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Fundamental differential equations are derived under the
unrestricted approximation of electrical neutrality that admits
trapping. Applied magnetic field is taken into account. The general
transport equations derived hold without explicit reference to
detailed trapping and recombination statistics. Modified ambi-
polar diffusivity, drift velocity, and lifetime function, which
depend on two phenomenological differential "trapping ratios, "
apply in the steady state. The same diffusion length is shown to
hold for both carriers, and a general "diffusion-length lifetime"
is deQned. Mass-action statistics are considered for cases of (one
or) two energy levels. Certain "effective"—rather than physically
proper —electron and hole capture and release frequencies or
times that apply to concentration increments are defined, and a
restriction from detailed balance to which they are subject is
derived. Found widely useful is "capture concentration, " the
concentration of centers at equilibrium that are occupied times
the fraction unoccupied. Criteria are given for minority-carrier
trapping, recombination, and majority-carrier trapping, and for
"shallow" and "deep" traps. Applications of the formulation

include: the diffusion-length lifetime corresponding to the
Shockley-Read electron and hole lifetimes, and that for recom-
bination centers in the presence of (nonrecombinative) traps;
linear and nonlinear steady-state and transient photoconductivity;
the photomagnetoelectric effect; and drift of an injected pulse.
The small- and large-signal nonlinearities that may occur with
saturation of deep traps provide a single-level model for super-
linearity. Photomagnetoelectric current is found to be decreased
by minority-carrier trapping, through an increase in diffusion
length. A simple general criterion is given for the local direction
of drift of a concentration disturbance. With trapping, there may
be "reverse drift, "whose direction is normally that for the opposite
conductivity type. With solutions of one type obtained for drift
of an injected pulse, multiple trapping ultimately results in
Gaussian mobile-carrier distributions which spread as if through
diffusion and which drift at a fraction of the ambipolar velocity.
With solutions of another type, related to reverse drift is the
occurrence of local regions of mobile-carrier depletion which may
in practice extend over appreciable distances.

1. INTRODUCTION

HE space charge associated with carrier injection
in homogeneous semiconductors is frequently

quite negligible, and, in phenomenological transport
theory, implications of this local electrical neutrality
have been worked out in some detail. However, the
simple neutrality condition widely employed —that
of constant excess of one mobile-carrier concentration
over the other —is a' restricted one that applies as an
approximation in some cases. Upon injection, changes
generally occur in concentrations of fixed charges
associated with various impurities or crystal imper-
fections, including those on which equilibrium conduc-
tivity and those on which equilibrium lifetime, as a
rule, largely depend. In a general sense, these concen-
tration changes constitute trapping Extending res.ults
previously reported, ' this paper gives general ambipolar
theory based on the unrestricted neutrality condition
that admits trapping, with some theoretical appli-
cations to problems in transport and photoconduc-
tivity. 2

In Sec. 2, fundamental differential equations are
derived that take into account diffusion, drift, recom-
bination and trapping and include an applied magnetic
field. This section also contains: a specialization to the
steady state, which exhibits how trapping (of arbitrary
statistics) modiies recombination and the transport
processes; definitions of certain effective" frequencies
and times that properly characterize trapping and
recombination as they apply to concentration incre-

' W. van Roosbroeck, Bull. Am. Phys. Soc. 2, 152 (195'7).
2 For a more detailed and extended treatment with further

applications, see: W. van Roosbroeck, Sell System Tech. J. 39,
515 (1960).

ments above thermal equilibrium; certain fundamental
relations from detailed balance; and criteria for classi-
fying centers with respect to their trapping and re-
combination properties.

In Sec. 3, the general ambipolar formulation is
applied to investigate trapping in various connections.
From theory for the steady state, diffusion lengths and
lifetimes are evaluated, and the inhuence of trapping
on the photomagnetoelectric (PME) effect is deter-
mined. Small- and large-signal steady-state nonlineari-
ties are analyzed. A treatment of transient photocon-
ductivity is given; the present formulation provides
results of comparative formal simplicity. This treatment
involves a formalism that recurs in the theory of time-
dependent transport. An analysis is given of such
transport, namely, the drift with trapping of an
injected pulse.

2- GENERAL FORMULATION

The formulation is accomplished in two stages: In
Sec. 2.1, general diGerential equations for the transport
are derived along the lines of previous treatments. '4
These equations involve no specific reference to the
detailed trapping and recombination statistics. In Sec.
2.2, the formulation is completed with equations for
the time rates of change of concentrations of trapped
carriers.

2.1 The Transport Equations

The unrestricted neutrality condition is that the
total concentration of positive charges, the sum of the

3 W. van Roosbroeck, Phys. Rev. 91, 282 (1953).
4 W. van'Roosbroeck, Phys. Rev. M1, 1713 (1956}.

636



CURRENT CARRIER TRANSPORT WITH TRAPPING

divI=O, I=I„+I.,
which applies in regions containing no sources or sinks
of (total) current.

Hole and electron current densities that include
the effect, for small Hall angles O„and 8, of steady
applied magnetic field are given by'

I„=I„*+8,I,*Xk,
I.=I.*+8.I.*Xk,

where k is a unit vector in the direction of the magnetic
field and I„~ and I„*are defined by'

I,"=O.„E eD„gra—dp, —
I„*=o.„E+eD„gradn. — (5)

Equations (4) and (5) hold under the assumption of
Boltzmann statistics. They result in

—divi~= —div(O„E)+eD~ div gradp
—8~/grado. ~,E,kg =divI„= div(o. „E)

+eD„div grade+8„/grado. „,E,kg, (6)

in which the heavy brackets denote scalar triple
products.

The ambipolar continuity equation for m is obtained
by a procedure similar to that previously employed in

' W. van Roosbroeck, Bell System Tech. J. 29, 560 {1950).
tl See reference 4. Small Hall angles are assumed partly because

appreciable magnetoresistance is otherwise involved. As indicated
in this reference, arbitrary Hall angles (and injection levels) could
suitably be taken into account by theory involving the phenome-
nological magnetoresistance without added carriers. Note that
small or moderate magnetic field will generally not affect the
occupation probabilities for the traps.' The notation employed is consistent with that of references 3
and 4.

concentration p of mobile holes and the concentration
p of all fixed positive charges, is equal to the corre-
ponding concentration of negative charges:

m—=p+p=e+R.
For the total concentration m, two forms of continuity
equation may be written which are extensions of the
familiar (nonambipolar) continuity equations for holes
and for electrons that apply for no trapping:

Bm/8t= 8p/Bt+8p/8t= —e ' divI„+g —6t„
=Bn/Bt+88/8t=e ' divI +g—+, . (2)

Here, I„and I are the hole and electron current
densities, and the volume generation rate function g is
that for interband excitations. The volume rate S is
associated with trapping and recombination. It depends
directly only on the various concentrations and not
explicitly on coordinates and time; (R plus 8P/8t and
Bn/Bt, respectively, gives volume rates (R„and 6t„ for

p and n. The use of the same volume rate 8, in each
of Eqs. (2) is consistent with the neutrality condition
and with the condition'

the no-trapping case" except that, for the required
generality, p and e are treated formally as unrelated
variables: The respective forms of Eqs. (6) for divi~
and divI„are introduced into Eqs. (2). The two forms
for 8ns/Bt that result are then multiplied, respectively,
by 0 and 0~ and added, to eliminate divE; and E is
replaced by the expression obtained by solving for E
to the first order in Hall angles in

I=aE+e grad(D„e —D~P)+(8„0~+8„o„)EXk
—e grad(8„D~P 8„D„m)X—k. (7)

Fquation (7), the sum of the equations for I~ and I,
exhibits the respective drift, Dember, Hall, and PME
contributions to total current density. To simplify the
result for 8m/R, use is made of curlE=O; a time-
dependent contribution to magnetic field from time
dependence of I generally has quite negligible effect.
Use is also made of the proportionality of the hole and
electron mobilities p„and p to the corresponding
diffusion constants D„and D„ in accordance with
Einstein's relation.

The continuity equation for m that results' may be
written in the form'

&m/&t g+(—R = —e ' divi~ —e ' divi~„
—v„grade —v grad p, (8)

which exhibits current densities ID„and ID„ that
involve the diffusion of electrons and holes, respectively,
and velocity functions" v and v„ that give their
drift.

ID„=— eo '(o„D grade- .

+[8, ,'8(~„/~)]o„D„r—gd—ae Xk},

Ig)~=——eo '{O.~„gradp
(9)+L8.+-',8(~„/~)$~„D,gradP Xk),

v = ep„p—,~—'P/I 8—(a„/a—)IXkj,
v„=ep„p,o 'us/I+8 (o./o—)IXkj.—

Here 0=—8„—0„is the sum of the magnitudes of the Hall
angles. Tensor ambipolar diffusivities for electrons and
holes under the magnetic held may be written from
ID„and I~~. The vector-product contributions to these
current densities involve PME currents as well as the
combined action of the magnetic and Dember fields.
It is easily seen that the divergences of these vector
products vanish for the linear small-signal case; and,

8 This equation specialized to the case of 2 p =0 and no applied
magnetic field can be shown to be consistent with a continuity
equation for d p derived under the assumption of a common life-
time function for electrons and holes; E. S. Rittner, Photoconduc-
tivity Conference, edited by R. G. Breckenridge, B. R. Russell,
and E. E. Hahn (John Wiley R Sons, Inc. , New York, 1956),
Chap. IIIA.' Compare with Eq. (21) of reference 2.' In Eqs. {133)of reference 2, velocities v„and v„(written with
carets) are define which are for the linear small-signal case and no
applied magnetic field.
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containing t gradn, gradp, kg a,s a, factor, they vanish
also whenever the concentration gradients are collinear,
as in the no-trapping case, or in the steady state, or in
certain cases of simple Qow geometry.

The neutrality and continuity equations in conjunc-
tion with equations for the time rates of change of
concentrations of fixed charges at each of the various
trapping levels are equations equal in number to the
number of unknown concentrations. These equations
accordingly suffice as fundamental differential equations
provided I is a known function of the space coordinates
and time. If I must be determined from boundary
conditions, then use is made of the fundamental
differential equation, Eq. (3), which expresses the
solenoidal property of I. This may be written in terms
of E or electrostatic potential U as additional dependent
variable by use of Eq. (7); and I may then similarly be
eliminated from the continuity equation.

