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latter cross-section values taken from Fig. 1. Above 4
kev, the charge-transfer cross section becomes too small
for this method to be reliable. At the higher energies the
relative cross section for electron production was deter-
mined by comparing electron signals per unit ion current
as a function of ion energy. This high-energy relative
cross section was then normalized at 10 kev to the value
obtained by comparing the H +H electron-production
cross section with the p+H charge-transfer cross sec-
tion, the absolute value for the latter being taken from
the preceding paper. At energies of less than 500 ev,
the results obtained by comparing the cross sections for
electron production and charge transfer in H +H colli-
sions were not sufficiently reproducible to warrant their
being shown in Fig. 2. However, from these lower-energy
data, it appears that the cross section for electron pro-
duction does not decrease for ion energies down to 50 ev
and probably continues to increase. The experimental
uncertainties shown in Fig. 2 do not include uncer-
tainties in the charge-transfer cross sections which were
used as standards in this measurement.

The degree to which the experimental values should
be expected to agree with the results of McDowell and
Peach is not entirely clear. In their calculations, only
theprocess H +H~ H+H+e was considered, whereas
in our experiments, processes which would result in
ionization of the end products of the collisions also con-
tributed to the electron-production signal. Certainly the
condition that the experimental values should exceed
the cross section for only the simple electron-detach-
ment process is satisfied.

It would be expected that processes leading to ioniza-
tion of the final collision products would be operative
only at the higher ion energies in this experiment, and
that such processes cannot be invoked to explain the
deviations of the two curves in Fig. 2 as the energy is
reduced below 5 kev. It also seems unlikely that the
associative detachment process, H +H —+ H2+e, can
contribute appreciably to the electron-production proc-
esses at energies as high as the lower energies of these
measurements.

It is interesting to note that McDowell and Peach
calculate the energy distribution of the electrons pro-
duced in the simple detachment process and And that
where their approximation is valid, less than 10/o of
the ejected electrons should have energies exceeding
13.6 ev. In measuring the cross section for total slow
negative particle production, it was found that curves
of signal versus vertical magnetic field saturated at
about 20 oersteds for all ion energies. Considering the
experimental geometry, this implies that a negligible
fraction of the electrons had energies in excess of about
20 ev.
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The need for a quantum-mechanical formalism for systems with
dissipation which is applicable to the radiation field of a cavity
is discussed. Two methods that have been used in this connection
are described. The first, which starts with the classical Newtonian
equation of motion for a damped oscillator and applies the con-
ventional formal quantization techniques, leads to an exact
solution; but subsequent discussion shows that this method is
invalid, the results being unacceptable from a quantum-mechan-
ical viewpoint. The second method, which considers the inter-
action of two systems, the lossless oscillator and the loss mecha-
nism, is adopted in the present article. No special model is used
for the loss mechanism, but this mechanism is assumed to have
a large number of densely-spaced energy states.

The approximations with respect to the loss mechanism that
underlie the concept of dissipation are discussed. These approxi-
mations are then applied to the analysis, and a differential
equation for a coordinate operator of the harmonic oscillator is

obtained which has the formal appearance of the Newtonian
equation of motion for a driven damped harmonic oscillator, the
driving term being an operator referring to the loss mechanism.
The presence of the driving term is responsible for the difference
between the present theory and that of the first method mentioned
above. A solution of the differential equation for the coordinate
operator is given explicitly. An examination of the physical sig-
nificance of the solution shows that the driving term is responsible
not only for the thermal fluctuations which are due to the loss
mechanism, but also for the proper commutation relationship of
the conjugate coordinates of the oscillator and for its zero-point
fluctuations,

A generalization of the solution to provide for a classical driving
force and coupled atomic systems is given. The results are then
restated in a form that refers to the loss mechanism only through
the two parameters by which it is usually described —the dis-
sipation constant and the temperature.

INTRODUCTION

QST quantum-mechanical analyses deal with
microscopic phenomena, and since dissipation

is a macroscopic concept, there has been little interest,

during the historical development of quantum mechan-
ics, in a formalism for systems with dissipation. There
is, however, a type of problem, which has acquired
considerable interest in recent years, in which dissipa-
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tion does enter significantly: the quantum-mechanical
analysis of the radiation field in a microwave cavity. A
quantum-mechanical treatment of the field is essential
in the analysis of phenomena related to spontaneous
emission of microscopic systems (such as molecules)
which are coupled to the field; furthermore, any
treatment of the field, whether classical or quantum
mechanical, must consider cavity losses, in general,
since they are by no means negligible.

As is well known, the quantum mechanics of the
radiation field of a mode in a lossless cavity is the same
as the quantum mechanics of a harmonic oscillator. If
we consider a single mode of the cavity, with frequency
cu/2m. , and if we express the electric and magnetic' fields

as
E= —4mcP(t)u(r), H=Q(I)VXu(r), (1)

where u(r) is a normalized function describing the
spatial dependence of the cavity field, then Q and P
are canonically conjugate coordinates satisfying the
commutation relationship [Q,Pj=i7i; and the Hamil-
tonian for the radiation field is

H =2irc'P'+ (co'(Sire') Q', (2)

the harmonic oscillator Hamiltonian (except for the
trivial matter of the constants). '

There has been some discussion of dissipation in

quantum mechanics in general, and with reference to
the harmonic oscillator in particular. The introduction
of dissipation into quantum mechanics has followed,
broadly speaking, two different methods: One method' '
consists of starting with the classical Newtonian equa-
tions of motion for a system with dissipation (the dis-

sipation being due to a velocity-dependent force),
finding a Lagrangian which leads to these equations of
motion, and then proceeding to quantization by con-
ventional formal methods. The other method consists
of considering the dissipation as being due to the
coupling of two systems, ~ '—the undamped harmonic
oscillator, and the system which produces the damp-

ing—and then attacking the problem by an approxi-
mation method.

