadrupole moment eQ in an axially symmetric field
gradient. The frequency separation between the two
satellites yields a value for e'qQ/ltof 48 kc/sec. The
value of Q for the Be' nucleus is not known from other
sources, and to determine it from Knight's quadrupole
coupling data requires a calculation of q. This paper
will attempt to analyze the various sources that could
contribute to the field gradients at nuclei in metals with
special emphasis on beryllium metal. It is hoped that
these deliberations will be useful in analyzing quad-
rupole coupling data in other metals with more com-
plicated band structures, e.g. , the pure nuclear quad-
rupole resonances" of Ga"" and In'""' and the
low-temperature specific heat measurements' ' in
Re'" '" and Zn". Previous attempts to estimate q in
metallic beryllium were made by Kittel' and Cohen. '
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Kittel estimated the contribution of the Be++ ion cores
to q and Cohen suggested a method for calculating the
contribution of the conduction electrons. The relations
of the works of these authors to ours will be discussed
in Secs. I and III.

Section I will list the various sources of contribution
to q and deal in detail with the contributions from the
array of Be++ ion cores. Section II will deal with an
orthogonalized plane-wave calculation for the wave
functions of the conduction electrons. Section III will

discuss the contribution of the conduction electrons to
q. In Sec. IV we shall discuss the accuracy of our field-
gradient calculation and also briefly consider the Knight
shift in metallic beryllium.

I. FIELD-GRADIENT DUE TO ARRAY
OF Be++ ION CORES

Beryllium metal has a hexagonal close-packed struc-
ture with the c/a ratio equals to 1.5671, somewhat
different from the value c/a=1. 633 for the ideal hcp
lattice. From general symmetry considerations, we
therefore expect the field gradient at the Be' nucleus
to be axially symmetric about the threefold c axis. We
thus have the asymmetry parameter &=0 and have
only to calculate the single parameter q defining the
field gradient.

The field gradient eq at the nucleus j may be defined

by the general relation

386'—r'~'
q;=E' " "p(r,),

i r6'

where ep(r;) represents the charge density at the point
r;. The summation sign is considered to imply that for
continuous charge distributions it is to be replaced by
integration. Also, the prime over the summation denotes
that the charge on the nucleus j has to be excluded from
the summation. The direction s is taken along the c axis
of the hexagonal lattice.

We can write the general expression for p(r;) as

(r;) = Lz && 8(r,—r&) —p „(r,)—p „d (r,)j, (2)

8 D. R. Schwarzenberger, Phil. Mag. 4, 1242 {1959).
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Pcore(ri) ZN Pcore(ri r v) ~

For the conduction electrons we can write

(3)

where Ze is the nuclear charge, —ep„„ is the charge
density associated with the core electrons and —ep„„d
is the charge density associated with the conduction
electrons. For beryllium metal, Z=4, the core electrons
correspond to the 1s electrons and the conduction
electrons to the 2s electrons which now form a conduc-
tion band. The vectors r~ refer to the lattice sites and
the summation in E extends over all the lattice sites
in the metal. If we assume the core electrons to be
localized at the lattice sites in the metal and no overlap
between cores on neighboring lattice sites (a very good
approximation usually), then we can write

small alteration would require a knowledge of the core
wave functions in the metal, and to the order of ac-
curacy at which we aim in the present calculations it
did not seem worthwhile computing this correction.

(3s —rgb
I(1+&-)

ris
(6)

A number of analytic methods" are available for ob-
taining the values of various lattice sums. We have used
the method of Nijboer and deWette. The adaptation of
Nijboer and deWette's method to compute the series in
Eq. (6) and its application to a number of other metals
with hcp structure will be discussed in a subsequent
publication. For beryllium metal the series in Eq. (5)
is calculated to be 0.2953u ' which gives'

p«n& (r ') = (2/I)&)
I
0'(k~r') I'de)» cps, ++=2.37)&10 ts(1+y„) esu/cm'

= 1.93&&10"esu/cm',
(7)

where II(k,r;) is the wave function for a conduction
electron with wave vector k and 14 is the volume of the
occupied region of the k space below the Fermi level.

In the free-electron approximation for the conduction
electrons, we have

pcpad (r;) = constant.