The current densities in ambipolar form obtained by
eliminating E may be written as

2.11 Formulation for the Steady State

A number of results for the steady state can be
established from the general diGerential equations
without specifying in detail the trapping and recom-
bination statistics. DiGerential trapping ratios

r„=dn—/dzn, r~= dp—/dm,

are introduced. These apply since, in the steady state,
n and p each depend directly only on total concen-
tration m of negative or positive charges. In the im-
mediate context, r„and r„will be considered simply as
factors which depend in general on m and which,
multiplying gradzn, give gradn and gradp, respectively.
They apply, of course, for any number of trapping
levels.

With Eqs. (14), it follows from Eqs. (8) and (9) that
the continuity equation for the steady state may be
written as

div(D' gradhzn) —v' gr adorn+ Dg hzn/r =0—, (15)

with

I=—=—eo. '(a.~D„gradn+oD~ gradp).
+0(a„o„/o')I&(k+eo '(e,o+—g„o „).

(a~D„gradn+o. „D~ gradp) &(k, (11)
and

AI= e'zz„zz„op 'a —'(no&p po& )I—
eo'(a~D„gradn—+a „. D~ gradp)

+ge'p, Zz a 'Lap '(a o
—a o) (no~p —pp&n)

—np(Ao/o o)'+Dnhp]I&&k+eo '(8~a„+8 o.„)
(o„D„gradn+o. .D„gradp) Xk. (12)

Subscripts zero denote equilibrium values, and An, Ap,
and Ao are increments above equilibrium; =n zp npisp

independent of conductivity. The current densities for
equilibrium carrier concentrations are given by

I„p——( ,a/aop)I+Oe'zz zz„n o-p 'I&(k,

I.o = (o.o/ao) I—He'zz. zz„n,zo-p
—'I &&k.

The current density I—= represents the amount by
which the electron and hole Row densities exceed the
corresponding drift flow densities under I/o. , the ohmic
contribution to the electrostatic field. The current
density AI is the current density of added mobile
carriers: For given I, it represents the amount by which
the electron and hole Qow densities exceed their values
for no added carriers. It is easily seen that the right-
hand member of the continuity equation, Eq. (8), may
be written as —e ' divAI —gep, „p„e,'o-0 ' curlI k, the
second term of which is a contribution from PME
circulating current, ' associated with diffusion under
the magnetic field.

in which D' and v' are modified ambipolar diffusivity
and drift velocity given by

D'= o'D1 r—„)D. „a„+—(1 r„)D o„]— .

(16)
=kTzz„lz„a'((1 r~) n+. (1—r—„)p],

v'=ez „I „a '{P(1 r,)n— (1——r.)p]I—
+8(e/o)[(1 r~)Iz n'+ (. 1—r—„)zz p')I&&k),

and in which the net generation rate g
—6I, has been

written as the increment Ag Dzn/r in this ra—te over
thermal equilibrium, with Ag and Am the corresponding
increments in g and m and v a lifetime function for
Am. The modified diffusivity and velocity do not apply
to time-dependent cases; v' would, for example, give
the effect of applied field on apparent diffusion length,
but is not, for example, drift velocity for an injected
pulse. The current densities given by Eqs. (10) may
be written for the steady state in accordance with

I== eD' gradhzn+g(o. a„—/o')I&& k

+eo'(g„a+0„o„)D' . gradh. zn &(k.. (17)

The equilibrium lifetimes for electrons and holes
differ in general, but are nevertheless always associated
with the same diGusion length. This result follows
readily from Eq. (15), whose linear small-signal form is

Do' div gradAzn vp' gradDrn—+Ag Dm/r =0, (18)—

the zero subscripts denoting thermal-equilibrium values.
The lifetime function v is here constant; and since Ae
and Ap now equal (1—r„)Azn and (1—r„)Azn, with r„
and r„ the thermal-equilibrium trapping ratios, Eq.
(18) implies

(1—r ) 'Dp' div gradin —(1 r„) 'vp' grad—An.
+ag an/(1 r.)r„=o, (19)— —
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for electrons and a similar equation for holes. Thus,
for Ae the lifetime is r multiplied by (1—r„), while-
as may be established in greater generality from Eqs.
(14) and (15)—the diffusivity and velocity are those
for Am multiplied by the reciprocal of this factor, and
similarly for hp. It follows, in particular, that the
product of equilibrium diffusivity and lifetime, which
is the square of Lp, the diffusion length, is the same for
Am, Ap, and hm, independently of the particular
trapping and recombination statistics. ' A "di6usion-
length lifetime" vp, based on the unmodified ambipolar
diffusivity' Do= kTp„p~(np+ po)/0Omay 'accordingly be
defined by"

ro=I.o'/Do (Dp'/——Dp) r
= L1 (rn«+" po)/(«+po)3&

= («+po )/(«+ po), (20)

in which r~ and r are the equilibrium lifetimes for Ap
and Ae. The diffusion length and lifetime 7p that
correspond to the (equilibrium) Shockley-Read electron
and hole lifetimes as well as the Tp for recombination
in the presence of nonrecombinative traps are evaluated
in Sec. 3.

2.2 Mass-Action Theory

Relationships of the mass-action type provide a
simple" and general" basis for trapping and recom-
bination. Levels from two types of centers will be
considered and, partly by way of notational convention,
these will be taken as acceptor and donor levels. This
case, involving both negative and positive fixed charges,
is the simplest for which both steady-state trapping
ratios occur. With suitable interpretation of the no-

tation, the mass-action equations for this case apply
to (one or) two kinds of single-level centers in general.
An extension for centers of a single type but with two

energy levels will also be given. In multilevel cases,

two successive levels generally su%.ce for analysis of
the trapping at a given time. Levels appreciably lower
and higher than these may contribute to recombination,
but will not contribute to trapping, since the lower ones
remain full (or else saturated) and the higher ones

empty.

2.21 Single-Level Centers of Two Types

Mass-action equations for the two types of single-
level centers present together are:

II R. N. Zitter, Phys. Rev. 112, 852 (1958), discusses phenome-
nological lifetime for any model derived from the PME effect {in
the thick slab). This is the same as 7.0, and Zitter relates it to a
diffusion length.

Hoffmann, Halblei ter Probleme, edited by W. Schottky
(Friedrich Vieweg und Sohn, Braunschweig, 1955), Vol. II, Chap.
5. See also; E. Spenke, Elektonische Halbleiter (Springer-Verlag,
Berlin, 1955), pp. 304-307."F.W. G. Rose, Proc. Phys. Soc. (I ondon) B71, 699 (1958).

g
—e. =g—c,ep —C„,Lpn —p, (x,—n) j

C 2[Op Ã2 (K2 p)]
a8/at= e.„—e. =C„,(n(m, —8)—n, n$

(21)—C„,Lpa —p, (x,—a)),
ap/a~= e„,e—=. c—.2fnp «—(x, p—))

+c„Q(x2—p) —p2pf.

The first equation gives R, and it (as well as the other
two) is obtained by considering the photoconductive
case of uniform concentration and no transport, g—(R

being the contribution to Bm/Bt which does not involve
transport. Four processes are taken into account for
each type of center. In the second equation, for example,
the term C»p6 is the volume rate of neutralization of
fixed negative charges by holes; C» is a phenome-
nological capture coefficient which depends in general
on temperature and not on concentration. The second
term in the same brackets gives the rate for the inverse
process, C„ipi being the emission coeKcient for hole
emission from a neutral acceptor center. Here Ki is the
total concentration of the acceptor centers, and the
concentration pi, constant at given temperature, is
de6ned by the condition that the quantity in brackets
vanish at thermal equilibrium, in accordance with
detailed balance. The brackets to the left relate to the
interactions of the same centers with electrons, the
term C„in(Xi—8) being the volume rate of capture of
electrons by the neutral acceptor centers, and C &e&

the coefficient for electron emission from the charged
ones. The concentrations ei and pi are those of the
Hall-Shockley-Read theory, "" and are here intro-
duced without explicit reference to Boltzmann sta-
tistics. The third equation expresses the dependence
of Bp/Bt on the analogous processes for the donor
centers. In the first equation, which includes the rate
C,ep of direct electron-hole recombination, are involved
only interactions which change the total concentration
m.

Though written symmetrically for fixed charges of
both signs, Eqs. (21) may formally be transformed so
as to apply to two types of donor or acceptor centers.
This possibility is related to the circumstance that the
fixed charges are not properly considered as trapped
carriers in that the trapping processes are manifest
through changes in 6xed-charge concentrations rather
than in these concentrations themselves. For example,
centers of the acceptor type function as electron or
hole traps according to whether the concentration of
the charged centers increases or decreases with carrier
injection.

For theoretical applications, it is desirable to replace
Eqs. (21) by equations in concentration increments
above thermal equilibrium and to de6Iie, from the
latter equations, suitable capture and release fre-
quencies and times for mobile electrons and holes.

'4 R. N. Hall, Phys. Rev. 83, 228 (1951);87, 387 (1952)."W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
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release rates is a matter of convenience. The "effective"
capture and release frequencies and times are accord-
ingly as follows:

Subtracting from Eqs. (21) the corresponding thermal-
equilibrium equations, in which the time derivatives
and the quantities in the various square brackets are
zero, gives equations for hg —6$, M, ri/Bt, and
Bhp/R F. rom these, if volume generation and direct
recombination are neglected, it follows that the re-
spective contributions to M,n/83 and Bhp/Bt other
than the terms involving transport processes as such
are

Electron capture by neutral acceptors:

Vtnl= &tnl =Cnl(+1 rip) I

Electron release from charged acceptors:

Vgnl=&gnl =Cnl(22+Ii)q

Hole capture by charged acceptors:

—=Cps'+0,

Hole release from neutral acceptors:

vg„l= rg„l =—C„l(p+pl),

(24)Electron capture by charged donors:

—66t = —D(R —Bhri/Bt
= —C.lt (&1—rip)~22 —Np~ri —~22~nj+C„,tt,~ri

C„,Lp—,a~+~,ap+a~apjyc. ,~,a(x, p), —
—3SV = —A(R —BAP/Pjf (22)

= —Cvlfriphp+ pphri+Apd ri$+Cvlplk(K1 —ri)
—CV2L(X2—P,)d,P—Pp~j —APAP)+CV2P2d P.