The first method has the attractiveness of a clean-cut
formalism leading, in the case of the harmonic oscil-
lator, to exact solutions, which were obtained by Kerner'
and by Stevens. ' An exact solution is possible in this
instance because the classical equation of motion of the
damped harmonic oscillator may be solved exactly, and

' For the mechanical oscillator of mass m, replaces 4n-c' by m '.
No distinction will be made between mechanical and radiation
oscillators; the Hamiltonian of Eq. (2) will be used throughout.
The language will refer either to the oscillator or the 6eld, as
convenient.

2 E. Kanai, Progr. Theoret. Phys. (Kyoto) 3, 440 (1948).
3 W. K. Brittin, Phys. Rev. 77, 396 (1950).
4 V. W. Myers, Am. J. Phys. 27, 507 (1959).
~ E. H. Kerner, Can. J. Phys. 36, 371 (1958).' W. K. H. Stevens, Proc. Phys. Soc. (London) 72, 1027 (1958).
7 H. S. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
J. Weber, Phys. Rev. 90, 977 (1953).

9 I. R. Senitzky, Phys. Rev. 115, 227 (1959).

formal quantization merely has the effect of converting
the classical variables into operators, leaving the equa-
tion intact. The solution, therefore, remains formally
the same, but must now be interpreted as an expression
in operators. It will be shown in the present article
that this method is unrealistic, and cannot describe a
true physical system with quantum-mechanical proper-
ties.

The method we shall use is the second, in which we
consider a lossless harmonic oscillator coupled to a loss
mechanism. Callen and Welton' considered the proper-
ties of loss mechanisms from a quantum-mechanical
viewpoint, but were not interested in a detailed analysis
of the properties of the conservative system which is
coupled to the loss mechanism. Weber' used the results
of Callen and %elton to calculate the energy of a
damped harmonic oscillator. A quantum-mechanical
forma1ism for the field in a lossy cavity, which per-
mitted a demonstration of its quantum-mechanical
consistency as well as provided for the inclusion of
driving mechanism and coupled atomic system, was
developed in reference 9. However, this development
utilized a special model for the loss mechanism, and the
formalism made explicit reference to this special model.

It seems that the subject of dissipation in quantum
mechanics, with reference to the harmonic oscillator,
is of sufficient fundamental interest to justify the
development of a general formalism which contains
only the experimentally observable parameters of the
loss mechanism. It is the purpose of the present article
to develop such a formalism without recourse to special
models, and, incidentally, to show that the method of
formally quantizing the classical equations of motion
for a damped system is invalid. For the sake of com-
pleteness and intelligibility, a few of the ideas expressed
in reference 9, where the question of loss was incidental
to other matters, will be restated with somewhat dif-
ferent emphasis. The concept of dissipation is examined
in Part I. The problem is formulated in Part II, where
explicit expressions are derived which constitute the
solution of the problem. In Part III the physical
meaning of the solution is investigated and contrasted
with results of the formal quantization of the classical
equations. In Part IV an extension of the above solution
to provide for a driving force and coupled atomic
systems is given. Finally, in Part V the results are
restated so as to refer only to the loss constant and
temperature of the loss mechanism.

Before proceeding with any calculatioos, it will be
profitable to discuss the meaning involved in the usual
concept of dissipation. When dealing with dissipation
in an electrical system specified by a value for the
resistance, or dissipation in a mechanical system speci-
fied by a value of the coefficient of friction, we are
really concerned with the interaction of two types of
systems: One is a rather simple system —in the present
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case, the harmonic oscillator —which we want to
describe completely, and the other is an extremely com-
plicated system —the loss mechanism —which we want
to describe very incompletely, as in thermodynamics,
for instance. We are interested in the loss mechanism
only to the extent that it affects the behavior of the
oscillator, and even in this respect the interest is limited.
We must concern ourselves only with the lowest order
interactions which produce loss, since description of
higher order interactions requires a more detailed
knowledge of the loss mechanisms than that provided
by a single dissipation constant. Underlying the con-
ventional concept of dissipation is the understanding
that the loss mechanism is affected only slightly by its
interaction with the oscillator; the oscillator, on the
other hand, may undergo large changes due to the loss
mechanism. Thus, the loss mechanism may be treated
by a perturbation-theory approach, but the oscillator
may not.

The analysis in Part II will tend to confirm the pre-
ceding statements. This analysis may therefore be
viewed in two ways: as a derivation of a quantum-
mechanical formalism involving dissipation that is
based on the above ideas, or as a demonstration of the
necessary approximation with which we must regard
the loss mechanism in order to obtain relationships
consistent with the conventional description of dis-
sipation. " From either point of view, however, it is
important to note that if we find that eRects of a given
order are necessary to obtain results which amount to
dissipation, we must consider atl eRects of that, or
lower, order if we are to have a consistent formalism.
Thus, we will see that when considering loss, we are
also forced to consider an additional phenomenon, which
is of great importance from a quantum-mechanical
viewpoint, namely Quctuations.