From Eq. (1) we then find that the conduction electrons
would not contribute to the field gradient in the free-
electron approximation. ' In reality, however, the con-
duction-electron wave functions depart significantly
from plane waves, especially in the neighborhood of the
nuclei and make a 6nite contribution to the field
gradient. This contribution will be discussed in Secs.
II and III. In the present section, we shall consider the
contributions of the nuclear charges and core electrons
to q. Remembering that there are two core 1s electrons
per lattice site from Eqs. (1), (2), and (3) the value of
q due to sources other than the conduction electrons,
viz. , due to the array of Be++ ions is given bv

q=0.7200a ',
=0.6832u ',
=0.8480u ',

R= 3&3a,

2t.'= 7%3a,

R= 843a.
(8)

The disturbing lack of convergence originates from the
fact that the value of g, as given by the series Eq. (5),
is the difference of two nearly equal large terms of
opposite sign which arise from the two types of lattice
points in the unit cell. For 2= 8&3 for example, the two
opposing contributions are given by

using p„=—0.185. The convergence of the Nijboer and
deWette procedure assures that the result is correct to
within 0.1%.The method of direct summation adopted
by Bersohn" for other crystalline lattices seems to be
unsuitable for the hcp lattice. We computed, by the
direct summation method, the contributions to the
series in Eq. (5) from points within spheres of radii
R=3&3a, 7v3a, and 843a corresponding respectively to
the largest spheres that can be inscribed in hexagonal
lattices with bases of side 6u, 14a, and 16a. These con-
tributions" were found to be

(5) qg= —9.5840a ',
qs =+10.4320a '. (9)

A correction factor (1+y„) has to be used in Eq. (5)
to correct for the Sternheimer shielding eGects arising
from the deformation of the 1s core electrons. The
value of y„ for free Be++ ion has been calculated" to
be —0.185 and we do not expect it to be rather diferent
for the core electrons in the metal. A correction for the

' This result should not be considered to be in contradiction
with N. Bloembergen and T. J. Rowland's idea )Acta Met. 1, 731
i1953)] that in a metal with an impurity atom with a larger
valency than the host metal the extra conduction electron shields
the 6eld gradient due to the extra charge on the impurity core. In
this latter case, the extra conduction electron does remain partly
localized around the impurity ion core and produces a field
gradient at a neighboring nucleus with a sign opposite of that
from the extra charge on the impurity core.

ro T. P, Ds,s and R. Bersohn, Phys. Rev. 102, 733 (1956).

Comparing the series (5) with a corresponding one that
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B. R. A. Nijboer and F. W. deWette, Physica 24, 422 (1958);
L. L. Campbell, J. M. Keller, and E. Koenigsberg, Phys. Rev. S4,
1256 (1951).

' R. Bersohn, J. Chem. Phys. 29, 358 (1958).
"The values of the lattice sums for R= 7V3a and 8V3a were ob-

tained using a program written for the University of Illinois high
speed computer Illiac, which was kindly supplied to us by H. S.
Gutowsky and R. A. Bernheim. The value quoted for R=3V3a
was obtained using a program written for the IBM 704, furnished
to us kindly by R. Bersohn. R. Bersohn informs us that the value
quoted for q in reference 12 was obtained with an earlier program
and probably involved an error.

C. Kittel (private communication); L. W. McKeehan, Phys.
Rev. 43, 924, 1022 (1933).
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magnetic 6eld in a lattice of dipoles, Kittel' "found the
value of cps,++=3.2X10"esu/cm' for c/rs= 1.58 without
the factor (1+y„). The difference between Kittel's
value and our value of 2.37&(10"esu could probably be
explained by the sensitive dependence" of qs, ++ on c/a.

II. OPW %TAVE FUNCTIONS FOR THE
CONDUCTION ELECTRONS

Calculations of the conduction-electron wave func-
tions in beryllium metal have been performed by several
authors. ' Raimes and Donovan used the Wigner-Seitz
approximation, and calculated the state A=O. Higher
values of k were considered by Herring and Hill using
the orthogonalized plane-wave method, " and also by
Jacques using several methods. In their papers, Herring,
Hill, and Jacques do not give the wave functions as a
function of k in an explicit way. We have, therefore,
recalculated the conduction-electron wave functions
taking account of the general conclusions by Heine" re-
garding the convergence of the OPW method. In this
section we shall present some details of this calculation
and a discussion of the potential in which the conduction
electrons move, with the hope that they will be useful
in future detailed band-structure calculations of beryl-
lium metal. In addition, the text of this section will be
useful in assessing the accuracy of the calculation of
the contribution of the conduction electrons to q
(Sec. III).