In Eqs. (22), the magnitudes of the contributions
involving brackets are capture rates, while the re-
maining terms on the right are release rates. The cap-
ture and release frequencies, introduced in accordance
with

5(Pin= —Vtnlkgt+ Vgnlkri

rh—1=~Vtn2=7tn2 =Cn2Ppq

Electron release from neutral donors:

Vgnp= &gn2 =Cn2(22+222) )

Hole capture by neutral donors:

—vtn2&22+ vgn2~(&2 —p)
—6(RV= —VtVl&P+ Vg„l& (&1—ri)

—V tv26P+ V 0V26P,

(23)

Vtv2=&tv2 =CV2(+2 pp))

Hole release from cha, rged donors:

".=.- '—=C. (p+p)
may be suitably identified by comparison with Eqs.
(22). In both sets of equations, the top and bottom
rows of each right-hand member give contributions
associated, respectively, with the acceptor and donor
centers.

The capture and release frequencies must evidently
entail concentration dependence. As will appear, Eqs.
(23) do not impose unique definitions with respect to
this dependence, while the uniquely determined con-
stant frequencies that apply near thermal equilibrium
are certain "effective" rather than physically proper
quantities. These circumstances result because the
capture rates, as they appear in Eqs. (22), cannot be
written with 622 or hP as a factor and thus expressed
in terms of capture frequencies. To obtain the physi-
cally proper capture frequencies would necessitate
solution of the particular problem; they would depend
in general on coordinates and time. The contributions
to the capture rates that contain hri and Ap as factors
are associated, however, with trap saturation: These
contributions, for carriers of given charge, represent
the decreases and increases in capture rate with the
Glling of centers that assume, respectively, the same
and the opposite charges. They may, in a phenomeno-
logical sense, be deleted from the capture rates and
assigned to the release rates, by which the difference
between these rates for centers of each type remains
unchanged. Note that the quadratic terms also contain
622 or t01P as a factor; assigning them entirely to the

Note, for example, that v& ~ is the "effective" average
frequency per electron of electron capture by a neutral
acceptor center and hence the reciprocal of the corre-
sponding electron capture or trapping time, 7-~ ~, and
v, „& is the "effective" average frequency per charged
center of electron release from a charged acceptor center
and hence the reciprocal of the corresponding electron
release time, r, ~. The saturation terms that originate
from the true capture rates appear as the contributions
from 22 and p in the "effective" release frequencies,
while the "effective" capture frequencies do not depend
on the injection level.

These "effective" quantities are generally the ones
on which theoretical expressions depend. For example,
for the decay of photoconductivity associated with
trapped minority carriers, with recombination of com-
paratively short lifetime v& entirely in other centers,

'

for which decay times are" a release time r, for nearly
full traps and r, plus the multiple-trapping time
(gg/rt)rp for nearly empty traps, gt and gg are cor-
rectly identified as equilibrium values of "effective"
capture and release times. Thus, r, is in general not a
constant for the traps but depends also on conductivity,
which should be taken into account in calculating the
trapping level from the product of r, and the capture
cross section.

' J. A. Hornbeck a,nd J, R. Haynes, Phys. Rev. 97, 311 (1955};
J. R. Haynes and J. A. Hornbeck, Photocondlct~'city Conference,
Chap. IIIF (reference 8}.
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tslP1 tZ2P2 tZOPO (26)

hold, where e; is the thermal-equilibrium electron or
hole concentration in intrinsic material. Note that Kqs.
(26) state, in effect, that the product —(C„itzi)(C„iPi)
or (C 2tz2)(Cpsp2) —of the electron and hole emission
coefFicients equals e times the product of the corre-
sponding capture coefficients. '7 It is readily found from
Eqs. (25) that fractions of charged acceptor and donor
centers are given, respectively, by

@0/&i=(1+~10 ') ' Po/&2=(1+~20 ') ' (27)
with

Q10=00/jzi pi/p0 t120=p0/p2 rz2/rt0 (2g)

Through familiar considerations involving equi-
librium Boltzmann statistics, the concentrations ei or

pi (and rz2 or p2) have been shown to equal electron
concentration in the conduction band or hole concen-
tration in the valence band for the Fermi level coin-
cident with the energy level of the centers. " The
relationship

tz, = rt,'/P, = rt, exPL(hi —8)/kT$
= tz, exp[e (4 —%1)/kT] (29)

for acceptor centers is here employed, and a similar
one for donor centers. Here %~=——e '8~ and C =——e '8
are the equivalent electrostatic potentials of the energy
level 8& of the centers and the Fermi energy 8 for
intrinsic material. This relationship is more phenome-
nological than those involving the energies of the
conduction- and valence-band edges and which give
jzi and pi in units of the effective densities of states in

the bands. Note that the temperature dependence of
the energy gap is involved through e, , while the differ-

ence between the effective densities of states or the
effective masses with nonspherical energy surfaces in
momentum space is reQected simply in a difference
between C and the midgap potential. If statistical
weights associated with spin degeneracy are taken into
account, then the definitions of Eqs. (25) are of course
retained, but Eqs. (29) are modified. The right-hand

members (for tzi) are multiplied by 2; the exponentials

for pi are multiplied by -,'. In the similar result for donor

centers, the exponentials for rt2 and p2 are multiplied

by ~ and 2, respectively. For given e& and e2, these

' A. Hoffmann, reference 12; Chih-Tang Sah and W. Shockley,
Phys. Rev. 109, 1103 (1958); W. Shockley, Proc. Inst. Radio
Engrs. 46, 973 (1958).

2.211 Thermal-Equilibrium Relationships

The definitions

rti=rz0(+1 zz )0/it ,0pi=—pozzo/(&1 zz0)
(25)

rz2 =rzgp0/ (SI2 p0) p2 =p0 (SI2 p0)/p0

are required by detailed balance. It is evident from
these equations that

modifications" produce comparatively minor changes
in Bg and hg or Ng and 4'2.

The four effective trapping and release times or
frequencies for each type of center satisfy a funda-
mental restriction, namely

&gnj&tpj vtnjvgpj PO 1+~P/(PO+Pj)
j=1, 2. (30)

&tnj&gpj vgnjvtpj rz0 1+t-"trz/(rz0+Nj)

Thus, only three are independent. As will appear, this
restriction is widely useful for calculations and physical
interpretations. It is essentially a consequence of
detailed balance: For thermal equilibrium, it follows
readily from the definitions of Eqs. (25), while the
factor on the right that depends on AN and sttp results
simply from the concentration dependence of the
effective release frequencies.

2.212 Trapping and Recombination Ranges;
Shallow and Deep Traps

Three linear small-signal ranges, respectively, charac-
terized primarily by minority-carrier trapping, re-
combination, and majority-carrier trapping may be
defined for each type of center by use of Eq. (30). The
"minority-carrier trapping range" is defined by the
condition that the equilibrium minority-carrier to
majority-carrier release frequency ratio exceeds unity.
In P-type material, this ratio, v, „,/v, », is C„,tzj/C»P0
=C„,no/C»P, , from Eqs. (24), (26), (27), and (28);
and from Eq. (30), vt„;/vt» is larger by the factor
pO/rtO. The "majority-carrier trapping range" is defined

by the condition that the majority- to minority-carrier
capture frequency ratio exceeds unity, for which the
equilibrium majority- to minority-carrier release fre-
quency ratio is larger by the factor PO/NO for P-type
material, or tzo/po for I type. The "recombination
range" is defined as that not included in either trapping
range. Thus, the recombination range is given by
rtO/rt; =Pt/PO+ Cnj/C»& P /rZO=PO/rtt fOr P-type ma-
terial, the electron-trapping range by C„;/C»)Pj/zzO
=Po/tzj, and the hole-trapping range by C„j/C»(Pj/Po
=tzg/rtj. A "minority-carrier capture range, " which
includes the trapping and recombination ranges, may
be defined by vt;/vt»)1. Similar results, obtainable
by interchanging rt and p, hold for tz-type material.

The three ranges may be specified in terms of the
equality densities. These are the equilibrium carrier
concentrations for the Fermi level coincident with the
equality level. "They are defined in the present context

' These are derived from: F. W. G. Rose, Proc. Phys. Soc.
(London) B70, 801 (1957). See also; P. T. Landsberg, Proc. Phys.
Soc. (London) A65, 604 (1952); C. H. Champness, Proc. Phys.
Soc. (London) 869, 1335 (1956).

'0 This is the Fermi level for which the (equilibrium) rates of
electron and hole capture and release are all equal: Chih-Tang Sah
and W. Shockley, W. Shockley, reference 17. The equality level
is similar in purport to the demarcation level of Rose, which is
the trapping level for which the rates are equal: A. Rose, Phys.
Rev. 97, 522 (1955); Progress t'tt Serlzcomdttctors, edited by A. F.
Gibson (John Wiley fk Sons, Inc. , New York, 1957), Vol. II, pp,
111-136.
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by
nj —=Cpjpj/Cnj=poptpj/Vtnj=novgpj/Vgnjt

(31)
p,*=C—njnj/Cpj = novtnj/vt pj

=povgnj/vg pj t

in which the release frequencies are equilibrium values.
Thus, the recombination range is given by no& p;*&po
or po) n;*)no for p-type material, the electron-
trapping range by n,*&no or p;*)po, and the hole-

trapping range by n,*)P0 or P,*&no, and similarly for
m-type material. The ranges may evidently also be
specified in terms of the equality level, the Fermi level
h2 for intrinsic material, the actual Fermi level hg, and
the "rejected Fermi level" 8p' —=2 8—h2p, the reQection
of 8p about 8: For the recombination range, the
equality level is between 8p and Bp',. for the minority-
carrier trapping range, it is between Bp and the edge
of the majority-carrier band; and for the majority-
carrier trapping range, it is between Sg' and the edge
of the minority-carrier band. Note that if the capture
coeflicients are equal, then n,*=p, (or p,*=n,) holds
and the respective trapping ranges are given by con-
ditions on the trapping level 8, obtained by inter-
changing those on the equality level.

The volume rates of electron and of hole transitions
at equilibrium are, respectively, C ino(K1 —j10)=C inijio
=nov, „i and CpiPono=CpiP1(+1 80) Povtpl
ceptor-type centers. From Eq. (30), these rates are
proportional to v, „~ and v, „~. Hence each definition
given for a trapping range insures that the transition
rate at equilibrium for the particular carriers is the
larger, and also that the transition rate v&„~ or v&„i per
mobile carrier is the larger too. The definitions for
minority- and majority-carrier trapping reQect the
circumstance that a transition rate will be the larger
if either the cross section or the concentration of the
particular carriers is sufficiently large. The recombi-
nation range is that for which a larger transition rate
per mobile minority carrier is associated with a total
transition rate for majority carriers which is the larger.