One can also see the necessity of considering Quc-

tuations on physical grounds, The dissipation which
the oscillator experiences may be regarded as due to a
reaction of the loss-mechanism on the oscillator, the
former having been excited by the oscillator in the first
place; but if the loss mechanism can react on the oscil-
lator, it can also act on the oscillator because of its own
fluctuations, and there is no a priori reason why this
eRect may be ignored in a real physical system. In
other words, a coupling mechanism works in ei.ther
direction. In classical mechanics one might conceptually
create a situation in which there are no Quctuations by
considering the absolute temperature to be zero, thus
divorcing dissipation from Auctuations; but in quantum
mechanics there are still the zero-point Quctuations,

' The mathematical development will lead from the approxi-
mations, which we assume to be inherent in the concept of dis-
sipation, to the usual description of dissipation; that is, it will
be proven that the approximations are suKcient to obtain con-
ventional dissipation. There will be no mathematical proof that
the approximations are necessary, but it will be easy to see that
these are the simplest and most reasonable approximations
leading to the required result.

which cannot be eliminated. Therefore, dissipation and
Quctuations must be considered together. Only then
can a consistent quantum-mechanical theory be
developed.

YVe consider a harmonic oscillator coupled to a loss
mechanism, the combined Hamiltonian being

H=H„,+Hi+nI'F, (3)

"I.R. Senitzky, Phys. Rev. 95, 904 (1954).

where H„, is the Hamiltonian of Eq. (2), H& is the
Hamiltonian of the loss mechanism (which we will not
specify explicitly), I' is the coordinate of the loss
mechanism through which the coupling to the oscillator
takes place, and o. is the coupling constant. It does not
matter whether the oscillator is coupled to the loss
mechanism through the Q or I' coordinate (or both),
since the two are essentially symmetrical. In the present
case, I' is chosen because in a cavity the loss mechanism
is usually coupled to the electric field. The only essential
assumption we make about the loss mechanism is that
it has a large number of closely-spaced energy states.
We make another assumption which is not essential,
but is convenient and holds for most loss mechanisms:
The diagonal matrix elements of I', when the loss
mechanism is free, are zero. This assumption, in clas-
sical language, corresponds to the requirement that
there be no force exerted on the harmonic oscillator by
the loss mechanism which is independent of the time
and of the state of the oscillator, or that the loss
mechanism in a cavity have no permanent polarization.

The quantum-mechanical formalism to be used is
that of the Heisenberg picture, in which the operators
contain the time dependence and the wave functions
are constant, corresponding to the initial states of the
systems. The initial operators are defined as the oper-
a,tors at 1=0 of the uncoupled systems. (That is, the
interaction is turned on at t =0.) We consider the initial
state of the oscillator in general terms. It may be an
energy state or a superposition of energy states. If it
is a classical-type state, " then (P'(0)) will not differ
by much from (P (0))', and likewise for Q(0). Whenever
the results obtained require the use of the initial oscil-
lator state, they will be given in terms of the expectation
values of the initial operators. In considering the loss
mechanism, however, we want to be more explicit.
Obviously, we are not interested in an arbitrary initial
state of the loss mechanism, but rather in a thermal
type of state which may be described by a temperature.
This description is most conveniently given by means
of a diagonal density matrix. In the energy representa-
tion of the uncoupled loss mechanism, we take this
matrix to be

~e Ea/kr—
where
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P(t) =P&') (t) — dtr I'(ir) sino&(t —tr), (9)
4nc' ~0

Q(t) =Q&') (I)+n dtr I'(tr) coso&(t —t&), (10)

where P")(l) and Qls) (l) are expressions for the opera-
tors of the loss-free oscillator and include the initial
operators:

Pl" (/) =P(0) coso&t —(o&/4mcs)Q(0) sino&t,

Q&') (t) =Q(0) coso&t+ (4mc'/o&)P(0) sinews. (12)

In order to be able to solve Eqs. (9) and (10) explicitly,
we need an expression for I'(l). From Eq. (3), we have

r (l) = (zh)-'[r (l),H, (l)], (13)

Q f'

H, (l) =H, (0)+—~ dl, [H, (l,),r(~,)]P(),,). (14)
z5 0

Substituting from Eq. (14) int, o Eq. (13), we obtain

r (&') = (st)- [r (i),H, (O)]

cz

+— «.[P(i),[P(lr),H&(~ )]P(i.)1 (13)
5 ~0

An integral form of this equation, as can easily be
verified by differentiation, is

r (l) =r «) (i)+— der
&' ~o &o

dt exp[(s/&s)H &" (t—t )]

X [I'(tr),[r (ts),H&(ts)]P(ts) ]

Xexp[ —(i/5) H& &s&
(&!

—ir)], (16)

where I'&s)(t) is the operator of the uncoupled loss

1he expectation value of any matrix 0 referring to the
loss mechanism is given by

(0)=Trace Op=+„O„„p„„. (6)

It should be noted that all our operaI;ors operate on
the state vectors of both the loss mechanism and the
oscillator. The representation in the loss-mechanism
space is, as specified above, the energy representation
of the uncoupled mechanism. The representation in the
oscillator space need not be specified for our purposes.