Following Herring, '~ the OPW functions for the
conduction electrons are of the form

(OPW, k,r) =Ah(Le'h'/(1VVo)'*g —Pq bh, ~Ph, ~(r)}, (10)

where A~ is a normalization factor, /=number of
atoms in the crystal, Uo=volume per atom=3mro'
(ro ——radius of Wigner-Seitz sphere), lt Q, $(r) is a Bloch
function composed of atomic-like states. For beryllium,
the only core states are (1s)'. Thus

it » r
——fh r, ——(1/QE) Q, e'h ""(p„(r R„), —(11)

where q r, (r) is an 1s atomic-like function, R„represents
the uth lattice position. b~ is the orthogonalization
parameter which is defined by the requirement that
(OPW, k,r) be orthogonal to ph ~(r). This gives

1
I

" sinkr
io„(r)dr

QVo ~o kr

A major problem is the determination of the core
functions oo„&(r). Herman, " in applying the OPW
method to diamond and germanium lattices, used the

'5 See Campbell et al. , reference 11.
'e C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940); S.

Raimes, Phil. Mag. 41, 568 (1950); H. Donovan, Phil. Mag. 43,
868 (1952); R. Jacques Cahiers de Physique 70, 1 (1956); 7j.—72,
31 (1956)."C.Herring, Phys. Rev. 57, 1N9 (1940).

V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957); thesis,
Cambridge University, 1956 (unpublished)."F.Herman, Phys. Rev. 91, 1214 (1954).

free atom core state wave functions. He found that the
true wave functions for the conduction electrons were
made up of linear combinations of a large number of
OPW functions of the type (10). Heine" has analyzed
the causes of the poor convergence in Herman's calcu-
lations. There are two reasons for the admixture of a
number of OPW functions in an eigenfunction for the
conduction electrons. First, if we make an error in our
OPW functions for small r —R„, i.e., near the nuclei, to
correct for this error, apparently a large admixture of
a number of OPW functions of higher k shall be re-
quired. Heine pointed out that this latter source of
admixture can be avoided if we use for the io„~(r) the
lower eigenstates oo„,'(r) in the same potential in which
the conduction electrons move. Herring and Hill'
adopted this procedure in their calculations also, al-
though they did not emphasize the points discussed by
Heine. Secondly, even if our OPW functions are chosen
properly, an admixture may be demanded by the non-
spherically symmetric nature of the potential. This can
be estimated once the potential has been calculated.
In the present case, as will be seen later in this section,
the influence of neighboring cells which impose hex-
agonal symmetry on the potential proves to be small,
so that a single OPW (k,r) may represent a good
approximation to the true wave function ph(r).

We shall now consider the potential in which the
conduction electrons move. In the Hartree-Fock ap-
proximation, the conduction-electron wave function yl,
can be considered to satisfy the following equation:

( ~ +Vd core+ Vd cond. +Vexch. core

+V.:h ...d )o s(r) =&. sq s(~) (13)

Atomic units will be used henceforth, viz. , the unit of
length equal to ao, the first Bohr radius in the hydrogen
atom, the unit of energy equal to the ionization energy
of the erst Bohr orbit, and e= m= 1 for the charge and
mass of the electron. Vd „„represents the direct
Coulomb potential produced by the nuclei and the
core electrons, Vd „„d the direct Coulomb potential by
the other conduction electrons, V„,i, „„the exchange
potential due to the core electrons, and U xci, cpgd, the
exchange potential due to the other conduction elec-
trons. In addition to these terms in the potential, we
have to consider corrections due to the correlations
among the conduction electrons. This correction, and
V,„,I, „„d do not vary" strongly with r and so would
not affect p&(r) very much, although they have sub-
stantial effects on the energy. In computing the rest
of the terms in the potential we shall conhne ourselves
to a Wigner-Seitz sphere" of radius ro around one of the
nuclei.

The potential Vd „„due to the core at the center of

D. Pines, Solid-State I'hysics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1955), Vol. I, pp.
392-393 and 400-401.

2' F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, New York, 1940).
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the Wigner-Seitz sphere is given by

Vd „„(»)= $2Z —4Vo (1s,Is ( «) j/»,

where in Hartree's" notation

(14)

Vq(ul, u'l')«) = P(el(«')P(n't')»')
)

—
(

d»'
&p (»)

~oo (» ) i+1

+ ~ P(et
~

«')P(e't'~ «')
)
—

)
d»',

(15)

Vopw, a(») =4 ao)
~
(OPW, 0,«)

~

d7

t' [(OPW, ko,»') )'
+aio)l dr, (17)

the OPW functions being defined by (10), (11), and
(12) with the function yi, («) taken as in (16). A more
explicit form for (17) is given in (A.1) in the Appendix.
The choices made for the weighting factors were co=4
and u1,0=~, which are intended to represent wave
functions with rss character and is p character. This
choice is somewhat arbitrary, but it turned out that
the contribution from the plane-wave part of the OPW
to Vop~, d was dominant and this made the potential
rather insensitive to the weighting factors. It is to be
noted that in (17) we have a factor of 4; a factor of 2
comes from the use of atomic units and another from
the fact that an electron inside the Wigner-Seitz sphere
sees the Coulomb potential due to two conduction elec-
trons, '4 instead of one, as in the case of the 2s electron
of a neutral beryllium atom.

