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Theory of Diamagnetism of Graphite
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The conduction-electron diamagnetism has been calculated for the three-dimensional band structure of
graphite. The magnetic energy levels are found and the susceptibility calculated by analytically carrying
out the free energy sum. Agreement with experiment is found for values of the band parameters nearly
equal to those which give agreement with the de Haas-van Alphen effect and other phenomena. The value
of 70 is found to be 2.8+0.1 ev. The results indicate the y~ is about 0.27 ev and 6 is about 0.025. The other
band parameters do not have an important influence upon the value of the susceptibility. The relation
to the general treatments of conduction-electron diamagnetism is also discussed.

l. INTRODUCTION

HE problem of explaining the large diamagnetic
susceptibility of graphite in terms of its electron

energy band structure has been a troublesome one.
The application of the Landau-Peierls formula' ' to the
band structure of Wallace' (or its refinements) produces
a result much too small. The use of the simple Landau-
Peierls formula in cases which involve band degeneracies
(as is the case in graphite) was criticized by Adams. '
A few years ago, the large effects of the band-to-band
transitions induced by the magnetic field (not included
in the Landau-Peierls formula) were calculated for the
simplified "two-dimensional" band structure. ' The
correct high-temperature susceptibility was obtained,
but the low-temperature oscillations (de Haas-van
Alphen effect) were not correctly given. On the other
hand, a proper choice of band parameters for the
"three-dimensional" model does give agreement with
the de Haas-van Alphen eRect and cyclotron reso-
nance. However, Haering and Wallace' have argued
on plausible grounds that the large susceptibility can

only be obtained from the "two-dimensional" model or
something very close to it. It is the purpose of this

paper to present a calculation which yields a large
susceptibility for the same "three-dimensional" model
that gives agreement with the other phenomena.

The method used is a direct one. The magnetic energy
levels are found and the derivative of the free energy
evaluated analytically. The results are of some interest
with regard to the general theory of conduction-electron
diamagnetism. A discussion is made of the relation to
the formulas of Adams4 and of Hebborn and Sond-
heimer. '

' J. K. Hove, Phys. Rev. 100, 645 (1955).
s S. J. Mase, J. Phys. Sac. Japan 13, 563 (1958).' P. R. Wallace, Phys. Rev. 71, 622 (1947).
4 E. N. Adams II, Phys. Rev. 89, 633 (1953).' J. W. McClure, Phys. Rev. 104, 666 (1956).
6 J. W. McClure, Phys. Rev. 108, 612 (1957).
7 P. Nozieres, Phys. Rev. 109, 1510 (1958).
8 R. R. Haering and P. R. Wallace, J. Phys. Chem. Solids 3,

253 (1957).
9 J. E. Hebborn and E. H. Sondheimer, Phys. Rev. Letters 2,

150 (1959).
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2. HAMILTONIAN AND MAGNETIC
ENERGY LEVELS

We shall construct the Hamiltonian in the magnetic
field using the method of Luttinger and Kohn. " The
advantage of this method is that it allows the important
interaction between the degenerate bands to be treated
accurately using a relatively simple Hamiltonian. The
disadvantage is that it is dificult to calculate all eRects
which give a term to the free energy proportional to the
square of the magnetic field. However, it will be argued
that the terms neglected are small, and the calculated
susceptibility matches the large experimental value.

We begin with the Hamiltonian derived from group
theory by Slonczewski and Weiss. " There are four
bands of interest with regard to conduction properties:
two almost unoccupied and two almost completely
occupied. All four are near in energy in the vicinity of
the six vertical edges of the hexagonal Brillouin zone.
It is only necessary to consider states very near the
zone edges, so that the Hamiltonian may be expanded
in powers of the distance from the edge. In the vertical
direction (parallel to the c axis) the Hamiltonian is
expanded in a Fourier series (the tight-binding approxi-
mation converges rapidly in this direction due to the
large separation between graphite layer planes).

In writing the Hamiltonian we use the notation of
reference 6. Cylindrical coordinates (o,o., P) are used in
which the distances from the zone edge in the x and y
directions are a,= —(2a/3~as) sina and a„= (2o/3~as)
Xcosn, and the vertical distance from the center of the
zone is k, = $/cs, where as and cs are the lattice param-
eters. The Hamiltonian in the absence of the magnetic
Q.eld is then
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Hip ——2='* (—yp+y pI') o- exp (in),

Hip= 2 '*(Yp+p4P)a exp(in),

Hps ——ypro. exp(in),

(2.1e)

(2.1f)

(2.1g)

with the abbreviation, P = 2 cos(sf). The only difference
from reference 6 in the above equations is the inclusion
of the y5 term in Ej and E'2, in order to make them
consistent with E3. The diagonalization of the above
Hamiltonian yields formulas for the variation of energy
with wave number in the vicinity of the zone edge.
Higher order terms in o- are unnecessary in dealing with
properties of the carriers, as the maximum o- values of
interest are no more than 0.1.