For shallow minority-carrier traps, since relatively
few are occupied by minority carriers at equilibrium
so that they can capture majority carriers, the condition
for the minority-carrier trapping range may be met
even though the capture coefficients are comparable in
magnitude. For deep traps, since relatively few can
capture minority carriers, the minority-carrier trapping
generally requires a minority-carrier capture coefficient
considerably the larger. Suitable conditions for "shal-
low" traps and "deep" traps are, in view of the con-
dition on C„;/C» for the electron-trapping range,
respectively, p,«no (or nj))po) and nj«po (or p,))no)
in p-type material. That is, "shallow" and "deep"
traps for minority carriers are appreciably removed
from the reQected Fermi level, 8~', towards the edges
of the minority- or majority-carrier bands, respectively.
Similarly, for majority-carrier trapping, "shallow" and
"deep" traps are appreciably removed from the Fermi

level, 8&, towards the edges of the majority- or
minority-carrier bands, respectively. The proper cri-
teria are essentially that hp' separates the "shallow"
and "deep" traps for minority carriers and 8& separates
them for majority carriers. Thus, for minority carriers,
levels in extrinsic material considerably shallower than
the midgap may still be "deep" levels.

Dg —A(Rm =hg —(Vtpi+ Vtno) Agn

+(Vtn2 Vgpl Cn2n2)dn

+ (vt pl —v gn2
—Cplpl) +pt

attt8/tjt = (v,„, v,„i)—Dng

(Vtnl+ Vgnl+ Vg pl) ~j1

+ (vt„l—C in —C»pl)hp,
tjDp/'tjt = (vt„2—v 2) Am

+(vt„2—C 2p
—C 2n2)hn

(Vtp2+ V gp2+ Vgn2) ~P.

(32)

EGective capture and release frequencies are here
employed whose definitions are provided by Eqs. (24)
if Xl—jto and X2—po are both replaced by X—no —po.
Aside from these modified definitions, Eqs. (32) are
formally identical with corresponding equations for
single-level centers of two types except for the addi-
tional "constraint" terms in which the capture co-
efficients appear explicitly.

For thermal equilibrium, definitions of nl, pl, n2,
and P2 apply which are Eqs. (25) with both Xi—Ro
and X2—Po replaced by X—j4—Po. It follows that the
restriction

no'/ntn2= pip2/po = 80/po, (33)

holds for this two-level case. As is easily verified, Eqs.
(26) still apply, while the fractions of charged centers
are

jio/X= (1+ni/no+nin2/n02) '
(1+po/pl+ po /plp2) t210/(1+1210+t220) t

po/m= (1+p2/po+pip2/po') ' (34)

(1+n0/n2+no /nln2) t220/(1+Qlo+t220)

with t210 and a20 given, as before, by Eqs. (28). Rela-

2.22 Centers with Two Energy Levels

The formalism for centers of two types is readily
modified to yield equations for one type of center with
two energy levels. With the assumption that the centers
can each assume single negative or positive charge or
be neutral, 8 and p denote concentrations of centers in
the respective charged states. It is thus clear that the
fundamental mass-action equations for this case are
formally the same as Eqs. (21) with the modification
that both Ki—ji and K2—P are replaced by K—A —P,
where X is the total concentration of the centers. The
equations in concentration increments that result if
direct recombination is neglected are accordingly
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tionships formally identical with Eqs. (29) give Nl and
e2 in terms of the two energy levels.

For this two-level case, the four effective trapping
and release times or frequencies associated with each
energy level satisfy the fundamental restriction that is
formally identical with Eq. (30). It is also easily
verified that the various conditions given for the
recombination and trapping ranges and for shallow and
deep traps apply without formal modification.

By suitable notational generalization of the funda-
mental mass-action equations, the results of this section
can be shown to apply to two-level centers in general,
whose states (differing successively by one electronic
charge) may include ones that are multiply charged,
either positively or negatively. Through use of the
phenomenological capture coefficients, statistical
weights associated with multiply charged states do not
enter explicitly.

3. SOME THEORETICAL APPLICATIONS

3.1 Linear Steady-State Photoconductivity;
Diffusion-Length Lifetimes

rn=
&tnt —&t»

V t n 1+V 0 n 1+V g pl

0(+1 rtp) r 0~0...(~,—..+"+.)+...(p.+p )

Kl (Ttpl Ttnl)

(Kl*+rtp) «„1+PO«nl

Tn = (1 rn) Tm = (V tpl+ V g pl+ V gnl)/t-t 1

=1 r /r„—,

T 0(rtp+Pp+Pl)+Tpp(rtp+rtl)

Z,1*+No+ Po
(36)

(Xl +Pp)Tt 1+rtprtpl

&1*+too+ po

tional change, entirely similar results hold for donor
centers.

The trapping ratio for the case of acceptor centers
and the equilibrium lifetimes, which are the Shockley-
Read lifetimes, "are given by:

The mass-action equations written for the steady
state and linearized by neglect of the quadratic terms
give concentration increments that are proportional;
solving for An/hrrt and hp/hrrt provides the thermal-
equilibrium trapping ratios, and lifetimes r„, 7-„, s-,
and diffusion-length lifetime 7-p are readily evaluated.
These procedures will be illustrated in detail for the
single-level case. .

For formal simplicity of the results in this connection
(and in various others as well), a concentration which
will be called the "capture concentration" is introduced.
For, say, acceptor centers, the capture concentration
K~* is dered as follows:

Ty = rtn = (Vtnl+ Vgnl+ Vgpl)/+1

Tpp(+1 ~0+Np+rtl)+rap(pp+pl)

+1 +tlp+Pp

(Xl +'+0)Ttpl+Pprtnl

Xl*+rto+po
Here, 7.„p and 7-„p given by

TnP= (CnlK1) = (1 '80/+1)rtnl

=(1+pl/po) '«1,
r 0= (C 1%1) = (Rp/Kl)rt 1= (1+nl/gtp) 'rt 1,

(37)

Kl =Kl/(1+ttl/rto) (1+pl/po) rtovt 1/v 1

=Povt 1/v 1=X1(rto/Kl) (1—rto/Kl) (35)

The various forms for K&* are obtained by use of the
definitions of Eqs. (24), the equilibrium relationships,
Eqs. (25), (27), and (28), and the fundamental re-
striction, Eq. (30). As the last form shows, Xl* is the
concentration K& of centers multiplied by the respective
equilibrium fractions of centers occupied and unoc-
cupied. Values of it which are small or large result,
respectively, in negligible capture frequencies or in
large capture frequencies with negligible release fre-
quencies. If the centers are nearly all ionized or un-
ionized, then K~* is small; the last form shows that its
largest value is 4%1, which it assumes for Ro/Xl ——0,
that is, for the Fermi level coincident with the energy
level of the centers. Note also that the volume rates of
electron and hole transitions at equilibrium, " epvg y

and Ppvt„l, are equal to Xl~ times the corresponding
effective release frequencies. YVith an obvious nota-

'0 See Sec. 2.212.

are the respective limiting lifetimes" in strongly
extrinsic p- and n-type materials (in which they are
also rt» and rtpl); and 51 given by

t-11=Vtnlpgpl+ Vtnl ptyl+V tylV gnl

=C 1C„1%1(Kt*+rtp+po) (38)

is always positive if neither C & nor C» is zero.
The diGusion length I.p and lifetime v p corresponding

to the Shockley-Read lifetimes may be evaluated from
Do' and r or from r„and r„, thus from Eqs. (16) or
(20) and Eqs. (36). These equations give

Lo =Do'r =Doro =DO/1 r„po/(rto+ po)g&—
IOTpnppOO (rtortpl+portnl)

=tro (o„oD «»+tr oD rt 1'), (39)

where a„p and o „p are ep„rtp and epppp. Other forms may
be written by expressing v&„& and v &» in terms of v p

and rpo by use of Eqs. (37). The diffusion-length life-

'CondctIons for these )Ifetirnes are p0»%1*+p1+p1* and
'+0&&tIRl ++1++1
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time for this case,

%0= Vgnl Vgal V gnlVgyl V fylV gnl

&y0 +0 +1 ~n0 0 1 +0 0

= (22oro 1+poro i)/(22o+po), (40)

is formally similar to the familiar common lifetime""
for both electrons and holes for the limiting case of %1
small, as inspection of Eqs. (36) serves to verify. "This
common lifetime otherwise applies as such only under
a condition restricting the capture concentration which
is frequently severe: The condition, obtained from
Eqs. (36) by use of

) r„ro~/r—o((1 and
~
r ro~/ro((—1,

requires for the minority-carrier trapping range that
this concentration be small compared with the equi-
librium minority-carrier concentration.

A diRusion-length lifetime which is also of interest
is that for traps in conjunction with recombination
centers. For recombiriation centers in extrinsic material,
a lifetime 7-3 for minority carriers may be specified.
Assume negligible recombination in the traps them-
selves, so that, for p-type material, r =r /(1 r„) is—
2.2/(1 —r ). Then, for nonrecombinative electron traps
of the acceptor type, Eqs. (36) give r„=Po„i/
(ponl+ pgol), rp= 0, and, from Eqs. (16), Do'/Do
=(1—Poli*/(~o+po)(X, *yno)7 results. Or, if the
electron traps are of the donor type, then r„=0,
PP= Po 2/Pg 2 Do /Do L1+K2 /(22o+po)7, and r = ro
are obtained. Essentially the same diRusion-length
lifetime, namely

so= (Do'/Do)r = t 1+%,*/(rco+po)7ro, j= 1, 2, (41)

results for both types of traps. "Thus, minority-carrier
trapping increases diffusion-length lifetime. '4 As the
analysis shows, this increase results directly from an
increase in the ambipolar minority-carrier diRusivity.
The eRect is appreciable for capture concentration at
least comparable with the equilibrium concentration
of majority carriers. Similar analysis for nonrecom-
binative majority-carrier traps gives a v-0 which is that
of Eq. (41) modified by division by 1+%;*/22p fol'

n-type material or 1+%;*/po for p-type. Thus, ma-
jority-carrier trapping decreases diffusion-length life-
time, but only by a factor no smaller than (1+po/222) '
or (1+222/po) ', respectively.

~ As W. L. Brown has pointed out, this formal similarity must
hold because diffusion length does not depend on release times
but on the capture times, the times the carriers are free. It can
be shown that it holds for any number M of types of centers, for
which Tp is given by

M

L & (22o~~„+Po~o.;) 'j '/(22o+Po).
j=1

"Equation (20) provides an equivalent derivation. It can be
shown that if diferent types of traps are present, the %;*in Eq.
(41) is replaced by the sum of the respective capture
concentrations.