~' D. R. Hartree, Calculatioe of Atomic Strlctlres (John Wiley
& Sons, New York, 1957)."P.M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.
48, 948 (1935).

'4 Each conduction electron in the metal sees the Coulomb po-
tential due to . (237—1) conduction electrons, corresponding to
(2E—1)/E—2 electrons per Wigner-Seitz cell.

and P(el«) =«u„i(«) where u„i(«) is the radial part of
y i(«). For yi, we took the 1s function of Morse,
Young, and Haurwitz" for the neutral Be atom,

v i.(») =».(») Vo (fI .) = (""/-)'. ", (16)-
with pa=3.69.

The potential Vd«„d. was obtained in two ways,
namely (a) by considering both the electrons in the
Wigner-Seitz sphere in OPW states and finding the
Coulomb potential produced by them and (b) from
the Hartree-Pock potential for the 2s electrons in the
neutral beryllium atom. In the erst procedure, two
OPW states corresponding to k=0 and k=ko Lradius
of Fermi sphere given by ko' ——8v3vr'(a'c) ' from the
theory of 8rillouin zones)2i were considered. The
Fermi surface was approximated by a sphere wherever
it was used. Thus, we took

In procedure (b), Vz, „„z (denoted by VrrF, & in this
case) was taken as the weighted mean of twice the
potentials seen by a 2s electron in the 1s'2s' conhgu-
ration and a 2p, electron in the Is'2p, 2 configuration of
the neutral beryllium atom. The weighting factors were
taken as Sr for the 1s'2s' and si for the 1s'2P ' configu-
rations to agree with the corresponding assumption
made for Vopw, g. Thus,

7 Yo(2s,2s[»)
Vlz, d=4—

8

1 F'0(2p, 2p
~
»)+ (4/25) V, (2p, 2p

~
»)+

8 r

The factor of 4 in (18) is used for the same reason as in
the OPW approximation.

In calculating V,„,h «„, three alternative procedures
were compared.

(a) The OPW approximation: In this approximation,
we took

t' yi, *(«') (OPW, O,»')dr'
Vopw, s(») 2 ao

p„(«) t- pi,*(«')( OPW, k,o«)
X +aio d7

(OPW, O,«) ." ~r —r'~

v i.(«)X— (19)
(OPW, ko, ») to

where ( )vo means an average over all directions of ko.
In the second term on the right, the averaging over the
directions of ko is rather complicated because
(OPW, ko, ») occurs both in the numerator and de-
nominator. We made the simplifying approximation
of averaging the numerator and denominator separately
over the directions of ko. ao and ai, o were taken as 4
and -„', respectively. The detailed expression for Vopw, ,
is given in Appendix (A.2a).

(b) The Hartree-Fock approximation: In this ap-
proximation a weighted mean was taken of the ex-
change potential seen by a 2s electron in the 1s'2s'
configuration and a 2p, electron in the Is'2p, ' con-
figuration.

7 2F'0(ls, 2s~») P(1s~»)
Vnr, .(«) =—8» P(2s~«)

Vl(2p, »
~
«) &(1~

~
»)+- —— (20)

8 3» P(2p~»)

The weighting factors are the same as in calculating
VHI, g.

(c) Slater free-electron approximation: According to
Slater's free-electron approximation, " the exchange

25 J. R. Reitz, Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.
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OPWx - HFrl

HFx HFrl (SINOOTHEO)

SLx —HFg

5
2Z(r )

r(a. u.)
0 0.2 0.4 0.6 0.8 I.O I.2 I.4 l.6 I.8 2.0 2.2 2.4

Fro. 1. 2Zir) =rV (r) vs r for three methods of computing the
conduction-electron potential in a signer-Seitz cell.

potential at any point is given by

—6L(3/g~) 2'I 0'(r) I'1'. (21)

8)

HFx - OPWrf

b SLx — OPWd

o——OPWx - OPW4

22(r)
4 VAi

0
0 0.2 0.4 0.6 0.8 I.O I.2 I.4

r(a.u.)
I.6 I.8 2.0 2.2 2.4

FIG. 2. 2Z(r) =rV(r):..vs r for three methods of,'computing the
conduction-electron potential in a signer-Seitz cell.

Since we are interested in V,„,h „„wehave to subtract
from (21) the contribution of the exchange among the
conduction electrons themselves. The detailed ex-
pression for Ug~, after making this subtraction is
given in the Appendix (A.2b).