The introduction of the magnetic 6eld by the method
of Luttinger and Kohn involves the replacement of the
quantity Ir, by Ir,+(ieSC/hc)B/Blr„, where e is the
magnitude of the electronic charge, 3C is the magnetic
field (parallel to the s axis), A is Planck's constant, c
the velocity of light, and the vector potential is given

by A= (—BCy, 0, 0). Care must be taken to preserve
the order of the multiplication in the original Hamil-

tonian, as the operator replacing f( does not commute
with ~„. In working out the second order Hamiltonian,
new terms are found which are linear in the magnetic
Geld."The eGect of such terms on the present calcu-
lation is discussed in Appendix A, where it is concluded
that they are small.

The modification of the Hamiltonian (2.1) is easily
accomplished by working out the changes in the
quantities o exp(&in) = Wia +ov, which become —,3~as

)&P„&ilr,&(e3C/I'ic)B/B~„] If. the Hamiltonian is now
transformed by H'=SHS ', S=exp( ilr—,lr„kc/eX), the
a, term is eliminated. We rewrite the operator which
replaces a exp(in) as b~at, where b=3ap'e3C/2hc, at
=2 '*(u+B/Bu), and I= (kc/eBC)'~„. It is seen that at
is the lowering operator in terms of the dimensionless
variable u [i.e., if P„ is a harmonic oscillator wave
function, then it holds that at/ (ir) =is'*P i(N) j. Simi-
larly, o exp( in)—is replaced by b~a where a is the
raising operator (aP = (vi+1) lP~r). If yp is neglected,
the eigenvector can be written as (Crp, Cpp~, CpriP~r,
Cps' i), where the C's are determined by the algebraic
Harniltonian,
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In the above, B=yp'b=qR and v=y4P/yp. Use of the
harmonic oscillator wave functions is valid only if the
wave functions centered on diferent edges of the zone
do not overlap. Overlap would produce broadening of
the levels. "If y3 is not neglected the simple eigenvector
chosen is not correct, as the y3 term couples it to those
of quantum number v+3. This coupling breaks down
the dipole selection rule and gives rise to the harmonics
in the cyclotron resonance. To calculate the eGect of
the p3 term on the magnetic susceptibility would cause
considerable complications. Therefore, we shall ignore
it here on the basis of the following crude estimate.
If all of the band parameters except y3 were zero, then
the Hamiltonian would have the same form as the
two-dimensional Hamiltonian with y3 replacing yo. As

p3 is approximately 0.1 of po, and as the two-dimensional
susceptibility is proportional to the square of po, we

see that the susceptibility with p3 alone would be of
the order of 0.0i of the observed value.

The secular equation derived from the Hamiltonian
(2.2) can be written

The equation reduces to the correct "two-dimensional"
secular equation if all parameters except yo are set
equal to zero. If yo and p& are kept, the result of Haering
and Wallace' is obtained. The same secular equation
(except with v=0) has been published without its
derivation by Uemura and Inoue. " Recently, Sato"
has published a derivation of the energy levels for the
case of yo and y~ not zero. His results disagree with

those of this paper and with those of references 8 and
14. His mistake seems to be in assuming a certain
symmetry in the eigenvector which does not hold in

the presence of the field.
The derivation given above does not hold if v=0.

However, three solutions of the type (Crfp, Crap, Carpi 0)
and one of the type (0,0,C»imp, 0) can be found. Further-
more, these four energies are the same as those found
from Eq. (2.3) with v=0.

The ending of the magnetic energy levels involves

the solution of the quartic equation. Though formulas
exist for such solutions, they are not very useful here.
Instead, we give approximate formulas for the energy
levels in special cases and present a relation which will

be used below in performing certain sums. We note that
to find the quantum number in terms of the energy it
is only necessary to solve a quadratic equation. For

(E—Ep)'(8 —Er) (E—Es)
=0. (2.3)

(1—v')'

' J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
"A. D. Brailsford, Proc. Phys. Soc. (London) A70, 275 (1957).