24 A. K. Jonscher, Proc. Phys. Soc. (London) 870, 230 (1957)
gives an increase of diffusion length with trap concentration which
is bounded and always essentially negligible, a result at variance
with that given here. See reference 2, footnott; on p. 52$,

General conditions for the validity of the linear
analysis of this section may be formulated as conditions
for the neglect of the quadratic terms. For this purpose,
the steady-state equations for uniform concentrations
and volume generation rate Ag are employed. The
conditions are then obtained in a self-consistent manner
as restrictions on (positive) Ag or on concentration
increments by substituting for the concentration in-
crements their values from the linearized equations in
terms of Ag and the equilibrium capture and release
frequencies. It is thus found, for example, that for
nonrecombinative electron traps of the acceptor type,
Dp and D8 must be small compared with the concen-
tration Xl—80 of unoccupied traps, and Ae small
comPared with no+221. These may be severe conditions
for P-type material. They could in practice require an
injection level much lower than small-signal ones
meeting the familiar condition' based on conductivity
change.

s„=(1—r„)s„=(1 r„)s„, —
stt 7 m= $~T~=sy7 y =Lg

(42)

follow.
The increase AG in conductance of the slab is the

integral of Ao- across the slab, or

QG=e)' (p„622+12„hp)dy
—

f/p

=e(p„+p,„) (2,/2 )6222dy. (43)

The second form follows from 622/r =Ap/2P=6222/
~ =(R, with

=~ /e(12 +12 )~C= (P +u )/(W + ) (44)

a lifetime function that determines the conductivity

3.2 The Photomagnetoelectric EÃect

The steady-state PME eRect with trapping in an
infinite slab to the faces of which the applied magnetic
field is parallel will be considered for a linear small-
signal case. Equations (7), (10), and (17) for current
densities may be suitably specialized, as in the treat-
ment previously given for the no-trapping case, 4 and
the short-circuit PME current along the slab obtained
as an integral across the slab of the PME current
density. The latter is evaluated from the solution of the
suitably specialized continuity equation for boundary
conditions corresponding to recombination of carriers
at the respective surfaces with generation at the
illuminated one. The concentration variable is now

Am, the modified ambipolar diffusivity D0 is employed,
and a surface recombination velocity s for Anz implies
velocities s„ for 622 and sP for imp. These are clearly
such that s Dm=s„hgi=sPhp holds, from which the
relationships
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increase 60 for the uniform volume generation rate
hg=R .

The PME method of the high-recombination-
velocity dark surface is best employed, since it generally
provides better accuracy for the conductance change
than does the thick-slab method which it otherwise
subsumes as a limiting case."Optimum slab thickness
is about one or two diGusion lengths. For large dark-
surface recombination velocity, the small-signal results
for no trapping" give, for the present case,

Il" = —f)eZLp(St+coth2Yp) '
= —0(p„+p„) '(Lp/r. ) (cothYp)AG, (45)

in which Lp= (Dprp)*' i—s the diffusion length, Yp is yp/Lp,
and St is s rLp/Dp =L r/Lp, subscript 1 referring to
the illuminated surface. Note that AG now involves r,
as a factor.

For nonrecombinative traps in extrinsic material
with recombination of lifetime 7.3 in other centers, To

is given by Kq. (41). For AG, Kqs. (43) hold with

r./r = [(1—r )p„+(1—r~)p„j/ (fJ,„+p „) for the linear
small-signal case. The solution for Dm is readily ob-
tained by comparison with that for the corresponding
no-trapping case,"and

AG= Kge(fj, „+p„)

rsvp(cosh2Yp

1)/—
(Sr sinh2Yp+cosh2Yp) (46)

results for the present linear small-signal case, where,
for p-type material, Kg= r,/rp is given by

Eg= 1+(b+1) 'K,*/ep (electron trapping)

K.=[1+(1+~-)-~,*».&/[1+~*/p.j
(hole trapping).

For hole and electron trapping, respectively, in e-type
material, np and pp in these equations are interchanged
and b= p, /p„repl ce—ad by its reciprocal. Note that the
expression which Eg multiplies also depends on

trapping, since I.o does.
Dimensionless PME current-conductance ratio

&/(~G/Gp) = 2yp(p +pr)I"'/0Dp~G
= (E /Kg)2Yp cothYp (48)

follows from Kqs. (45) and (46), with

E,:rp/rp= 1+&,*/(ep+P—p),

for nonrecombinative minority-carrier traps; for ma-
jority-carrier traps, this IC, is modified as in connection
with Kq. (41). Apparent lifetime r, on the assumption
of no trapping, obtained by equating 8/(AG/Gp) to

'5 Reference 4, Sec. 3.42.
"Reference 4, Eq. (50).
'VThis case has been treated by A. Amith, Bull. Am. Phys.

Soc. 4, 28 (1959); Phys. Rev. 116, 793 (1959). See also reference
11.

2 In Eq. (44) of reference 4, hp is replaced by hm; the Dp that
appears explicitly originates from the boundary conditions and
is replaced by Dp' and 5& is smll0/Dp I.sl/Ip.

[2yp/(Dpr )17 coth[pp/(Dpr„)*'$, is accordingly given by
r, tanh'[yp/(Dpr, )')= (Eg'/E, )rs tanh'Yp, and equals
(Eg'/K, )rp for the thick slab. As trap concentration
increases, diffusion length increases and a slab of any
given thickness becomes a "thin" slab, for which
Yp coth Yp 1; and d/AG/Gp) approaches a constant
value which is independent of the thickness. For ex-
ample, if the half-thickness yp is of order (Dprs)'*, then
E,))1 or X;*))ep+Pp also gives small Yp 'F.rom the
expressions for E, and Kqs. (47) for Eg it is found
that 8/(EG/Gp) approaches 2 (0+1)rrp/(ep+ pp) for
electron trapping and 2'(5+1)pp/b(ep+pp) for hole
trapping, regardless of conductivity type. On the other
hand, if the slab is so thick that yp'))DprsK, */(ep+Pp)
holds, then the condition K;*))ep+pp for large trap
concentration gives" rp/r„equal to E,/Eo'
(8+1)'cps/(np+Pp) X,* for electron traPPing and
(b+ 1)'pp/b'(ep+ pp) for hole trapping in p-type
material, with similar results for e-type obtained as
in connection with Kqs. (47).

The recombination lifetime rs can be determined
from suitable measurements with traps saturated.
With rp known, measurement of 8/(AG/Gp) serves to
determine rp, since, from Kqs. (47) and (49), E,/Eg
may be written as (b+1)rrp[rsp+Pp (Pp —bn—p)~p/~p) '
for electron trapping in p-type material, or as an
analogous expression for hole trapping in e-type. If the
equilibrium concentration of empty traps and the
release time (which, if rs is comparatively short, is the
photoconductive decay time for the traps nearly full)
are also determined, then trap concentration, energy
level, and capture cross section can easily be calculated.

. 3.3 Nonlinear Steady-State Photoconductivity

Lifetime functions r„and r„ for Ae and hp resulting
from arbitrary steady-state injection levels may be
evaluated from S . For centers of the acceptor type
and no direct recombination, Kqs. (21) give

=c„,[pg —p, (x,—n)j
esp —N, s

(50)
r„p(e+m, )+r„p(P+Pr)

The familiar last form, "which results from elimination
of 8 and use of Kqs. (37), provides expressions for r„
and r„ in terms of Ae and Ap. Certain other formss
result if both n and p are eliminated instead by use also
of the neutrality condition. Then v and 7„as well as

~9 Amith (reference 27 and private communication) has pointed
out that trapping usually inQuences the PME current-con-
ductance ratio mainly through the eGect on conductance. For
minority-carrier trapping in the thick slab, rz/r, is proportional
to K; ' in the intermediate range in which X;*is large compared
with minority-carrier concentration np or pp but small compared
with pp or np so that the change in diffusion length may be neg-
lected. For majority-carrier trapping in general, r3 and r„are
substantially equal in this range.
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An and AP are written in terms of An as a single
independent parameter which can be related to the
steady generation rate Ag= S .

The lifetime function" for
~

An
~
&&An Ap= Ans,

T,o(no+nr+Ap)+T o(po+pr+Ap)
~7 (51)

no+Po+AP

follows readily from Eqs. (50). That this lifetime
function apply in general requires ~An~ relatively
small for all AP, a condition which subsumes, as may
be expected, equilibrium lifetimes substantially equal
to vo. This common lifetime then applies for low in-
jection levels for which the condition AP«(v, mr+ v,„r)/
(C„r+Cvr) holds, in which equilibrium release fre-
quencies are employed. In the minority-carrier trapping
range, both conditions may be severe: Equilibrium
lifetimes are 7o for %&* small compared with minority-
carrier concentration np or po' and Tp then applies for
Ap small compared with np+n& or Pp+Pr, which follows
also from the condition of Sec. 3.1 for neglect of
C~rAnAAor Cv.rApAn suitably specialized. If the con-
dition on AP is not met, then (with the condition on
Kr*) Eq. (51) gives a lifetime which increases rapidly
with injection level at low injection levels. "But such
observed behavior with extrinsic material, as these
considerations indicate, cannot usually be properly
analyzed by use of Eq. (51).The T„and T„ in the small-
signal range generally either result primarily from
recombination or majority-carrier trapping and are
both v.o and substantially constant, or else have di6ering
equilibrium values given by Eqs. (36). Thus, unless
trap concentration is quite small, Eq. (51) has sig-
nificant application in the former case only to the
transition from To to the lifetime T o+T„p for the
large-signal range.

It can be shown' that in the latter case of differing
lifetimes small-signal trap saturation generally obtains
with which apparent diffusion-length lifetime increases
to a value given by 7,„& for e-type material or r,» for
p-type. Further increase then occurs in the approach
to a large-signal lifetime which is substantially 7 0 for
n-type material or Tvo for p type, that is, the (small-
signal) lifetime in the limit of strongly extrinsic material
of the opposite conductivity type. Such increases of
lifetime can account for certain cases of superlinearity,
or the more-rapid-than-linear increase of photocon-
ductivity with injection level, on the basis of a single

trapping level. "
~ As a result of saturation of centers available for minority-

carrier capture, this lifetime increases essentially linearly in the
small-signal range from the equilibrium value T„o(co+I&)/po or
T p(po+py)/ao and asymptotically to the large-signal value T„o
or tn0

3 A multilevel model for superlinearity has been given by
A. Rose, R C A Rev. 12, 362 (1951);Phys. Rev. 97, 322 (1955);
Proc. Inst. Radio Engrs. 43, 1850 (1955); I'hotoconducti vasty
Conference, Chap. 1A (reference 8). See also: R. H. Bube, J. Phys.
Chem. Solids 1, 234 (19573.