We thus have a choice of six potentials obtained by
combining the two choices of Ud«„d with the three
choices of Vexch. core The sum of Vd core+ Vd cond.

+V,„,h „„,is written as 2Z(r)/r, and plots of 2Z(r)
are given in Figs. 1 and 2 for the six possible choices
of the potential. It is seen that the Z(r) curves obtained
from the four potentials which do not use Slater free
exchange approximation show irregularities and di-
vergences between 0.5uo and 0.6ao. This divergence is
spurious and arises from the fact that the node of the
approximate (OPW, k,r) or Ps, (r) in the denominator
of the expressions for the exchange potential LEqs. (19)
and (20)j does not fall exactly at the node of the
integrals in the numerator. Apart from this, it is seen
that the two Z(r) curves obtained from combinations
of HF, with OPWq and of OPW with OPWd agree
quite well over most of the range of r. The former was
chosen for the Anal calculation for the following

SMOOTHED HF„- OPTO POTENTIAL

5

2Z(r)
4

00 0.2 0.4 0.6 0.8 I.O I.2 I.4 l.6 I.S 2.0 2.2 2e4

Fn. 3. 2Z(r) vs r used in the present calculation.

lower eigenvalue probably arises out of the use of a
better potential for the conduction electrons. In Fig. 4
P&,(r)= (4rr)try„' is plotted against r together with
the Pr, (r) functions in Be++ as calculated by Hartree. "
The Pr, (r) function in neutral beryllium is practically
identical to the function in Be++. It can be seen from
Fig. 3 that the potential in which the conduction
electrons move is less binding than the potential for
the core electrons in Be atoms, which results in a
spreading of the 1s function and a (numerical) reduction
of the energy eigenvalue. Because, as seen from Eq.
(12), further integrations involving Pr, (r) are necessary,
it was attempted to fit the function Pr. (r)/r by two
exponentials. This did not prove accurate enough, so
the remaining integrations were performed numerically.
Using the curve for Pr, (r) in Fig. 4 and Eq. (12) in the
form

1 (3
P(r)»nl&l«r,

[kl L.ro'4 o

~6D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).

(12')

reasons: Vopw, ~ gives a better measure of the direct
potential Vd «„d than VHp, ~ since the OPW functions
more adequately describe the behavior of conduction
electrons than atomic 2s or 2p, functions. Secondly, of
the three choices for V, ,h „„,the Slater approxi-
mation is the least justiied because the core electrons
are strongly localized. The expression Vopw(r, ) suffers
from the averaging approximation described before.
The expression VHs, ,(r) is expected to represent the
exchange between the core and conduction electrons
quite well, because near the nucleus, where the main
overlap between the conduction electrons and core
electrons occurs, the use of atomic 2s functions for the
former is not a bad approximation. The smoothed Z(r)
employed in our calculations is shown in Fig. 3.

Using the potential depicted in Fig. 3, a normalized
wave function q», '(r) was calculated by the usual
numerical integration procedure. " The eigenvalue
corresponding to this function was found to be —4.83
rydbergs which is to be compared with the value
—4.55 rydbergs found by Herring and Hill. " Our



NUCLEAR QUADRUPOLE INTERACTION IN Be METAL

values of b~ within the Fermi sphere were calculated.
These are plotted against k in Fig. 5. Using this plot
of bi, and Eq. (10) in the form

0.36

0.35-
C

gk -elk r gk pi~(r)-
(OPW, u, r) =

XI VI (4)I r
(10')

b»

0.34

we can obtain (OPW, k,r) for all conduction electrons
within the Fermi sphere.

III. CONTRIBUTIONS OF CONDUCTION
ELECTRONS TO q

If we assume the conduction electrons to be ade-
quately represented by single OPW functions, then we
can use (10') and (4) to compute the charge density as
a function of r. Using a spherical Fermi surface of radius
ko, we find that p„„d.(r) comes out as a function of r
alone. In Fig. 6 p„„q(r) is plotted against r. The
horizontal lines po, p;, and p, indicate the following
densities: po (= —0.04) stands for the almost constant

0.33

0.32

0.31

0,30

0.29

0.28
0 I.O I.20.2 0.4 OAi 0.8

k

FIG. 5. The orthogonalization parameter br, vs k.