14 Y. Uemura and M. Inoue, J. Phys. Soc. Japan 13, 382 (1958}.
"H. Sato, J. Phys. Soc. Japan 14, 609 I',1959).
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If the B'/4 term under the radical is ignored, (2.4)
becomes the same as the secular equation in the absence
of the magnetic field, except that &0'0-' is replaced by
(e+-,')B. This is an example of Onsager's rule, "which
will hold for energies far from the band edge, except at
the top and bottom of the zone (where I'=0). At the
top and bottom of the zone, we have the exact result:

E=-'6&[(-'6)'+(e) n+1)B]'*. (2.5)

For small quantum numbers, the levels are approxi-
mately

E=E.+» —,( +-,)(-+-.)
a[-,'(n+-', )'(pp~ —happ)'+-', (ugcop]')B, (2.6a)

E=Ei+ (m+2)~iB,

E=Ep+ (n+-,')copB,

(2.6b)

(2.6c)

where a&q ——(1—v)'/(E~ —Ep) and ppp (1+v)'/(E——p
—Ep).

The above formulas hold provided that neither E~ nor
E2 is equal to E3. Note that one of the levels in Eq.
(2.6a) is equal to Ep for v=0. This loss of zero-point
energy resembles the result for the "two-dimensional"
model. For the special case that v=0, 6=0 and y2=y5
(so that pp~

———&op), Kq. (2.6a) reduces to

E=Epa[a(I+1)]&B/(Eg —Ep). (2 7)

The above formula is interesting as it clearly shows
the transition from "quantum behavior" to "classical
behavior" as e increases, i.e., [l(n+1)]* goes to
n+p for large e.

When E& and E3 are equal, and not equal to E2, the
levels are (still for small m):

E=E.~(1—)I ( +l)B]', (2.8a)

E=Ep—m(v+1)copB/(e+-,'), (2.8b)

E=Ep+ (e+p)(opB (2.8c)

Similar formulas hold when E3 is equal to E2.
The degeneracy of the levels is found in the usual

way'7 by applying boundary conditions to the factor
exp(k, g„kc/eBC) which multiplies the wave functions
expressed in the original coordinates. The number of
states per volume in an interval dP for each energy
level is

(eBC/ficcpH)dg= (PSC/2pr)dg. (2.9)

L. Onsager, Phil. Mag. 43, 1006 (1952).
~7 F. Seitz, The Modern Theory of Sokds (McGraw-Hill Book

Company, Inc. , New York, 1940), p. 584.

many purposes, such a form is adequate. We find

(E—Ep) (E E—~ E—Ep q
(e+-,')B=

2 & (1 v)—' (1+v)'J

E—Ep f'E E& —E E-
[ +— (2.4)

2 &(1—v)P (1+v)P) 4 I

In the above formula the spin degeneracy and the site
degeneracy (there are two complete lines of degeneracy
inside a single Brillouin zone) are included.

3. CALCULATION OF THE SUSCEPTIBILITY

Before performing the more rigorous calculation of
the susceptibility we shall make a rough estimate which
gives some insight into the origin of the large dia-
magnetism. We shall use the simple formula (2.7), and
(2.6b) and (2.6c) with v equal to zero. If in (2.7) the
[N(m+1)]'* were replaced by e+-,', the susceptibility
would be correctly given by the Landau-Peierls formula.
As it is known that the Landau-Peierls term is too
small, . we shall neglect it and investigate the contribu-
tion of the correction proportional to [n(v+1)]'*—(n+-', ) —1/(8N). The correction produces dia-
magnetism as it raises the energy of the lower band
(which is more fully occupied) and lowers the energy
of the upper band, thus raising the total energy. The
sum WP(1/n) can be approximated by —J'dp/e, with
e= E—E3. Thus the increase in energy is approximately

where f is the Fermi-Dirac distribution function. The
limits on the f integral are &z.. The limits on the e

integral are cutoG points which a more careful investi-
gation yields as &(E&—Ep). The singularity at p=0
comes from our Taylor expansion of [e(v+1)]* and
could be eliminated. However, as the sign of e changes,
the resulting total integral is Qnite. The susceptibility
due to (3.1) is then

x=(Pq/2 )) d5)"d f()/[4 (E —E)]. (3.2)

The quantity pq is equal to (e/hc)'(3app/7rcp)happ. To
obtain x in emu/g, and use energies expressed in ev,
the value of pq is 1.435&&10 ppp'. The value of the e

integral at low temperature is 6nite if the Fermi level
(f) is between E& and Ep. The value is approximately
in~ (Eq—Ep)/(l —Ep) ~, which is somewhat more than
two. The integral over $, divided by 2m. , is then about
1/4y~=1. Thus, a rough estimate of the low-tempera-
ture susceptibility is about —3y'p&(10 ' emu/g. If yp
is about 3 ev, the estimated susceptibility is about—30X10 ', of the same order as the experimental
result. ' If the Fermi level is far below the band edge,
the susceptibility will be small as the f in (3.2) will be
small. If the Fermi level is far above the band edge, or
if the temperature is very high, the contribution from
the positive and negative regions of e will tend to cancel
and reduce the susceptibility. Thus the rough estimate
above has the right order of magnitude, and the right