The steady-state fractions of ionized centers can be
represented by simple formal generalizations of the
equilibrium relationships of Eqs. (27) and (34) for
single- and two-level centers: In these equations, no
and pp are replaced by n and p and nro and nso by

C~rn+ CvtP t

Cv 1p+ Cm 1'n1

1+An/(n p+nr*)
=O'Xo

1+AP/(Po+ P r*)
(52)

Cvsp+C 2n2 1+Ap/(po+ p2*)= tX2O—

C„sn+C„sps 1+An/(np+n2 )

as can readily be shown" by solving for the ionized
fractions from Eqs. (21) and also from the corresponding
two-level equations of Sec. 2.22.

AP Cv1Cv2+/(CnlCn2+Cn2Cvl+CvlCv2) —Po)

with large-signal lifetime equal to

(1+C~r/C„2+C, 2/C~2)/(C~t+ Cvs) &.

'2 The equation given in the abstract of the paper of Sah and
Shockley (reference 17) rewritten in the present notation yields
n j(X—n —P) =o.I and (X—n —P)jP=o;~, from which the
ionized fractions for the two-level case here given follow as
solutions of simultaneous linear equations.

"Certain analytical approximations have been considered by
W.-H. Isay, Ann. Physik 13, 327 (1953). A treatment which
includes numerically computed solutions has been given by K. C.
Nomura and J. S. Blakemore, Phys. Rev. 112, l607 (1958).

3.4 Time-Dependent Photoconductivity

The decay of photoconductivity is governed in the
general case by nonlinear diGerential equations which
are rather intractable analytically. " Solutions' of the
nonlinear equations are obtainable in closed form,
however, for cases of nonrecombinative trapping and
for suKciently small concentration of centers or large
concentrations of mobile excess carriers such that the
steady-state lifetimes are substantially equal. The
latter solution has the restricted general application of
the lifetime function of Eq. (51), since it is the inte-
grated form corresponding to this function.

With the neglect of direct recombination, the
limiting large-signal equations are linear and give an
exponential decay with lifetime equal to the steady-
state large-signal lifetime. During this decay, the
concentrations of carriers in traps remain constant.
The lifetime for centers of a single type is T p+Tvp,
and the concentration in the centers is A21 = (vg„r —v~„r)/
(C„r+Cvr) or Ap= (vgv2 /n )v/(2Cn +C2).v2If single-
level centers of the acceptor and donor types are present
together, then these values of An and AP clearly still

apply; and the lifetime is the harmonic mean of the
lifetimes T p+Tvp for each type of center. For two-level
centers, on the other hand, Eqs. (32) give

An=C $C 2x/(C. rC.2+C 2C r+C 1C 2)
—Ro
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In the linear small-signal case, the photoconductive
decay is given by a sum of exponential modes with
(real and positive) decay constants whose number
exceeds by one the number of types of centers present.
This decay will here be considered for centers of a
single type. """ The solution for centers of the ac-
ceptor type is readily found to be given by

2 2

jism= j3.p=p A, e "t' a8=p T„,Aje "j't (53)

in which Aj are constants determined by the initial
conditions; the r„j are trapping ratios for the respective
decay modes determined by

vtvl+vj vgvlrnj=0,

vtnl vtvl+ ( vtnl vgnl vgvl+ vj)&nj= 0t (54)

with the decay constants vj the roots of the equation
obtained by equating to zero the determinant of Eqs.
(54). The A, are found in terms of the trapping ratios
and the initial concentrations j1ml, hnl, and Apl by
setting t equal to zero in Eqs. (53) and solving. The
trapping ratios are thus given by

with

vj=-', L(—1)t-'v„+v,j, j=1, 2, (56)

Vr= (Vs 4t-tl)*= Dvtnl+Vgnl VtVl Vgvl)

+4v, „vgv, vl]'*, (57)
Vs= Vtnl+ Vgnl+ V tvl+ Vgpl&

and 6l defined by Eq. (38). Equilibrium values of the
effective release frequencies are, of course, employed.
The COrreSpOnding time COnStantS 7.1=—vl ' and 7-2—= ~2

'
are also equal, respectively, to v&/6l and v,/6l. Non-
oscillatory decay is easily verified for this case: The
second form for v, shows that the v, are real; and since
v„&v„ the v, are positive.

A subcase that provides some physical interpre-
tations is that of Xl sufficiently small so that capture
frequencies are small compared with release frequencies.
As Eqs. (38) and (57) show, the condition v s))4d, l

'4 H. Y. Fan, Phys. Rev. 92, 1424 (1953); 93, 1434 (1954).
8'E. S. Rittner, reference 8. This reference includes some

nonlinear cases."E. I. Adirovich and G. M. Guro, Doklady Akad. Nauk
S.S.S.R. 108, 417 (1956) Ltranslation: Soviet Phys. Doklady 1,
306 (1956)]."D.J. Sandiford, Phys. Rev. 105, 524 (1957)."D.H. Clarke, J. Electronics and Control 3, 375 {1957)."W. Shockley, reference 17.

4' G. K. Wertheim, Phys. Rev. 109, 1086 (1958).

~nj Vtnl Vtyl Vtnl Vgnl Vgpl Vj

= ('—vt. l)/ "», (55)

and the decay constants by

then holds, and expansion of the radical gives

—1T]~ V8 = 7 gnlTgyl Tg, nl ~gal

((TS Vs/&l TP.
(58)

41 This result easily follows directly from the diGerential
equations. Or, note that the quantity in brackets in Eqs. (57) is
(~t 1—~t~1)'.

Thus, for this subcase, v.2 is the steady-state lifetime'~38
Tp of Eq. (40). It is large compared with Tl, the time
constant for the adjustment of 68 to a fixed fraction
of hp substantially equal to the equilibrium trapping
ratio, r„. This interpretation of v-1 follows readily from
Tns (vt„l—vtvl)/(v«l+ v,„l) r„.If the initial trapping
ratio is r„, then the trapping mode does not occur in
l1tt, An, or hp; it does not occur either for "critical
recombination" with which An remains identically zero
as result of equal capture frequencies vtnl and vt» or,
for this subcase, equal capture rates for Att and d,p.
For small Xl, the capture rates are in all cases sub-
stantially in the ratio vt»/vt». In linear cases, they also
decay in the lifetime mode after this mode predomi-
nates. The release rates behave similarly, their ratio
being equal to v, l/v, vl, or to (Np/pp)(vtnl/vtvl) in
accordance with Eq. (30).

The condition for neglect of the capture frequencies
may be severe: For the minority-carrier trapping range,
the condition v,„,+vt»((vgnl+ v,„l for the approximate
form of v, (which subsumes Kl*((rtp+ pp for neglect of
vt»vtvl in 6l and, generally, v, '))46l as well) is the
same as that for steady-state lifetimes equal to vo, it
requires Kl small compared with minority-carrier
concentration ttp or Pp.

The release frequencies may be neglected under the
condition Kl ))np+pp. The solution is then simplyt'
An/An&= exp( —1/Tt„l) and j3P/jt Pl = exp( —t/Ttvl). For
Kl* large, Eqs. (36) show that Tt» and Tt„l are, re-
spectively, the steady-state lifetimes"" r and v„.
The condition v,'»4hl is accordingly &(T /Tv jTV/T )
+-,'))1, namely that one of T„or T„be small compared
with the other. If r„or 7-„ is the smaller, then sub-
stantially all of Et' or tstp, respectively, is transformed
comparatively rapidly into positive or negative h8,
after which a slower recombinative decay of A8 and
the concentration of the other mobile carriers takes
place as these carriers are captured.

The condition v, ))4d, l implies v 1&&r2, with T]
essentially a characteristic time for trapping and T2

essentially a lifetime. This interpretation does not
apply if v, ' and 461 are COmparable SO that vl and 7.2

do not differ by much. For small %1 and the recom-
bination or maj ority-carrier trapping range, for
example, 7] T2 may hold. The case of v,' 461 fo' X&

large, fOr WhiCh rl, 7-2, rtnl, 7.t„l, rn, and r„are all

substantially equal, is a case of recombination with but
slight trapping.

The general trapping time and lifetime, obtained
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from Eq. (56) and related equations, are"

Tl= Vg = TgnlTggl/[(+1 /PO+1)Tgnl

+ (Xl*/110+ 1)T,,„l]
=«.i«, i/[(1+ Po/&1*)«.i

y (1+Tio/Xl*) «,i]
&(T2= v /Al= (Xl +Do+p0) [B0T 1+poT vl

+ .'(,-+ „)/~*]
—(Xl +«+PO) [(Kl +PO)Ttnl

+ (Kl +SO)Tlvl]

(59)

Comparison with Eqs. (36) and (40) shows that this
lifetime r2 is larger than the steady-state lifetimes v. ,
w„, and ro', all are equal in the limit of X~ small. For
K~ large in intrinsic material, 7-2 equals 2ro. Further-
more, these lifetimes all decrease monotonically to zero
as K& increases indefinitely.

The decrease of v2 with increasing X& may, however,
proceed essentially in two ranges, with approximate
constancy of z2 in an intermediate range. " From the
first form for TO of Eqs. (59), this intermediate range
occurs provided there are capture concentrations X~*
that are small compared with «+pO and also large
compared with (v,„l+vgvl)/(v»l/110+ v, „l/po), that is,
if the strong inequality

T,„,+T,„,« & (~,/P, )T...+(P,/«)T, „, (60)

holds. It can hold for sufficiently strongly extrinsic
material if the majority-carrier release time is not too
small. For small X&, v-& varies inversely with K&, as
Eqs. (40) for To show. For large Kl such that
Kl*»T10+pO, To varies similarly, equalling the value
(«Tg 1+P0Tpvl)/(«+PO) of aPProximate constancy
divided by Xl*/(no+ po). With the second or third form
for Kl* of Eqs. (35), this T2 reduces to Tini+Tivl Since.
7~ for large X~* is the harmonic mean of v~ ~ and rg„~,
7 j is the smaller of these capture times and r2 the
larger, as previously discussed for this case. It can be
shown that, for the minority-carrier trapping range,
the inequalities that X& must satisfy for approximate
constancy of r2 generally imply the condition v, ')&46&
on which the calculation is based. A similar situation
has been shown to obtain with the inequality for the
case of negligible capture frequencies. But since this
case involves a condition for neglect of the capture
frequencies which is usually severe for the minority-
carrier trapping range, it is the present case which would
usually apply in practice in this range.