Ke proceed now to calculate the time dependence of
the operators P and Q. From Eqs. (2) and (3), we

obtain as the equations of motion

P = —(o&'/4s c'-)Q, (7)

Q =4s c'P+nI',

which may be expressed in integral form as'

mechanism having matrix elements

P . .(o) (l) —I . , (o) (0)&~~475 I', e~~s75

with
o&;;=—(P., P.;)/—fi.

(17)

Substituting from Eq. (16) into Eq. (9),we obtain

GOCL f
P(i) =Pi»(l) —

I dtr I &o)(it) sino&(i —tr)
4mc' "s

([r'o'(l, ),[r"'(i,),H, 'o'(i, )]1)P(l,). (2o)

We carry out the approximation in two steps. Since,
as previously mentioned, there is an assumption under-
lying the concept of dissipation that the loss mechanism
is disturbed only slightly, we can approximate I' by
P l') and H& by H~&') under the integral sign in Eqs. (16)
and (18)." This approximation, incidentally, makes

"One might, at first glance, think that it is inconsistent to
regard the last term in Eq. (16) as a small perturbation of F while
not regarding the last term of Eq. (18l as a small perturbation
of I'; and, indeed, if the magnitude of cz were the only relevant
consideration, there would be an inconsistency. However, there
is another important consideration, namely, the density of states
of the loss mechanism, as may be seen from the following quali-
tative argument: The contribution to the double commutator in
Kqs. (16) and (18} comes mainly from the off-diagonal matrix
elements of F. The effect of the field on these off-diagonal elements
is determined, ap roximately, by the off-diagonal elements of
tF(/I), LF(/2), H~(t2) ]. The effect of the loss mechanism on the
field, however, is determined by the diagonal elements of this

o&rr2 ~
t p 51 ) ts

dis i dis sino&(I ir)
4~c')s' "s

Xexp[(s/A)Hg~s) (i,—I,)]
X [&(4),P'(4),H&(4)]P(l ) ]

Xexp[—(&/&)K") (4—4)]. (18)

Let us discuss the physical meaning of the last two
terms on the right side of Eq. (18). The I'&') term
obviously gives the effect on the oscillator of the Quc-
tuations of the (unperturbed) loss mechanism, which
were previously discussed. Although the expectation
value of this term vanishes, the expectation value of
its square does not; and, as will be shown subsequently,
it accounts for the effect of both the thermal and
quantum-mechanical fluctuations. The last term con-
tains the reaction of the loss mechanism to the field
and is responsible for the loss; but the last term contains
much more than that: It contains all the details of the
interaction between the oscillator and loss mechanism
except the first order eGect of the loss-mechanism
Quctuations. In accordance with our previous discussion,
this exact treatment is not what we want in order to
describe dissipation; we therefore perform an approxi-
mation on this term which amounts to replacing

exp[(s/A)H, &') (&,—&,)][r(&,),[r (l„H,(l,)]P(i,) [
Xexp[ —(i/&s)H&&') (&!t

—l )] (19)



I. R. SEN ITZKY

Eq. (18) linear in P, which is necessary in order to
obtain linear dissipation, or a dissipation constant.
Furthermore, we ignore loss-mechanism quantum-
mechanical effects of higher order than the second; or,
to put it another way, we ignore the quanl;um-mechan-
ical properties of the loss mechanism in terms of higher
order than the second. This means that we can bring
I' through the commutator bracket and exponential
operator out to the extreme right (or left), and replace
the remaining commutator by its expectation value
times the unit operator. " The exponential operators
then cancel, and we have (19) changed into (20).
Loosely speaking, what we have done in the second step
of the approximation is to retain only the classical
content (as far as the loss mechanism is concerned) of
the last term in Eq. (18); we might say that the second
term on the right side gives us all the quantum-
mechanical effects we need to describe dissipation, and
the last term gives us the classical loss.

Ke proceed now in a straightforward manner. From
Eq. (17) we obtain

p' 0 (t&) I T 0 (t2) Ili(0

=2 Pi, I
I';i, I'fi~;k cos~, i, (tr —t~), (21)

which, with Eqs. (4) and (6) yields

=2A p, , ~ e E"~rII', i, I'Bar, i, costa, i, (ti—t2). (22)

With the approximation specified by Eqs. (19) and
(20), Eq. (18) becomes

The t& and 32 integrations may be carried out immedi-
ately, yielding

coo, 'A
1.= —

~ dt's P(ti)F(t —ti),
2xc'A "p

where

F(r) =P e z'ii rI f

(25)

cos2 (Wig —N)r slI12 ((aip+co)r

cos-,' (co,i,+co)r sin-,'(a&, i,
—~)r-

(26)

where p(E) is the density of states in energy space.
Setting

we have

E= , (E,+Ei), &u —=co;, i (28)

)00 pCO 00 GO

dE, dE~ ~ I MOP dE
0 4p —,'h~'0 p

+ Mar' dE= JMa)' ~dE. —(29)
f
—00 J,—s 503

Because the energy levels of the loss mechanism are
closely spaced, the summation may be replaced by an
integration:

goo
00

t (E')dE* I t (E.)dE~,
j,k p p

MO! f
F(t) =F(oi(t) — I' dt's I'o)(ti) since(t —tr)+I. , (23)

4~c2 j
where

(on2A t ptl pt2

p e s' " Il''&I'~'& I dt, ' dt, I

2 cr', .
)(P(t3) sin~(t —ti) cos~;q(t2 —t3). (24)

commutator, since these diagonal elements are very roughly
proportional to the density of states p {for tl sufficiently close to t2),
while the off-diagonal elements do not increase significantly with
the density of states, Thus, the last term in Eq. {16)is propor-
tional to a in the off-diagonal elements {and these are the ones
which are important in the double commutator), while the last
term in Eq. {18) is proportional to Q.p. This is essentially the
reason that a loss mechanism responsible for the usual type of
dissipation must have a large density of states. One can also see
from ordinary time-dependent perturbation theory that a large
density of states corresponds, for a given energy transfer, to a
small transition probability per state or to a slight change in the
occupation numbers of the energy states. See also Reference 9,
where the argument is made much simpler and more quantitative
by the consideration of a special model for the loss mechanism.