¹ Ganguli and K. S. Krishnan, Proc. Roy. Soc. (London)
Alii, 168 (1941}.
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qualitative dependence upon temperature and Fermi
level. For a two-dimensional band structure it has been
shown that most of the diamagnetism comes from the
region between the n=0 level (for which E=Ep) and
the e= 1 levels (E=Ep&B~). In the present case, the
source of the diamagnetism is spread over the energy
region &(E&—Ep). The two cases may be considered
as being equivalent, for if we let all parameters but pp
go to zero, then the level with m=0 near E» becomes
equal to Ep+B&. Thus, the energy region of the width
about E»—E3 has collapsed to the region between the
levels which are numbered 0 to 1 in the "two-dimen-
sional" scheme. Though the argument which Haering
and Wallace presented is correct in that a large suscepti-
bility does not come from the m=0 level in the three-
dimensional case, their argument does not apply as
the source of susceptibility is now spread out over a
finite energy region.

The calculation presented below will show that the
above considerations are essentially correct. As we
have seen, the large susceptibility comes from the
departure from Onsager's rule. This departure is due
to the fact that the raising and lowering operators
appear alone in the Hamiltonian, and not in symmetrical
combinations. It is the form of the momentum matrix
which determines the form of the Hamiltonian, and
the form of the momentum matrix on the Brillouin
zone edge is determined solely by the crystal structure.

We now present the more rigorous calculation of the
susceptibility. The free energy per unit volume is
given by

F=et-+Pic Q...g(E;.), (3.3a)

To use the formula we must know the behavior of the
energy levels at the end points, which was worked out
in the previous section. We must also be able to carry

"E.T. Whittaker and G. N. Watson, M'odern Analysis (Cam-
bridge University Press, Cambridge, 1950), 4th ed. , p. 127.

g(E) = kT ln(1+expL(i ——E)/kTj), (3.3b)

where X is the total number of electrons per unit
volume, k is Boltzmann's constant, T is the absolute
temperature, and i is the branch index which specifies
one of the four solutions of (2.4) for a given e. We
assign the values of i in the order of increasing energy,
with i=1 corresponding to the lowest energy. Note
that these indices will not correspond to those used to
describe the energies on the zone edges in the absence
of the magnetic field. The highest and lowest energies
are the solutions for which the minus sign is chosen
in (2.4).

We shall perform the sum on e by the Euler-
Maclaurin sum formula, "which may be written:

2 g(n)=—pg(0)+og(")

out the indicated integration. We write J'de as
fdEd(e+ ', )/dE-and note that we do not need to
know the energy levels, merely e as the function of E,
which is given by Zq. (2.4). In the free energy sum,
the terms for e= ~ vanish for the two upper branches.
For the two lower branches, we sum to a large quantum
number which is chosen such that the total number of
states summed over is independent of the magnetic
field. When this is done, no term proportional to K'
enters the free energy from the e= ~ terms. We
perform a partial integration, obtaining

—',g(0)+ dn g(n) = — dE(e+-,')f(E). (3.5)J

In the above, we use the fact that the Fermi function
is given by f=Bg/BE. The limits on the second integral
are from E;p to ~.The free energy can then be written:

F=Ef+PX)I df Q F (3.6a)

fF;=— dE (e+—,')f(E)—(BE;p/Bn) f(E;p)/12. (3.6b)

To find the susceptibility we calculate y= —(BF/
MC)/BC= q'(BF/BB)/B—. In taking the derivative we
regard f as a constant. We find

y= (1/2') d&Pq(D+I), (3.7a)

BE;p 1 B ( B BE;ppD=P ' —of(E o) +—
(
—f(E'o) I (3."lb)

BB B BB(12 Be )
8

f( )— L (e+p)j8 88

The Grst term in D comes from the derivative of the
lower limit of the integral in (3.6b). Operating on (2.4)
we obtain

B=&P(E—Ep)'0'+B'j—
&/8, (3.8a)

f1= —f(E—E~)/(1 —~)'j+((E—Ep)/(1+~)'j (3 8b)

where the plus sign holds for branches 2 and 3, and the
minus sign holds for branches 1 and 4. Because of the
difterence in sign, the integral for branch 1 is completely
cancelled by part of the integral for branch 2, so that
the twq together give an integral from Egp to E»p. A
similar result holds for branches 3 and 4. This is the
origin of the cutoG mentioned earlier.