The decay times associated with a small-amplitude
pulse of added carriers above a steady generation level
Dg are readily evaluated. The equations for don/dt and
d8P/dt linear in the concentration increments 811 and
8p resulting from the pulse may be obtained from Eqs.
(23) and (24). Written with capture and release fre-
quencies that are concentration-dependent, they are

~ The approach to constancy with increasing concentration of
centers is discussed in reference 40.

formally the same as the linear small-signal ones for
dAn/dt and dip/dt. For the release frequencies, the
definitions of Eqs. (24) apply; for the capture frequen-
cies, no and pO in these definitions are replaced by 8
and p. The condition v, ))461 of this section generalized
in this way is the condition for a lifetime ~& for bm and
5p which is equal to the generalized ratio v,,/61 and
which is large compared with the corresponding time
constant for trapping. The lifetime ~2 depends on the
steady-state values of ATi, ATi, and Ap; it reduces to
TO of Eqs. (59) for the linear small-signal case and to
T 0+T„o for Dg large.

The frequency v„will be referred to as the "straggle
constant. "It is readily shown that the linear differential
equations which Ae and An satisfy are entirely similar
to Eq. (61) except for suitable modifications of the
right-hand member; all the concentrations satisfy the
same equation if there is no volume generation. For
Ae it suffices to replace vt» where it occurs explicitly
by s & &, while for An only the generation term
(vinl —vivl)hg occurs, M,g/8$ being absent. It can also
be shown that recombination of lifetime v-3 in other
centers in extrinsic material can be taken into account
by adding TO

' to the coeKcient v, of Bhn/Bt and
BDP/Bt and (v,—vl»)/TO or (v, —vinl)/TO for gl- or
p-type material to the coeflicient 3,1 of DTg and Ap.

3.51 Steady-State Transport; Reverse Drift

A simple case which yields qualitative information
of interest is that of injection into a filament in the
steady state with applied field. For this case,

vriDod'AP/dx' v.nodd P/dx —616P=—0 (63)

3.5 Transport of Injected Carriers

Steady-state transport as well as drift of an injected
pulse will be considered in this section on the basis of
general differential equations of Sec. 2 specialized to
the linear small-signal case for centers of a single type
and no applied magnetic field. After this readily eGected
specialization, h8 for centers of the acceptor type may
be eliminated between the continuity equation in
Am=hp and the mass-action equation for MA/R.
With the introduction of Kl* and 61 from Eqs. (35)
and (38), the following third-order equation results:

O'AP/BP Do div gr—ad(RAP/Bt)+vo grad(BA'P/Bt)

+v, Bhp/Bf vDD0 div —gradd, p+ v„vO gradhp
+Blimp= Bhg/8/+ (v,—vi„l)hg. (61)

Here, Do= kTp —liv(no+ pg)/ogandvO eii„iiv=(Tio po)I/—|TO'

are the equilibrium ambipolar diffusivity and velocity;
v, is defined in Eqs. (57) and v& and v, by

»—=[1+&1*/(«+PO)](vg-1+"vi),
v,, —= v,„l+v,„l+(v, 1

—v,vl)K1*/(110 pg)
—(62).
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is to be solved for, say, d,p zero for distance x along the
filament negatively or positively infinite and con-
tinuous at the origin at which there is carrier injection
with zero injected total-current density. Equation (63)
is easily shown to be equivalent to Eqs. (15) and (16)
specialized for no volume generation and acceptor
centers only; PD and v„are v, —Pt» times D0'/D0 and
m0'/lt0, respectively, and Tv from .Eqs. (36) is

(Ps Vt»)/t-sl.
The solutions in the semi-infinite regions separated

by the origin are exp(rlx) and exp(rtx) where rl and T0

are given by

f"1't
I

=k["~0/»D0~ [("00/»D0)'+4~1/»D0j'j

t' Ps&0/P11D0 )
(64)

( —al/Psi 0i

as obtained from Eq. (63). The case of recombination
without appreciable trapping5 presents no unfamiliar
features; the approximation given will accordingly be
considered, which is that for 6& small, as may result
from one of the capture coeKcients small. The mag-
nitude of rI is thus large compared with that of r2.
Kith the condition vo)0, which may be assumed
without loss of generality, exp(rlx) gives the familiar
sharply varying field-opposing solution to the left of
the origin and exp(rlx) gives the corresponding gradu-
ally varying field-aiding solution to the right, provided
v„ is positive; thus rI and r2 are, respectively, positive
and negative. But negative v, can occur, for which an
anomalous behavior obtains, the field-opposing and
field-aiding solutions then being, respectively, the
gradually and sharply varying exponentials exp(T&x)
and exp(rlx). For this case, in the limit of no dif'fusion,

added carrier concentration appears only in the direc-
tion opposite to that of the ambipolar drift velocity,
that is, opposite to the direction of drift normally
determined by conductivity type.

This "reverse drift" associated with trapping may
be understood in terms of properties of the current
density DI of added carriers. From Eq. (12), added
carriers drift in the direction of the total current
density, or the contribution to AI from drift has the
sign of I, if N0ttP P0hn or A—P/Ae —P0/tt0 is positive,
that is, if injection results in proportionately more
holes than electrons than is the case at thermal equi-
librium. This behavior is, of course, that which nor-
mally occurs in e-type material; with no trapping,
hP/did equals unity and added carriers drift with or
opposite to I according to whether the semiconductor
is Tt-type or p-type, with no drift in intrinsic material. ' '
Thus, the normal behavior requires the conditions that
d,P/Alt —P0/Tt0 be positive in Tt-type material and nega-
tive in p-type. It is easily shown by writing these condi-
tions by means of Eqs. (36) for the steady-state value
(1—r„) ' of hP/BTt that both are tantamount in the

3.52 Drift of an Injected Pulse

The differential equation for drift with negligible
diGusion and no volume generation in one Cartesian
dimension with trapping by centers of a single type is

O'DP/Btt+ v08'AP/BxBt+ V,M P/Bt

+v„v0BAP/Bx+. 616P=0, (66)

from Eq. (61).To solve Eq. (66) for a pulse of carriers
injected into a doubly infinite filament, for which a
suitable technique is that of the bilateral or two-sided
Laplace transform with respect to the distance variable,
the equation is put into a particular dimensionless form:
Independent variables

X=x/L, U= t/—T,
— (67)

are introduced, and with distance and time units given
by

L= 00T, T= (~
P'—~)-—l,

P'= 4[Vs (P,—Ps) —5,j
=4mt (Vtnl VtVl) (p0 Tt0)

[(Vtnl+VtVl) (p0 Tt0)/(Ptnl PtVl)+1 1]s
(68)

subject to the restrictions p'WO and Tt0&P0, the reduced
equation

8'hp/8 U'+ tt'Dp/BXBU+t Btt p/8 U

+0 ('f+ K) BDP/BX+ 'Q' K'% 1)tt P =0, (6—9)—
results, where K and f are the parameters

K= (2Vs Ps)T= [Pgnl+Vgvl

+ (No+P0) (Vt.i—Pt, i)/(t00 —P0) jT,

f = VsT (Psnl+Vgni+VtV1+VgVl)T0'0.

(70)

Coefficient unity for the second term of Eq. (69)
results from the definition of I.. The double sign in the
last term of the equation results from the necessity of
defining a real (and positive) T, the upper and lower
signs applying, respectively, for positive and negative u .

steady state to the single condition, v, )0. This con-
dition clearly always holds for the majority-carrier
trapping range, while reverse drift results for sufhcient
minority-carrier trapping in not too strongly extrinsic
material. From Eqs. (62), P„)0 gives

P0 +0+ (Vg 1 Pg»)~1 /(Vg 1+VVVi)

for p-type material, and a similar inequality for Tt-type
obtainable by changing the sign of each side. Equating
the two sides gives the condition for no drift which,
for no trapping, holds for intrinsic material. For
electron trapping without recombination, the right-
hand side reduces to XI*,for this case, since X~* equals
TtoPtni/Pgni from Eqs. (35), reverse drift obtains if
110/p0 in p-type material exceeds Tt„l/(Ttnl+Tgnl), the
fraction of the time electrons are free. A similar result
holds for hole trapping in e-type material.
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Solutions for the initial delta pulse at the origin of
6' carrier pairs injected per unit area of cross section
are, as may be verified without difficulty,

dP= hp—/(5'/L) = {expLsX——',(t+«) U]) 6(U—X)

+2 (5—s)I', (LX(U—X)7*') J'(I:X(U—X)]')

I——1I X(U—X)7, (71)
LX(U —X)]*

dkP~ Dn/(5'/L) = —', ((—7J) {expI KX—-'(I +K) Uj)
. '(LX(U —X)1-**)1I:X(U—X)I,J'.

where $ and g are the parameters

t=—(v,—2v, „r)r, 71—= (v, —2v, r)r. (72)

For hN 672((P/—L), $ in hP is replaced by q. The
modified Bessel functions Io and I~ apply for the upper
sign in Eq. (69), that is, for v real, while the Bessel
functions Jo and J& apply for v imaginary. The term in
hP and hlV with the delta function 5(U —X)=nor
'5(rtof —x) represents a contribution that drifts at
velocity vo. The continuous distributions are confined
to the interval 0(x&5of, 1I X(U X)7=1I g(vol x)7
being the step function that is, respectively, zero and
unity for negative and positive values of its
argument. "44

An illustrative case of minority-carrier trapping in
strongly extrinsic material, for which v is real and the
interpretation comparatively straightforward, will be
presented first. For strongly extrinsic material, since
the parameter ( or z for minority carriers is substan-
tially equal to ~, the minority-carrier concentration
does not include the term with the Bessel function Io.
H, also, the trapping is nonrecombinative, then

I = (v,t v~)r and s= (v,—v~)r hold with v2=4v~v„
where v~ and v, are v&&z or vpyz and vg ] ol vg» respec-
tively, and refer to the minority carrier. Figure i shows
distributions of mobile minority carriers for (=5/4
and s= —3/4, as for release time equal to 4 times the
trapping tilne. The continuous distribution is shown
for different times after injection at the origin of the
neutral delta pulse. This distribution is led by a delta
pulse which drifts at the ambipolar velocity ~I). This
remnant of the initial pulse is composed of untrapped
carriers; it is attenuated comparatively rapidly by the

"Fan (reference 34 and private communication) has given a
solution of this drift problem which applies for negligible majority-
carrier capture frequency. Clarke (reference 38) has, in effect,
pointed out this restriction, to which solutions in references 34
and 35 for the decay of photoconductivity are also subject.