'3 The replacement of the operator by its expectation value is
justified by the fact that all our final results {but not necessarily
the intermediate steps) will be expectation values with respect
to the loss mechanism; and since the term affected involves only
second and higher order interactions, only the higher order quan-
tum-mechanical effects are neglected in the 6nal result.

Thus,

F(r) = M(v' dE p(E+-', 5(o') p(E—-', A(u')

y exp L
—(AT)

—'(E+-', l't(u') )I'2 (E+—', A(u', E ,'fuu')——
cos-', ((0'—s))r sin-,' (a)'+co) r

cos-', ((u'+(u) r sin-', (co' —(a) r
(3o)

where I'2(E;,E&) is a function obtained by averaging

I
I', i, I' for all states i and k lying in small intervals about

E; and Ei„respectively. Consider now the integration
with respect to E in Eq. (30). We have

dE p(E+ ,'Ii(u') p(E ',fico')———
~-*,a ~

Xl"(E+-'4)' E 'I'ice')e ~"r—-
=exp( —5M'/2tiT)B(i0'), (31)
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where

B((d')—= t dE p(E+~') p(E)I"(E+h(d', E)e ~'(
0

and likewise

dL' p(E+25(o') p(E—-', h(o')

Xi'2(E+2A(u', E ,'ho&')—e —~&"v

the damping,

~damped=~[1 (P/2~) ]*q (41)

we can write, as the approximate solution of Eq. (38):
(32)

(dn
P=e *("P(0) — df, I"(o)(t,)e **('(' ")

XC»0
Xsincu(t —tq). (42)

In an entirely analogous manner, we obtain

=exp(Sar'/2kT)B( —(u'). (33)

In the co' integration, the contribution to I&'(r) comes
mainly from the two neighborhoods about cv'=~co.
We therefore obtain

P(r)=j M~'[1 —exp( —&&I(&'/kT)]

0
cos-', ((0'+a)) r sin-,'(ca' —(u) r

XB(&o')

Q=e l'sQ(o)+()( ~t dt) I'(0)(I&)e **s(' '» cos~(t —t~). (43)

Speaking in terms of operators, the first term of both
solutions gives the damped initial oscillation, and the
second term gives the driven oscillation. It is to be
noted that Eqs. (42 )and (43) explicitly exhibit P and

Q as operators with respect to both the oscillator and
the loss mechanism. "

——,'v tr&[1—exp( —A&a/kT)]B(sg) coscur, (34)

where we have assumed that B(ar') is a slowly varying
function in the neighborhood of co, and that co))T
(For r=t t&, the las—t assumption can hold only if
t))co '.) Going back to Eq. (25), we have (r«))=o (44)

We will now examine in detail the physical signi-
ficance of Eqs. (38), (42), and (43). If we take expec-
tation values of both sides of the equations, the driving
term vanishes, since, as mentioned earlier,

where

t

I = —P did P(I() costa(I —fy), (35)

8—= ((m'/4c"-)AB ((o)[1—exp (—A(u/kT) ]. (36)

due to the fact that I' is an off-diagonal matrix. The
expect(Jtioe value of P, therefore, satisfies the classical
equation for a damped harmonic oscillator, with P as
the dissipation constant. In the case of a mechanical
oscillator, P is the coefficient of friction (per unit mass),
and in the case of the electromagnetic field in a cavity,

Equation (24) may therefore be written as
P /C(Q)l (45)

MA f
P(t) =P( )(I)— ~ dI) I'( ) (t&) since(I —Iz)

4n.c' "0

P+pP/GPP = —(QPn/47rc') I'"'(t), (38)

where we have made use of the differential equation
for the uncoupled harmonic oscillator,

This is an integral equation for P(t) of the Volterra

type, and can be expressed in more familiar form as a
differential equation:

where "Q" is the quality factor of the cavity. Thus, we
have the conventional picture of dissipation for the
expectation values of the coordinates. [The expression
for P in Eq. (36) is equivalent to the result derived by
Callen and Welton. ']

Let us now look at the commutation properties of Q
and P. We will restrict our interest in [Q,P] to the
oscillator alone by taking the expectation value of the
commutator with respect to the loss mechanism; that
is, we will average the commutator over both the
quantum-mechanical and thermodynamic ensembles of
the loss mechanism. We denote this by the subscript
"osc" to the commutator bracket. Since, of course,

p(0)+(0&P(0) —0 (39) (46)

(e/ )«1, (40)

and ignoring the slight frequency shift introduced by

Equation (38) is the well-known differential equation
for a driven damped harmonic oscillator. Assuming that

we have, from Eqs. (42) and (43),

"When we take expectation values, we can do so with respect
to either system only or with respect to both. Unless specified
otherwise, the term "expectation value" will imply the latter.
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where