1.4

l~X

I

—SOLUTION IN CONDUCTION ELECTRON POTENTIAL
++——kARTREE-FOCK ATOMIC SOLUTION FOR Be

0,8
P(r )

0.6

0.4 '

0.2 '

0
0 0.2 0.4 0.6 0.8 1.0 1.2 14

r (o.u.)
1.6 1.8 2.0 2.2 2.4

FIG. 4. The |s solution in the conduction-electron potential
compared to the 1s function in Be++.

q=1.93X1.08&10"esu cm '
=2.08X10"esu cm '. (22)

charge density seen by a nucleus is effectively (a) a
uniform electron density of —0.04 throughout the
metal, (b) an average hole density of 0.01 around itself
distributed within a sphere of radius r=1.6ao, and
(c) positive charges of +0.16 in addition to the ionic
charges +2 at the other lattice sites. Using Eq. (1)
it is seen that the distributions (a) and (b) make zero
contribution to q while the additional charges (c) of
+0.16 at the other lattice sites enhance the field
gradient due to the ion cores, as given by (7), by 8%.
We, thus, find our final calculated value of q to be given
by

density in the outer regions of the sphere (r~ 1.6ao).
The volume between r= 1.6ao and 2.35ao is about 70%
of the volume of the Wigner-Seitz sphere. p, represents
the average density in the inner regions of the sphere
(r(1.6ao). p, =2/V represents the average density in
the unit cell if the conduction electrons were distributed
uniformly (free-electron approximation). The effect of
the atomic-like oscillations in the conduction-electron
wave functions near the nuclei is thus seen to result in a
diminished average density p, (=—0.03) near the
nuclei and an enhanced density in the outer regions of
the unit cells. This step function in the average density
of charge can be represented, as far as the contribution
to q at a nucleus from conduction electrons in external
cells is concerned, by a density of —0.04 throughout
the entire unit cell and a fictitious hole of density +0.01
in the region r= 1.6ao to r=0, so that the average charge
density there is still r= —0.04+0.01=—0.03. The hole
around each nucleus is spherically symmetric and in
computing q is equivalent to a point charge of magni-
ude +0.01&((4m/3) (1.6)'=+0.16 at r=0. Thus, the
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Fzo. 6. Charge density in a signer-Seitz cell of Be metal.
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Combining this with Knight's observed value for
e'gQ/k=48 kc/sec, we find the Be' quadrupole moment
to be

Q(Be') = 0.032)& 10 "cm' (23)

Since only frequency splittings are measured in
Knight's experiment, it is not possible to assign a
particular sign to Q by the present calculations. The
magnitude of Q seems to fit on the semiempirical plot
of Townes, Foley, and Low."Bernheim and Gutowsky"
have recently computed q at Be++ lattice sites in beryl.
Combing their result with the NMR measurements of
Be and Al' in beryl " they find Q(Be') =0.039)&10 "
cm', in fair agreement with our value. Both these values
agree well with the semi-empirical curve of Townes,
Foley, and Low."It will be possible to assess better the
accuracy of these calculations when an independent
measurement of the Be' quadrupole moment is made
either by an atomic beam study of optically excited
atoms" in the (1s'2s2P)'Pi state or by the study of high-
energy electron scattering by Be' nuclei. "

The accuracy of our calculation is discussed in the
next section. At this point, however, we would like to
remark on a method of calculation suggested by Cohen. '
He proposes to divide the metal into polyhedra around
each of the lattice points as in the cellular approxi-
mation. Each of these polyhedra has a center of sym-
metry and contains two conduction electrons, and
therefore it has zero over-all charge and zero dipole
moment, but a finite quadrupole moment. The quad-
rupole moment of each polyhedron can be computed
«f one knows the conduction-electron wave functions.
The field gradient q at a nucleus can then be obtained
by integrating over the charge distribution within the
polyhedron surrounding the nucleus and summing over
a more convergent series than (6) for the contribution
from the electronic quadrupole moment of the other
polyhedra. Since both Cohen's approach and ours are
artifices to take account of the departure in uniformity
of the charge density of the conduction electrons, we
believe that if the same conduction-electron wave
functions are employed, both methods would give
equivalent results.

IV. DISCUSSION

To assess the accuracy of our result it is helpful to
list the various uncertainties invo1ved in our calcu-

C. H. Townes, H. M. Foley, and W. Low, Phys. Rev. 76,
1415 (1949)."R. Bernheim and H. S. Gutowsky, J. Chem. Phys. (to be
published).

s'I. Hatton, 3. V. Rollin, and E. F. W. Seymour, Phys. Rev.
83, 672 (1951);also see L. C. Brown and D. Williams, J. Chem.
Phys. 24. 751 (1958); Phys. Rev. 95, 1110 (1954)."See, for example, M. L. Perl, I.I.Rabi, and B.Senitzky, Phys.
Rev. 98, 611 (1955) Note added i' Proo.f A Lurio (private c.—om-.
munication), from recent preliminary measurements oi this type,
has found a value of 0.03&10~4 cm2 for 'the Be' quadrupole
moment. :

s' M. K. Pal LPhys. Rev. 117, 566 (1960)] has considered the
theory for evaluating nuclear quadrupole moments from high-
energy electron scattering.

lation of the contribution of the conduction electrons
to q.