44 A. K. Ionscher, Proc. Phys. Soc, (London) 870, 223 (1957)
has given solutions for drift of minority carriers with recornbi-
nation and nonrecombinative trapping at variance with solutions
given here. See reference 2, footnote on pp. 526, 527.

exponential factor Lexp( —U) for the particular values
of the parameters7 as the area under the distribution
of actual concentration increases asymptotically, as
can be shown, ' to —,'(P, the initial pulse strength multi-
plied by the fraction of the time the carriers are free.
The abrupt front of the distribution for the shorter
times results from most carriers having been trapped
only slightly —at least once, but not much more. A
relative maximum within the drift range appears com-
paratively soon, and the abrupt front then progressively
disappears as a result of multiple trapping. Further-
more, there is a reduction of apparent mobility: The
maximum drifts, as will be shown, at a velocity which
decreases asymptotically to —,'~0, the fraction of vo equal
to the fraction of the time the carriers are free. It
appears from the figure that this limiting velocity is
approached comparatively slowly. By suitable approxi-
Ination involving large U, it is readily shown that4' the
distribution also becomes increasingly Gaussian in
shape, particularly about its maximum, spreading as
if the carriers were subject only to drift and diGusion
with diffusivity (for nonrecombinative trapping) given
by voL/4I =so vp /(vs+vs) .

Some of these results depend on certain general
properties of the parameters. From the first forms for
s and I of Kqs. (70) and the definitions of r and v' of
Fqs. (68), |—(&2~1+4g&r2) f) (&2~1)-*, (73)

follows. The inequality sign is associated with recom-
bination, 61 being zero for nonrecombinative trapping.
The parameter I is real and never negative. For v

imaginary, so that the lower sign applies, a similar

45 IJse is made of the approximations

Io(s) Ii(s) (27rs) & exp(s) for I s) large.
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FIG. 1. Continuous concentration distributions at different
times of mobile minority carriers from an injected neutral delta
pulse for drift with trapping. A strongly extrinsic semiconductor
and /=5/4, I~:= —3/4 are assumed, as for nonrecombinative trap-
ping with release time, 7.„equal to 4 times the trapping time, 7 ~.
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calculation gives 0.30

«'= 1+(v '—4ht) T'& 1, v'(0;

the condition v,~—46&&0 implies real decay constants
and holds from Eqs. (57). For v real, « is not restricted.
For example, for nonrecombinative trapping in strongly
extrinsic material « is s[(v,/vI)' —(vi/v, )'] and can be
zero or have any positive or negative value. Thus, i & 1
holds for v real and i)0 holds for v imaginary. Also,
for nonrecombinative trapping, the parameters do not
depend on the capture coeKcient and i = («'&1)'
equals $ or ti according to whether electrons or holes
are trapped.

The maxima for sufficiently large U of the con-
tinuous distributions of mobile and trapped carriers
for cases of real v occur substantially together. They are
found to be given by4' X/U=x/tIIIt= —,'[1+«/(«'+1)'],
from Eqs. (71). It is easily seen that for nonrecombina-
tive traps real v implies minority-carrier trapping with
positive v„and («+1)'*equal to i. From Eqs. (35),
(62), and (70), X/U for the maximum and large U
accordingly reduces to v„/(vi+v, ), which is

O.25
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for electron trapping or

&gal p7 gal +0 p 7 gal ~gal

for hole trapping. Hence this X/U, the factor by which
the apparent mobility is smaller than the magnitude
of the ambipolar pseudomobility, ' is in general less
than Ti/(TI+r, ), the fraction of the time minority
carriers are free; but this X/U is substantially equal
to the free-time fraction" under the condition
~iso —po~))Kr*, obtained with the use of Eqs. (35).
As ~eII—pII~ approaches Xr* in the nonrecombinative
case, X/U approaches zero. Recombination reduces
the distance for a maximum at given time, and thus
reduces the apparent mobility, since for nonrecom-
binative traps with recombination of lifetime 7-3 in
other centers the distribution of the mobile carriers
subject to trapping is simply that for no recombination
multiplied by the decay factor exp( —x/tIprs). This
factor applies because the carriers which arrive at x
at whatever time have drifted in the conduction band
for time x/tIII.

The decay constant for the straggle effect, or the
limiting decay time at fixed x for the tail of the distri-
bution after the maximum has drifted past, is readily
evaluated. With the condition X«U for the tail of the
distribution, this decay constant is clearly the co-
efficient of t in the exponent of Eqs. (71). It is thus
rs (g+«)/r= v„, and v, has accordingly been named the

Fan (reference 34) has shown from his solution that for
relatively small trap concentration X/U for the maximum ap-
proaches the free-time fraction.

- 0.05
0 I

DIMENSIONLESS DISTANCE, X = X / V 0

Fro. 2. Continuous concentration distributions at different
times of mobile minority carriers from an injected neutral delta
pulse for drift with trapping in the reverse-drift range. Equi-
librium majority-carrier concentration is taken as 5n; and non-
recombinative trapping is assumed with Kq ))

~

Is« —pII~, whence
0.1v,))v =2.4m g and &=2.4, ~= —2.6 hold, with 0.1 the coeKcient
of the term in J0.

"straggle constant. " It is easily seen from Eqs. (35)
and (62) that v„ for strongly extrinsic material is sub-
stantially v, „&+v,» plus either vI», for ep))pp, ol' vivt,
for Ps))radii

Imaginary v obtains with ~&1 over the majority-
carrier trapping range, and it obtains with ~(—1 over
a range which includes the reverse-drift range, as can
be shown' from Eqs. (62) and (68). With recombina-
tion in the centers, the reverse-drift range applies for
the finite range, ~„(~(—1. For nonrecombinative

trapping, «( —1 (with imaginary v) gives the reverse-
drift range. This case is illustrated in Fig. 2, which

shows the continuous distribution of mobile minority
carriers at diGering times for majority-carrier concen-
tration rip ol' pp equal to Sn; and K&*))~tsII—pII~,
namely v-g))247. &, the delta pulse of untrapped mobile
carriers that leads the distribution is rapidly at-



652 '%A. VAN ZOOSBROECK

tenuated by the factor exp( —2.5U). As the figure
shows, the distribution crowds towards the injection
point as its maximum excursions both above and below
the axis increase with time: There is local carrier
depletion, the distribution being negative over part
of the drift range after a certain time. 4' The distribution
approaches a pulse at the injection point of strength
equal, for nonrecombinative trapping, to the initial

strength times the free-time fraction. It does not
exhibit essentially unidirectional drift: The drift of
added carriers, initially in the direction of the ambi-

polar velocity, is largely in the opposite direction after
some trapping has taken place. Numerical estimate of
the effect of diffusion indicates that negative added-

carrier concentrations can occur over appreciable
distances under conditions which can be realized in

practice. '8

For a pulse injected in more strongly extrinsic
material under the condition of large X~ or ~, which

gives reverse drift, smaller concentration changes
occur more slowly with U and are appreciable over a
smaller fraction of the drift range. " For strongly
extrinsic material, the exponential factor limits the
solution to small X, since s and l are large in magnitude.

Approximating the Bessel functions for small values of
their argument then gives, for p-type material,

AN= P(e,/2pp) exp(n, U/2pp)g(1 —a/vpr, r)

exp( —x/vpr, r). (75)

This approximate solution bears out the statements
made: Because of s (e;/pp) rg»))t = s (pp/~; —~;/pp) r $~1,

an increase in pp for given r requires larger r,„r and, in

particular, decreases r~ r as well as e;/2pp. A curve
from Eq. (75) of AN versus pp/vprt» is qualitatively
similar in shape to the curves of Fig. 2: AT decreases
to a negative relative minimum at s/vprg r=2 and then

asymptotically approaches zero.
The current density DI of added carriers provides

further interpretations. From Eqs. (12) and (71), this

47 W. Kaiser (private communication) has suggested that
negative added-carrier concentrations which were observed with
localized optical injection in silicon under applied field may be
accounted for through these results. A theoretical discussion of
carrier depletion is included in reference 3.' For P0=5n; and electron and hole mobilities of 1500 and
570 cm2 volt ' sec ' as for silicon at 300'K, L=—v07. is 0.12 cm for
T =2.47 &„&= 10 5 sec and an applied field of 10 volt cm '. The
diffusion distance (Dpt)& for 10r is 0.06 cm, which is appreciably
smaller than the approximate distance 2L=0.24 cm over which
negative added-carrier concentrations occur.

4' See Fig. 3 of reference 2, which shows a more nearly intrinsic
reverse-drift case.

is given by

DI = e'fj, „pro p 'I(6'/L) (ephI' Pph—N)

=
ev p((P/L) (expp~X rs—(l +a) Uj)

X
~ 5(U X) r' ([X(U X)j')

I X(U—X)j:
~ 1LX(U—X)] (76)

for the present case of one-dimensional drift with no
applied magnetic field. That the Bessel functions of
order zero do not occur follows from the easily verified
relationship mp$ —Pprf= (ep —Pp)K. These functions are
accordingly associated with carriers that neutralize
the charge of trapped carriers or with the trapped
carriers themselves, while those of order one are
associated with the drift of, in effect, carrier pairs. The
direction of drift of a mobile-carrier distribution con-
sidered in its entirety depends on the sign of the net AI,
or AI integrated over the drift range. For nonrecom-
binative trapping and large U, the integral over the
drift range of the concentration of mobile carriers that
are subject to trapping equals (P times the free-time
fraction. The corresponding value of the integral of EI
with respect to X for electron trapping is therefore
evp(P/L), the initial B,I, times" v„/(v&„r+vp~r). Thus,
as may be expected, the limiting value of the integral
for large U has the sign of vo or the opposite sign
according to whether v, is positive or negative. This
result supports the conclusion that, for the reverse-
drift case, the distribution from an injected pulse
ultimately crowds towards the origin, where AI=O
holds.
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' For real v, which implies positive v, and p-type material,
this factor is the limiting value of X/U for the maximum of the
mobile-electron distribution.