We are interested in the field-independent suscepti-
bility, so now may let 8 approach zero. Ke treat Grst
the case that E»&E3&E2. Then E4p=E», E»p=E2,
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E2p= E3O=E3. The end-point term can be evaluated by
formulas (2.6). The result for the term D (at B=O) is

D= —(1/12)(~iaaf(E1) —f(E2)3
+-2Lf(E2) -f(E2)3) (3 9)

In evaluating the term I, we first perform a partial
integration and then let 8 approach zero, The integral
between Eao and E4O becomes

E20=E2) E40=Ely and E10=E2 2+(401+402). Iil fills
case, we must evaluate the integral from Elp to Eio
before allowing 8 to go to zero. The result can be put
in exactly the same form as above.

The derivations above do not apply to the special
cases of E& or E2 equal to E3, or of EI equal to E2.
Detailed calculations for these special cases have been
performed, and the results agree with the limiting
behavior of the above formulas. For the case Ej=E2,
which corresponds to the top and bottom of the
Brillouin zone, so that v=0, the result is

dE (8f /BE)Q 1(E), (3.10a)
D+I= (1/3) Lf(~)—f(o)j/~. (3.13)

where

y, (E)= ch 8(x). (3.10b)

The integration in (3.10b) is from Ei to E. The same
sort of result is obtained for the integral from E~o to
E20 with the exception that the integral defining &2 is
taken from E~ to E. It can be shown that the terms
involving fp from the two intervals cancel for small B.
The integration to find $1(E20) )or &2(E20)j is made
dif6cult by the fact that 0 depends upon E. However,
one may integrate from E3O to an intermediate energy
small enough that the change of Q may be neglected,
but large enough that 8 may be neglected in continuing
the integral to E». It is important to note that the
cancellation is not obtained if 8 is set to zero before
evaluating the p's.

It is, however, permissible to set 8=0 to obtain the
@ in the second term in (3.10a). This can be shown by
direct calculation, but the following simple argument
should suffice. Setting 8 to zero affects the values of g
only over a very small energy range. Therefore, it does
not affect the integral of @, but the first term in (3.10a)
involves evaluating P for the small argument. The
formulas for the g's are then

)(E—E2) (Ei—E2) q

Snp (Q(E1—Ep) (1+1)2)

~(E—E,)(E,—E,) ~

gn, (n(E,—E,) (1—.)21

(3.11a)

(3.11b)

Formulas (3.7a), (3.9), and (3.12) then gjve the
complete susceptibility. It can be shown that if E&—E3
=E3—E2 and v=0, the contribution of the term I to
the susceptibility is the same as our rough estimate
(3.2).

For the case that Ei&E2)E3, we have ESO=E3,

The expression for I becomes

~f1 [ ' ( ~f t
dE

I
— le2. (3.12)

aE) &z, ( aE&

This formula goes over to the "two-dimensional" result
as 6 approaches zero, yielding a susceptibility which is
proportional to the derivative of the Fermi function
evaluated at the degeneracy energy. The numerical
coeKcient in (3.13) is about 5% different from that in
reference 5. The discrepancy is due to the different
methods of calculation. A direct calculation for the
"two-dimensional" case using the method of this paper
agrees with the limit of (3.13), so that it is the correct
result. For the case, E~ ——E3, the Euler formula is not
valid starting from the level for which m=0. However,
if the m=0 levels are included exactly and the sum
formula used from v=1, the calculation is valid. The
result in this case also agrees with the limit of (3.12).

If the temperature is very high, so that kT is much
greater than ~E1—Ep~ or ~E2—Ep(, then the "two-
dimensional" result holds for the entire susceptibility.
At low temperatures the integral term (I) is much more
important than the difference term (D) (which is
always paramagnetic). In the high-temperature limit,
the integral term gives a contribution equal to 1.5 of
the total, and the diAerence term cancels the extra 0.5.