MQ
S—=—

~ dt~ dt2 exp[—Pt+-', P(t&+t2) j
%re'~p &p

since the energy has an additional signi6cance of its
own. From Eq. (2),

(H...)=2~c'(P')+ (oP/8~c') (Q')

X([r&0&(t,) r&o&(t,)])cos~(t t,) sin~(t t,) (48) Equation (42) and (43) can be used to evaluate (P')
and (Q'). Thus

From Eq. (17) one easily obtains

([r'o'(t, ),r' '(t, )3)
where

(P'-)=e t"(P&'&')+U (55)

so that

=2iA Q e ~'~ ~r; ['sin(o;p(tg —t2), (49) T=
0) 0! t' f

dt& ' d4 exp[ —Pt+-'P(4+4) j
32~'c4 ~ o "()

({rN&(tq),r&"(t2))) sinu&(t —t~) since(t —t2),

dE~ p(E~)
~

dEI. p(E~)
0

Xe ~~ I~rr2(E;', E~) exp[ —Pt+~P(t~+t2)]

XcosN(t ty) SIIlco(t 4) sill(dye(t], 4) ~ (50)

and where the symmetrized product ({A,B) =AB-
+BA) is used for convenience. Since

({r&'& (t&),r &'& (tp) ))= 2A Q e ~"i~
I r,, ~

'

Xcosco, q(ti —t2), (56)

This integral is evaluated in Appendix A with the result
that U=

(51)S= i'(1—e—s').

We therefore have, from Eq. (47),

(0Qc4 P P f
dt's dt2 dE; p(E~) ' dEg p(Eg)

16' c ~p

Xc z;iver exp[-—Pt+r'P(tg+t~)$r'(E E~)

[Q(t),P(t)j...=t5. (52)

We now see part of the significance of the driving
term [the r &'& termj in Eq. (38). If it were absent, then
S would be zero, and our commutation relationship
would be

[Q(t),P(t)]=t&c ", (53)

which means that the Heisenberg uncertainty principle
could not apply, and a correct quantum-mechanical
formalism would be impossible. This is, in fact, , the
case in the work of Stevens' and of Kerner. 5 They
start with the classical equation of motion [Eq. (38)
without the r&'& term( for the operator P, and therefore
have no choice but to obtain the commutation rela-
tionship (53). Thus, we see very clearly that while the
classical equations of motion follow from the quantum-
mechanical ones by taking expectation values of the
operators, we cannot, in the case of systems with dis-
sipation, derive quantum-mechanical operator equa-
tions from the classical ones. Incidentally, it should be
noted that the operator properties of P and Q in both
the oscillator and loss-mechanism spaces are needed in
order to obtain the correct commutation relationship.

Further insight into this matter is gained by con-
sidering fluctuations of P and Q, a significant aspect of
which is their (formal) determination of the spon-
taneous emission of microscopic systems coupled to the
cavity field. The fluctuation of an observable corre-
sponding to an operator 0 is given by (0')—(0)'. In
the case of the harmonic oscillator, the Quctuation of
the coordinates can therefore be obtained from the ex-
pectation value of the energy. We calculate thelatter,

so that

her 1+exp( —It(o/kT)
U= (1—e—t"),

8mc' 1—exp( —A(u/kT)
(58)

2mc (P')=2m. c'(P& &')e &'

1+ exp (—l'ta)/k T)
+ fg~ (1 c Pt)—. (59)

1—exp (—ko/k T)

The evaluation of (Q-') is carried out in exactly the same
manner, and the term in (aP/8sc')(Q') due to r "~ turns
out to be equal to the last term in Eq. (59). (This
equality means that the magnetic energy is equal to
the electric energy when averaged over a cycle, a result
to be expected in view of our approximation P/~&&1.)
We therefore have

(H...)= (H.„&'&)e—~'

+5&u{~2+[exp(A&o/kT) —1) ')(1—e t"). (60)

It will be instructive to separate the last expression
into several parts and discuss them individually. The
energy obtained contains both energy due to the signal
which may have been present originally in the cavity
(and which is determined by the initial state of the
radiation field) and fluctuation energy. Any initial
signal energy present is contained in (H„,&") and, as
evident from Eq. (60), will be damped out like e &',

exactly as it is classically. We thus have a further

Xsmm(t —ty) slIlco(t t2) cosa),y(—tg —t2). (57)

The expression for U is evaluated in Appendix B. The
result, averaged over a cycle of the oscillator frequency,
ls
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&cpLexp(kcplkT) —1$ ', (62)

which is in accordance with Planck's radiation law. "
We have now verihed that our formalism both satis-

fies quantum-mechanical requirements and leads to the

"I.R. Senitzky, Phys. Rev. 111,3 {1958),Eq. (18}."It is interesting to note that expression (62) immediately
leads to a form of the Johnson-Nyquist noise formula. The band-
width of the cavity is P, and the power dissipation in the loss
mechanism is P times the energy in the cavity. The (noise) power
per unit bandwidth coming from the loss-mechanism fluctuations
(in the steady state) is therefore equal to the energy in the cavity,
which for Ace&(kT reduces to kT.

illustration that our analysis leads to the conventional
type of dissipation. However, (IX„.&Pi) contains two parts:
the initial signal energy and a second part, 2Aco. The
latter is the zero-point energy, or, as it is commonly
called, the vacuum Quctuation energy. '~ Subtracting
the signal energy from the total energy, we obtain

(Icosa)iiuctuation= s ~&op& + 2 ~oi (I & )
+Iio&Lexp(koi/kT) —1j—'(1—e—S'), (61)

where we have intentionally written the first. two terms
on the right side separately, although they add up to
2 ESCA.

It is important, for our purpose, to note where
the several contributions to the fiuctuation energy
come from. Referring to the right side of Eq. (61), and
retracing its derivation, we see that the Grst term
comes from the initial Geld and the last two terms come
from the loss-mechanism driving term. To put it
another way, if the right-hand side of Eq. (38) were
zero, the last 1:erms in Eqs. (42) and (43) would be
zero, and the only term we would have on the right
side of Eq. (61) would be the first one. In that event,
the vacuum Quctuation energy of the oscillator would be
damped out completely, and, just as we saw from the
commutation relationships, we would be left with a
classical oscillator —an unfortunate situation indeed,
if we want to calculate spontaneous emission of atomic
systems in the cavity. The second term on the right side
of Eq. (61), which comes from the loss mechanism,
supplements the first term so as to maintain a constant
value of ~ken for the vacuum Quctuation energy of the
field. We can say' —and this is purely formal, of course—
that as the initial vacuum Quctuations of the field are
damped out, the Quctuations of the loss mechanism take
over and drive the Geld. Ke note that, as in the case of
the commutation relationships, we utilize the operator
properties of P and Q in both the oscillator and loss-
mechanism spaces to obtain the correct zero-point
Quctuations.

The last term in Eq. (61) is obviously due to the
thermal Quctuations of the loss mechanism. Since our
initial conditions amounted, effectively, to turning on
the interaction between loss mechanism and Geld at
time t=0, the thermal energy in the field approaches,
with the characteristic relaxation time 8 ', the steady-
state value

conventional description of dissipation. We have also
seen that the driving (or fluctuation) term in Eqs. (38),
(42), and (43) is essential from a quantum-mechanical
viewpoint, and, incidentally, gives the effect of thermal
fluctuations. It is clear that Quctuations may not be
separated from dissipation in any quantum-mechanical
analysis, and this is, in essence, the reason for the
invalidity of the treatments which start from the clas-
sical equation of an oscillator with "pure" dissipation. "

npP f(1), (63)

where f(1) is a prescribed function of l:he time. An
atomic system (molecule) coupled to the field is included

by the addition of the terms

n Py +H,„, (64)

where H is the Hamiltonian of the uncoupled system
and y is the coordinate through which this system is
coupled to the field. Equations (42) and (43) then
become

P= e I&'P&" d—tiLQF"'(ti)+npf(tr)
4prc' "p

+n„y„(tr)je '«' "& sinoi(t —ti), (65)

t

Q S ', P~Qioi+ 3 d"—iknF(ol (Ir)+as f(Ii)
0

+u 7 (tt)e l~&' "& cosoi(t —It). (66)

The integration of the f(ti) term may be carried out
explicitly. However, y (Ii) is one of the unknown
operators, just as P and Q are, and Eqs. (65) and (66)
become integraL forms of two of the equations of motion.
The other equations of motion do not involve the loss
mechanism explicitly. '

V

So far we have used the coupling constant n, the
matrix elements F,s, the density of states p(E), and the
temperature T to specify the behavior of the loss
mechanism. The use of these quantities has served to

"K. %. H. Stevens and B. Josephson, Proc. Phys. Soc;
(London} 74, 561 {1959),mention brieily, in an article based on
the results of reference 6, that M. H. L. Pryce has objected to the
omission of "some means whereby the oscillator can acquire
energy from the fluctuations of the dissipative system. "

IV

It is not dificult to extend the formalism to provide
for a driving force and for atomic systems coupled to
the field. This extension is the central problem in
reference 9, is discussed there in detail, and will merely
be summarized here in the present context. Going back
to the Hamiltonian of Eq. (3), we add whatever terms
are needed, A prescribed, classical driving force is
obtained by adding a term
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illuminate the processes involved in the interaction
between the oscillator and the loss mechanism; but,
just as we do not need a complete description of the
behavior of the loss mechanism, we do not need the
full set of parameters. Experimentally, our knowledge
of the loss mechanism usually consists of information
about the loss constant P and the temperature. In
principle, one should be able to construct a formalism
requiring nothing more. We therefore reformulate the
formalism so as to involve only P and T.

The basic equation for the damped harmonic oscil-
lator may be takento be Eq. (38). In this equation the
only reference to the loss mechanism is through the loss
constant P and the operator ccr "'(t). There is really not
very much we need know about the latter. We. must
know that it commutes with the operators of the
undamped harmonic oscillator; we must know its
expectation value; and, finally, we must know the
expectation value of a product of two of these operators
evaluated at different times, that is, o.'(r «) (ti)r «) (t2)).
These results are the only ones which we have used in
our analysis and which are needed to calculate com-

mutation relationships and expectation values of fields

and energies. In accordance with our approximate
scheme (which is inherent in the concept of dissipation),
it is evident that, generally, no expectation values of
higher order products than the second are necessary,
because as soon as we obtain a quadratic expression in
nl'&", we replace it by its expectation value with respect
to the loss mechanism times the unit operator.