1. The first uncertainty arises from the sensitivity
of the conduction-electron potential to the model
chosen, as is evident from Figs. 1 and 2. This uncer-
tainty is still an obstacle to accurate quantum me-
chanical calculations of wave functions in solids, since
it is extremely laborious at present to try to attain
self-consistency in band-structure calculations.

2. We have neglected the eGects of the correlation
and exchange between the conduction electrons on their
density distribution. This is again a difficult point, as
discussed by Callaway" in a recent review. An im-
provement over our procedure would be to consider a
shielded interaction of the type found by Bohm and
Pines" between the conduction electrons to compute
the contribution of the exchange interaction between
the conduction electrons to the eGective potential in
which they move. It is to be noted that the main
contribution of the conduction electrons to q comes
from the oscillations in their density in the neighbor-
hood of the nuclei. In the neighborhood of the nuclei,
orie might argue that the effect of the correlation
between the conduction electrons is relatively small
compared to the core potential, and so the e8ect on the
charge density near the nuclei is small. However, the
charge density at the further ends of the signer-Seitz
cell would be aGected by correlation, and, by normali-
zaltion requirements, the charge density near the nuclei
would also be altered. "

3. In computing q i,'(r), we did not consider in the
conduction-electron potential the contribution from
adjacent signer-Seitz spheres. From Fig. 3, however,
the value of 2Z(r) between r=2.0ao and 2.4ao is found
to be less than 0.1 and so the overlap of the potentials
of adjacent cells has probably a not too important effect
on pi, '(r).

4. In computing the charge density due to the
conduction electrons in Sec. III, we have assumed
(a) that the conduction-electron wave functions are
adequately represented by single OPW functions, and
(b) that the Fermi surface is spherical. Assumption
(a) includes assumption (b). Our belief that assumption
(a) was not very erroneous was based on similar results
obtained by Heine" in aluminum metal using his pre-
scription for the functions q ~ of Eq. (11). He found
that for most of the conduction-electron states the ad-
mixture of higher OPVV functions was small. We have
examined the admixture of higher OP% states at a few
points in k space in the first and second Brillouin zones
and find such admixtures to be in general less than 5%%u&.

In particular, we find that at the point" I', for the lowest
energy state with I'i+ symmetry (k=0), the admixtures
of the higher and next higher OPW states of the same

"J.Callaway, Sold-State I'hysics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1958), Vol. 7.

3' A. Mukherjee and T. P. Das, Phys. Rev. 111, 1479 (1958).
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AH/H =0.009%, (25)

'4In view of these comments, it should be remarked that our
result that the conduction electrons in beryllium metal contribute
little to the 6eld gradient should not be generalized to other metals.
Thus in the case of gallium metal, there is reason to believe
(reference 3) from a consideration of various physical properties
that there is appreciable covalent bonding among gallium atoms.
This would imply an appreciable departure from spherical sym-
metry in the conduction-electron distribution around the gallium
nuclei and consequently an important contribution to q.

3' As an example of the investigation on shape of Fermi surface
from anomalous skin effect measurements, see A. B. Pippard,
Phil. Trans. Roy. Soc. (London) A250, 325 (1957).

"As an example of the use of de Haas-van Alphen eBect
measurements in investigating the shape of the Fermi surface,
see A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958)."T, Kushida, G. B.Benedek, and N. Bloembergen, Phys. Rev.
104, 1364 (1956).' C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev.
77, 852 (195O)."G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).

symmetry are, respectively, 3.6% and 1.5%. In this
calculation of the mixing the overlapping of adjacent
cell potentials (point 3 above) was not considered.
Inclusion of this overlap might increase the higher k

mixing somewhat. It is evident from Eq. (1) that
departures from the assumptions (a) and (b) would
lead to departure from spherical symmetry of the
fictititious hole around each nucleus and this would
cause an additional contribution to q. Whether this
contribution would enhance our calculated value of q
or reduce it depends on details of the band structure. '4

It would be useful to recalculate the conduction-
electron contribution to q when more detailed band-
structure calculations involving evaluation of the wave
functions at a larger number of points in k space than
those considered by Herring and Hill are available,
together with a better knowledge of the Fermi surface
from experimental measurements of the anomalous
skin eGect" and the de Haas-Van Alphen effect."