We have programmed an electronic computer to
evaluate the susceptibility formula numerically. The
integrations are done by Simpson's rule, using enough
intervals so that the final result is good to ~0.1)&10 '
emu/g. The results for a particular set of band param-
eters are shown in Fig. 1. The results represent the
carrier diamagnetism, i.e., the contribution to the
orbital diamagnetism from the states near in energy to
the Fermi level. We estimate that the carrier dia-
magnetism with the magnetic field perpendicular to
the c axis is very small. Firstly, the "cyclotron effective
masses" are about twelve times heavier than those for
the parallel case. ' Secondly, the interband interaction
does not have a large eGect in this orientation, so that
the Landau-Peierls formula is valid. For the same yo
and yi, the Landau-Peierls formula gives about one-
seventh of the present result for the field parallel to the
c axis. ' Thus the carrier diamagnetism perpendicular
to the c axis is about one-thousandth of that for the
parallel case, so that our results represent the anisotropy
in the carrier diamagnetism. If all other contributions
are isotropic we may compare our results with the
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Fro. 1. The magnetic susceptibility of graphite. The circles
represent the data of Ganguli and Krishnan (reference 18). The
curves are calculated for the following band parameters: pp=2. 8
ev, F1=0.27 ev, F2=0.02 ev, y4= —0.03 ev, y5=0.02 ev, and
6=0.025 ev. The straight line is the "two-dimensional" suscepti-
bility for F0=2.8 ev and &=0. The numbers on the curves give
the Fermi level in ev. The 0.027-ev level corresponds to pure
graphite. The 0.05 ev level corresponds to 10 4/atom more
electrons than holes; while the levels 0.02, 0.0, —0.05, and —0.10
correspond, respectively, to 0.25X10 ', 1.0X10, 3.7X10, and
6.6X10 more holes per atom than electrons per atom.

measured susceptibility anisotropy. "The diamagnetism
of the inner shell electrons, and the Pauli spin para-
magnetism are isotropic. Pacault and Mar chand"
assume that there is also a London-type diamagnetic
anisotropy. They empirically extrapolate the results for
aromatic molecules to graphite, obtaining about —1

&&10 ' emu/g. However, we have recently been able to
to show that the London diamagnetism and the carrier
diamagnetism are the same for graphite. " In Fig. 1,
we compare with the directly measured anisotropy.

Calculations have been made for a variety of values
of the band parameters. As might be expected, the
high-temperature susceptibility is determined by &0

alone. For values of the parameters of the order of
magnitudes deduced from the de Haas-van Alphen
effect and cyclotron resonance, the susceptibility at
1000'K is about 90% of the "two-dimensional"
susceptibility. The only other parameter which has an
appreciable effect upon the value of the susceptibility
above 300'K is y~. The values of yo and y~ used in
Fig. 1 were chosen to 6t the experimental curve at high
temperatures. If the experimental magnitude is reduced

by 1)&10 s emu/g, the values of both parameters are
reduced approximately 0.1 ev. The value of ys'/yt for
the parameters in Fig. 1 is somewhat different from
the value deduced from the de Haas-van Alphen effect
and the cyclotron resonance. Reducing their magnitudes
increases the discrepancy. At 100'K, the parameter 6
has an effect, and its value was chosen to obtain

20 A. Pacault and A. Marchand, Compt. rend. 241, 489 (1955).
2' J. W. McClure, J. chim. phys. (to be published).

agreement at that temperature. The other parameters,
if kept within reasonable limits, have no effect upon the
value of the susceptibility. The values of these param-
eters used for Fig. 1 were chosen to give rough agree-
ment with the de Haas-van Alphen efFect. The param-
eters used give the correct de Haas-van Alphen periods,
and electron and holes masses of 0.03mo and 0.06mo
(where ms is the free-electron mass) for a Fermi level
of 0.029 ev.

Note that in Fig. 1 the susceptibility versus temper-
ature curves are given for a variety of Fermi levels. In
this paper, we are chief concerned with pure graphite,
which corresponds to a Fermi level of approximately
0.027 ev for the band parameters used. However, the
curves for the other Fermi levels should represent the
behavior of impure graphite. In the three-dimensional
band structure, the Fermi level for a constant excess
(or deficit) of electrons over holes depends very little
upon temperature. Thus, each curve in Fig. 1 corre-
sponds approximately to the excess of electrons or holes
noted in the caption. We shall not attempt to make a
detailed comparison between these curves and the
experiments, though the results seem to be qualitatively
in accord with bromination results" if it is assumed
that 2% of the bromine atoms are ionized. This estimate
differs by a factor 10 from that in reference 22. It is
interesting to note that the curves predict a maximum
in the susceptibility as a function of temperature for
very impure graphite. To the author's knowledge, such
a maximum has not yet been observed.

The calculations presented above are valid in the
limit of very small magnetic 6elds. However, there is
experimental and theoretical evidence that the results
can apply to the actual measurements. Lumbroso-Bader
and Marchand" have carefully searched for Geld
dependence of the susceptibility of purified single
crystals. They 6nd that the variation at room temper-
ature is less than 0.5% from 3 to 12 kilogauss. From
the present derivation, we see that Geld dependence
would be important when 8 is greater than (E—Es)Q
over an appreciable fraction of the energy range. For
a 6eld of 10 kilogauss, 8 is about 10 ' ev. As 0 is usually
about 1 ev, the fact that 3C is not zero afFects only a
small part of the total energy range. Also, we have
used an electronic computer to calculate numerically
the susceptibility at 6nite 6elds. The effect of the two
lower bands, if completely full, was calculated by the
Euler-Maciaurin sum formula, and the free energy
sums for electrons and holes calculated term by term.
The results at'50 kilogauss agree within 2% with those
from formula (3.12), except at low temperatures where
the de Haas-van Alphen effect is important. Thus at
10 kilogauss we would expect the variation to be less

than 1%.

"G. R. Hennig and J. D. McClelland, J. Chem. Phys. 23, 1431
(1955).

»N. Lumbroso-Bader and A. Marchand, Compt. rend. 248,
3433 {1959).
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4. DISCUSSION

The most important result in the present work is the
demonstration that the "three-dimensional" band
model is capable of explaining the observed diamagnetic
susceptibility. As the same model gives a good account
of several other properties, it seems to be well estab-
lished. Of course, the exact values of the parameters are
subject to revision.

It is appropriate here to discuss the relation of our
work to that of Pacault and Marchand. '0 These authors
have been able to obtain a good fit of experimental
susceptibility data for a wide range of graphite types.
They use a simple formula derived for a two-dimensional
electron gas. (The model specifies a constant effective
mass, and is not to be confused with the "two-dimen-
sional" band structure mentioned in this paper. )
Theoretically, our model should be more correct for
perfect graphite (though the agreement with experiment
is not better). However, the band structure we use
does not apply to small crystals, which have an energy

gap between the valence and conduction bands. On the
other hand, their model is plausible for the small
crystals. Marchand'4 has proposed that their formula
be reinterpreted for perfect graphite. Our results are
so complicated that we have not yet been able to show
the relation to their formula, though the numerical
agreement is good. We do make a conjecture concerning
the small crystal graphites. We note that increasing
(or decreasing) the parameter d, more than 2yi produces
an energy gap. "Though the effect of reducing the size
is certainly more complicated, changing 6 may give
the qualitative effect. The susceptibility for a large 5
would be given by (3.13) which resembles the formula
of Pacault and Marchand.

It is also of interest to compare our results with
general calculations of the conduction electron dia-
magnetism. In particular, we shall compare with the
treatments of Adams' and Hebborn and Sondheimer,
which yield complete formulas. These formulas are
general in that they include all eBects which contribute
to the low-field susceptibility; however, they do not
a priori apply to cases involving band degeneracy.
Their formulas are very complicated and contain many
terms, so it is of some value to see which terms corre-
spond to the large susceptibility we have calculated.
We may take a clue from formula (3.2), which as we
saw is responsible for the large value of the diamag-
netism. We replace the integral over o by J'&o'(&po')/
(Ei—Eo) (as in this simple case, e=po'a'/(Ei —Eo), in
the absence of the magnetic 6eld). We then obtain a
result proportional to the integral over k space of
(yo'/(Ei —Eo)7'f (o)/o. Now the difference between the
energies of the two middle bands (2 and 3) is 2o, so
that the expression has the form of the Fermi function
divided by an interband energy diGerence. These terms
are called xo and x4 by Hebborn and Sondheimer. (Of

"A, Marchand, Compt. rend. 245, 1534 (1957).

where r, s=i, 2, 31, 32 are the indices for the four
bands on the zone edge, n is the index for all other
bands, and I"„ is the matrix element of the x compo-
nent of the momentum. The eGect of this term, which
is analogous to the orbital angular momentum, is to
add to the Hamiltonian the following matrix:

0
D]$3C

0
0

DgpC 0
0 0
0 D3pK
0 0

0
0
0

—DagX,

(A.2)

course, we could perform the partial integration to get
a term containing Bf/Bo, but it would be multiplied

by the logarithm function which has no analog in
the general formulas. ) Furthermore, only the term

J (BN~*/Bx) (Bu~/Bko)dr in xi contributes a factor
Lyo'/(Ei —Eo)7', so that it is the source of the large
susceptibility. In the Adams paper, it is X3 which
contains the large effect. In particular, it is the part of
xs involving the operator s. In fact, Adams evaluated
X3 for a particular model and noted that it included
terms which had opposite signs in two bands, such that
there would be a contribution to the susceptibility if
the bands were not equally occupied. Next, we consider
the question of degeneracy. The general treatment
should give a correct result except when &=0. From
our calculation, we have seen that- the error at &=0
cancels out of the Anal result. Thus it appears that the
general formulas could be used to calculate the suscepti-
bility correctly for the three-dimensional case. Since
this is true, we must explain why the present method
was used. Firstly, the method used seemed simpler.
The evaluation of all the terms in the general formula
would be a formidable task. Secondly, the method used
provides more insight into the cause of the large
diamagnetism, though it is hoped that an even better
physical understanding can be gained in the future.
Lastly, it provided a careful investigation which
justifies the use of the general formulas.

APPENDIX A

We shall now discuss the eGect of higher order terms
which were left out of the Hamiltonian (2.2). The
higher terms come from the elimination by perturbation
theory of all states not included in the four-band
sub-Hamiltonian. There are two types of terms which
enter. There are those in which the quantity ff., in the
sub-Hamiltonian of the type (2.1) are replaced by the
operator z,+(ieX/ 5c)8/Bx„These . terms (above the
first order) have a small effect as the terms of higher
order in 0. have a small eBect. There are, however, other
terms which appear because the operator does not com-
mute with I~:„.For example, the second-order terms in the
operator contain a term which is linear in the magnetic
field and is given by
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The above matrix can be found by using the form for
the general momentum matrices found by Slonczewski.
From that work we have an important result: all of
the subgroups possible at a general point on the zone
edge are included in the four bands. This means that
when (2.2) is treated exactly, it includes effects of the
type represented by (A.2). Let us illustrate this state-
ment. Suppose that we are dealing with a case in which
E1, E2, and E3 are all diferent. Further, suppose that
we are interested only in the two bands derived from
31 and 32, so that we may eliminate bands 1 and 2 by
perturbation theory. We would then find in our two-
band sub-Hamiltonian terms like those given by D»
in Eq. (A.2). The same kind of argument holds if we
eliminate bands 31 and 32 and keep bands 1 and 2. Of
course, if E1 or E~ is equal to E3, we cannot use pertur-

bation theory, but the type of interaction does not
change. As the differences between E1 or E2 and E3 are
of the order of tenths of electron volts, and as the
nearest state in energy to the four bands of interest is
several electron volts away, the eBect of the terms in

(A.2) must be small compared to those already present
in (2.2).

Still higher terms could contribute. For example,
the fourth-order terms produce the analog to the
free-atom diamagnetism. We will not give a complete
discussion of the higher terms. However, we have
shown that the second-order terms are negligible, and
the order of magnitude of the fourth-order terms is

probably of the order of the free-atom diamagnetism,
which is small (0.5&&10 ' emu/g).
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Infrared absorption is studied at near liquid helium temperature for n- and p-type degenerate samples
of various carrier concentrations. The absorption in p-type samples, at photon energies larger than the
energy gap, depends on the hole concentration. The results show that the valence band is warped and that
the energy at 0=0 is very close to the maximum energy of the band. A step in the absorption of n-type
samples is observed which gives an estimate of 0.012m for the effective mass of light holes. The long
wavelength absorption in p-type samples is characteristic of intervalence band transitions.

INTRODUCTION
' ' NFRARED studies of indium antimonide have con-
~ ~ tributed a large amount of experimental information
about the conduction band which is consistent with a
model of an energy minimum at the center of the Bril-
louin zone and an effective mass varying with energy.
Observations of a change of absorption edge with the
concentration of conduction electrons'' gave a rough
estimate of the effective mass for the conduction band.
Consistent values of the effective mass have been ob-
tained from various types of experiments including

cyclotron resonance, ' reRection and absorption at long

wavelengths, 4 Faraday rotation, ' and magneto-oscil-
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latory eGect. ' The reAection and absorption studies
made on samples of various carrier concentrations ex-
plored a considerable range of the conduction band,
giving the variation of eGective mass with energy. The
magneto-oscillatory eGect experiments gave an esti-
mate of the gyromagnetic ratio for the conduction
electrons.

Experimental information about the valence band,
including the results of infrared studies, is not as con-
clusive, as uncertainty is involved in the interpretation
of some of the observations. Theoretical treatments
suggest that the valence band resembles to some extent
that of germanium and silicon but that there may be a
number of energy maxima due to the lack of the center
of symmetry. ~ Estimates of the effective mass for
holes, varying from 0.1m to 0.2m, have been deduced
from diferent types of measurements ' for a compli-
cated band structure, masses obtained from diferent
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