Equation (44) gives us the expectation value of
c&.r& &(t). For the expectation value of the product, we

have, from Eqs. (4) and (17),

(r"'(t )r"'(t ))=A 2 e "'"'Ir 'I'e'" "'" "'

and (43) and in the previous calculations involving
([r&'&(t ),r&'&(to) j) and ({r«)(t ),r"'(t ))). We can
therefore write

(r«'(t )r"'(t ))

=AAB(co) exp( —l'ico/kT) dco'e'~'&'~ '»
0

00

+ dco'e '"'&' —"& . (69)

Using the definition of P given by Eq. (36), we have

n'(r «&(t,)r «) (t,))

4e'AP
exp (—5&o/k T)

co[1—exp (—kco/k T)j
dco'e '"'&'&-'» -(70)

f
dco e'"=i&P/~+irt')(r),

0

(71)

where &P/r indicates the principal value when an inte-
gration is made with respect to r, to write the right side
of Eq. (70) in (formally) closed form.

We summarize our results. The operator equation for
a damped harmonic oscillator in which the damping
time is much larger than a period may be written as

Our purpose has now been accomplished. All the
information we need about the operator nr«)(t) has
been specified in terms of 8 and T. If we like, we can
make use of the relationship"

=A dE p(E ) dE&,p(E&,)
o "o

Xe E /kTr2(E. E&)e' g&t—&—cg)

Using Eqs. (28) and (29), we obtain

(r"'(t )r"'(t ))

P(t)+PP(t)+cooP(t) =D(t),

(D(t))=o, (73)

where D(t) is an operator referring to the loss mecha-
(67) nism. It commutes with the operators of the undamped

oscillator and is defined by the following two properties
(no others are needed):

=A Itdco'B(co') exp( —hco'/kT)e'"'&" '»
J0

co%/ &P

(D(ti)D(t ))=
~,—4

+2irl')(ti —to)

~0

+) Mco'B( —co')e'"'&" "& (68) 1 1
X —+ (74).2 exp(kco/kT) —1

Now, in all calculations in which (r«'(ti)I'& '(to)) is to
be used, there is a subsequent integration over t~ and
t2, and in these integrations there is a strong weighing
factor in favor of co' co, as can be seen from Eqs. (42)

8 being the dissipation constant and T the temperature

' See, for instance, W. Heitler, The QNaetzsm Theory of Eadia-
tzoe (Oxford University Press, New York, 1954), third edition.
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of the loss mechanism. "The solution of Eq. (72) is

t

P(t) =I'1'1e Is'+ J—dkiD(tt)e '*~1' '» sino&(I —tt), (75)

Because of the symmetric limits of integration with
respect to g, the first term in the square bracket of
Eq. (3A) drops out. Carrying out the 8 integration,
we have

and the corresponding expression for Q is

4xc'
Q([)—Q10)e-,pt d~rD(I1)e $s(—t tl)-

J,
XCOSco(t —Ii), (76)

where we have made approximations based on P/ar«1.
If the oscillator is driven by a "force" and is coupled to
other systems in the manner indicated by Eqs. (63)
and (64), we replace D(t) in Eqs (72), (75), and (76) by

D(I)- of(I) —Z -V-(I).
4mc' 4mc'
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APPENDIX 8
We now evaluate the expression for U in Eq. (5'7).

We make the same change of variables as that in
Appendix A, average over a cycle of the oscillator fre-
quency (which eliminates an oscillatory term in t), and

We evaluate the expressions for for S in Eq. (50) integrate over E. The result is
Introducing a change of variables specihed by

we have
g=tt+ts, g=tr —ts, (1A) &= dg ~

d ' &d '&( ').-si —:~&

128m'c' & " "s

dtt
o ~s

( p t p$ tIst ~2k

d4~-',
( dP dg+ dg ~ dg )

& o S g (s( ()J

XPi+exp( —Sco'/kT) j
XLeos(or —co')g+cos (co+co')g]. (6A)

I" Noting, as in Appendix A, that the main contribution
to the integral comes from co'~co, we have

Making use of Eqs. (28) and (29), we obtain

iconsA

dg Mo)' dE p(E+-', leo')

Xp(Z ——,'a~')r'(Z+-', am', Z——',k~ )

Xe~L—(Z+-;r ')/kr). -S1 —:~1

X t sino1(2I —$)+sino1gg sinto'g. (3A)
"It is interesting to note that the erst term in the curly bracket

of Eq. (1'4) is antisymmetric in ti —t2, while the second term is
symmetric. Thus, only the 6rst term contributes to the commu-
tator of D(ti) and D(t2), while only the second term contributes
to the symmetrized product. (D(t&)D(t&)) may be considered as a
correlation function for the fluctuations of the loss mechanism.
The quantum-mechanical fiuctuations can be separated from the
thermal fluctuations by setting 7=0.

)S~p )1+ezp(—ka1/kT) y

32~'" ~1—exp( —k /»)»

X J~ des fslno1g since g+coscog cos(o g$. (7A)
0

The o1' integration over the square bracket in Eq. (7A)
yields"

((P/g) sincog+z8(g) cos a&g, (8A)

Ace 1+exp(—Sco/kT)
U= (1-e-").

8acs 1—exp( —Sco/kT)
(9A)

and the subsequent straightforward integration over g
and P gives