We should like now to make some comments on
further checks on our calculation. Pressure measure-
ment analogous to those of Kushida, Benedek, and
Bloembergen'~ on powdered Cu20 shouM be made to
examine our observation that the ion cores are the
principal contributors to q. If our analysis is correct,
and c/a is constant, then the value of e'qQ should vary
inversely as the volume. If c/a changes with pressure,
then the change in e'qQ can be predicted for the ionic
model following Sec. I and using the same 8% correction
due to conduction electrons as in Sec. III.

An estimate of the Knight shift of the Be' nucleus
due to the spin paramagnetism can also be made from
our OPW functions using the formula of Townes,
Herring, and Knight"

AH/H = (Sw/3)»~(IP, (0) Is),.
Using the value of bao from Fig. 5 for ho= 1.0332 at the
surface of the Fermi sphere, we find ( I It s (0) I

'), = 1.028.
Using Feher and Kip's approximate experimental"
value of the mass spin susceptibility x„of 1)&10 ' cgs
we then get

which is larger by about a factor of five than Knight's
observed4' value of (0.002%. Townes, Herring, and
Knight" find, using the functions of Herring and Hill, "
a value of 0.4 for

(0) I'&/I A(o

[Ps(0) referring to the value of the wave function near
the nucleus for %=0) while our wave functions give 0.6.
The diGerence could be partly ascribed to our use of
single OPW functions and spherical. Fermi surface.
However a more detailed calculation of the wave
functions would not be expected to reduce the value
of AH/H by as much as a factor of five below Eq. (25).
A more precise experimental value of y„ is desirable.
A reason for the disagreement might also be found in
the following two sources. One mechanism which could
reduce the calculated Knight shift is the exchange
polarization eGect on the core 1s electrons by the
unpaired conduction electrons analogous to that found
in atoms. " In addition, a careful analysis should be
made of the orbital contribution to the shielding eGect
of the 1s core electrons in the metal from that in the
Be++ ion. It shouM be noted, however, that the calcu-
lated values of the Knight shift and spin susceptibility
due to conduction electrons depend on the conduction-
electron wave functions in the neighborhood of the
Fermi surface alone. Hence an error in the wave func-
tion near the Fermi surface or the shape of the Fermi
surface affects the Knight shift quite sensitively while
the electric field gradient at the nuclei would not
necessarily be much aGected because it depends on a11

the region of k space within the Fermi sphere.
Finally, we may remark that our considerations in

Sec. III indicate that the field gradient due to the
conduction electrons depends on both the momentum
and position dependences of the wave functions. The
diGerence in the momentum dependence of the wave
functions for normal and superconducting states as
envisaged in the 8ardeen, Cooper, and SchrieGer
theory4' would therefore entail a change in the field
gradient at the nuclei. Evidence for such change has
recently been found for gallium and indium metals by
Hammond and Knight. 4'
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1. Direct potential due to conduction electrons using
OPW functions:

Using Eq. (17) together with Eqs. (10) and (11) for
the OPW wave functions, we get

3 t r'p ~3q*
Vorw, a(r) =4ap&p'

(
1— I 2bpl

2r, & 3rpP& irpP&

p P0

P(r')r'dr'+ P(r')dr'
p, J,

q "p P'(r')
P'(r') dr'+ — dr'

(r ~p r'

3 ( r' q 2bapr 3q**
+4azpAI p'

i
1—

2rp 4 3rp') kp Erp')

1 y" p"' P(r')
X — P(r') sinkpr'dr'+ ' sinkpr'dr'

-«o
1 t"

I
«P'(r')

+bI p' — ~ P'(r')dr'+ — dr' . (A.1)
-r ~o r'

Z. Contribution to the conduction electron potential fro-m

the exchange with core electrons:

(a) The OPW approximation: Using Eq. (19) to-
gether with Eqs. (10) and (11) for the OPW wave

functions and making the approximation mentioned
in the text of averaging the numerators and denomi-

nators in Eq. (19) separately, we get

P(r)/r [1 (3)*
X y0.25 —

(
—

[
(3/rp')' *—bpP(r)/r I kp &rp')

1 p" I
"P(r') sinkpr'

X — sinkpr'P(r') dr'+ dr'
r ~p 'r rI

1 p" p" P'(r')dr'
bx p

— —
~ P'(r') dr'+

r p r rI

P(r)/r
X (A.2)

(3/r p') '* sinkpr/kpr —b ppP (r)/r
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Vsi, s(r) = —6
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( 3 t' 3 q
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/ y] ). (A.3)
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(b) Stater free electron ap-proximation: Using Eq. (21)
twice, including the core electrons and excluding them,
respectively, and subtracting the result of the latter
from the former, we get the following expression for the
exchange potential arising from exchange with the core
electrons:


