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fluctuations from low-frequency noise measurements.
The frequency of the lower limit of the ~3 power law is
given by Lax as 2L2/TogD which, using the data of
Table III results in values of 80, 70 and 17 cps. These
are suKciently far above the lower turnover frequency
due to Tp to justify the procedure. Unfortunately, the
experimental data are not suKciently extensive in this
region to allow an experimental estimate of these fre-

quencies for comparison. However, the spectra are not
inconsistent with these values.
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The properties of the low-lying states of the antiferromagnetic chain are studies by means of a variational
method. A trial wave function is exhibited which has an energy very close to that of the correct ground
state and which displays a long-range order.

I. INTRODUCTION

E are concerned, in the present work, with a
system of X atoms of spin —', arranged on a line

and coupled together by an interaction described by
the Hamiltonian operator

The quantity J is the exchange integral and is positive
for an antiferromagnetic lattice. The operator e, is
the Pauli spin operator associated with the jth atom
in the line. The sum over j extends over all the atoms
in the system.

Several authors' 4 have examined this problem by a
method that consists in writing the Hamiltonian (1) in
terms of anticommuting operators. The expression (1)
can be written in the form

and

v(klk2kgk4) expLg(kl k2)]6(kl k2+kg kg) (6)

The wave number k takes the values 2srrt/N, in which
n is an integer and where two wave numbers k and k'

diGering by an integral multiple of 2~ are to be con-
sidered identical. The symbol A(k) is unity when k is
zero or an integral multiple of 2m, and zero otherwise.
The operators 2/e(k) and 2/(k) satisfy the anticommuta-
tion relations characteristic of operators representing
the creation and destruction of Fermi particles, i.e.,
we have

(7)
and

where

and

Qs 2/*(k)rt(k) =-'.N+-,'P; o,&*&.

The operator (2) has been discussed in more detail
elsewhere. 4 It will be suKcient here to remark that, as
the ground state is a singlet, 5 we need only consider

Bs Qg, e(k)rt*(k)r/(k), ——
states in which there are N/2 Fermi particles present.
This is immediately understood by looking at the

as =2JN ' P v(krkgkgk4)r/*(kr) rt (kg) 2/*(kg) 2/(kg), (4)
k1k2k3k4

with
s(k) = —2J(1—cosk),

~ Supported in part by the U. S. Atomic Energy Commission.
)On leave of absence from the Rijksuniversiteit, Utrecht,

The Netherlands.' Y. Nambu, Progr. Theoret. Phys. (Kyoto) 5, 1 (1950).
2 I. Syozi, Busseiron-Kenkyu 59, 55 (1951).' K. Meyer, Z. Naturforsh. lla, 865 (1956).' S. Rodriguez, Phys. Rev. 116, 1474 (1959).

The ground-state energy of (1) has been calculated
exactly by Hulthen' using a method invented by Bethe. '
Approximations to the ground-state wave function,
using the variational principle have been given by

' W. Marshall, Proc. Roy. Soc. (London) A252, 48 (1955}.
6 L. Hulthdn, Arkiv Mat. Astron. Fysik 26A, Xo. 1 (1938).
2 H. A. Bethe, Z. Physik 71, 205 (1951}.
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II. THE WAVE FUNCTION

In this section we shall construct, by a variational
procedure, a low-lying wave function for the operator
(2). In order to do this we introduce new creation and
destruction operators as follows:

P(k) =cosP@(k)]ri*(k)+sinPP(k)]ri*(k+s. ), (11)

where P(k) is a real function of k satisfying the condition

@(k+s.)= —
(t (k). (12)

From (11), (12), (7), and (8) it follows that the
operators P(k) and $(k) also satisfy anticommutation
relations. The function qb(k) will remain arbitrary
subject to the constraint (12).The transformation (11)
is analogous to the transition from plane wave states
to Sloch waves in the electron theory of metals. If
g(k)—=0, P(k) and r)*(k) are identical. Equation (11)
can be inverted to give

g*(k)=cos[-,'(t (k)]P(k) —sinl sr/(k)]P(k+m). (13)

We now construct our trial wave function

several authors. ' These states are constructed in order
to ascertain whether or not there is a long-range order
in the low-lying states of the antiferromagnetic chain.
Of particular interest to us is the work of Kasteleijn. '
He constructed a wave function for which the expecta-
tion value of

&-=s~Z [g "g~+)" 1—]
+rg(1 (r) p. [g .( )g . r(*)+g .(w)g. $(v)] (10)

is rather low for all values of n in the range 0&~n~& 1
Here n is an anisotropy parameter. When 0.=0, H
reduces to (1).The axes x, y, and s are three orthogonal
directions. Examination of Kasteleijn's state reveals
that the long-range order is zero for n less than a
critical value ao and then increases rapidly beyond this
value. Also, it is found that there is a discontinuity in
the derivative of the short-range order with respect to
the anisotropy parameter. Orbach' re-examined the
work of Kasteleijn and showed that the latter behavior
is spurious, thereby casting doubt on the validity of
Kasteleijn's conclusion in regard to the behavior of
the long-range order.

The purpose of this paper is to exhibit a trial wave
function for (1) for which the energy is very close to
the correct ground state. It will be proved that this
state displays a long-range order suggesting (in con-
tradiction to Kasteleijn's work) that the ground state
probably is an ordered state.

1 2 2 2
+ p-(4)—+ ,9 '(4—)+ ,p '(—&), (15)

2 7r'

and
p)v($) = —s.S ' P„cosm cos$(m),

(I~(@)=s E 'P „—sing(m).

(16)

(17)

If we let S approach ininity

ti3w'/2

p~($) ~ p(p) = —— cosm cosp(m)dm, (18)

and
~3+/2

g)v(y) ~ (t(y) =- sing(m)dm.
2 ~~/2

If P—=0, then'4

lim""XJ
t'1 2 2l= —

(
-+-+—

I
= —1.3393.

(2 m m')
(20)

We remember now that p(m) is at our disposal.
Let us consider an arbitrary variation 8&(m) of P(m).
The energy E(P) will be an extremum for @(m) if the
corresponding variation 8E of Evanishes. This condition
leads to the integral equation

[~+2p(p)] cosm sing(t)r)+2q(p) cosg(m) =0 (21).
The functions P(@) and. (7(P) are integrals that depend
on P. Equation (21) can be solved if we notice that the
solution (in the range ~/2&m&3s. /2) must be of the
form given by the equation

tant)() (m) = —P/cosm, (22)

where P is a constant to be determined later. For this
function we have"

and

~x/2

p= y (1—y' sin'(t) —l cos'Hde=yB(7'), (23)
~o

C= (1—v')'
p7r/2

(1—y' sin'e) —&de= (1—7')~E(y') (24)

interval m/2(m(3)r/2 and ~0) is the vacuum state
[i.e., the state for which q*(k)))(k) ~0)=0 for all k].
The reason for the choice of interval given above is
that the state (14) gives the lowest unperturbed energy
IIO. The expectation value of H for this state is obtained
after some tedious but straightforward computation.
The result is

&(@)= (v (0) I &I ~(4))

~(4)=II- $*(m)10&. The parameter p is defined by
Here nz takes all the values of the wave vector k in the 7= (1+m)-'. (25)

P. W. Kasteleijn, Physica 18, 104 (1952), see also references
4, 5, and6.' R. Orbach, Phys. Rev. 112, 309 (1958).

"For the dennition of the functions B, X, and D see E. Jahnke
and F. Kmde, Tc'bles of FNnctzons (Dover Publications, New
York, 1945), pp. 73—85.
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TAm, K I. Expectation value of the energy and order parameters
for several trial wave functions.

Wave function
Weel State'
Singlet pairs'
Hulthen (first approximation)
~(0)
Hulthen (second approximation)
cp(p) (present work)
Exact solution

E/J—1V
1.0000
1.2500
1.3156
1.3393
1.349
1.3646
1.3863

~ ~ ~

0.2633

PI—1—0.5—0.54—0.4052
~ ~ ~

—0.59—0.5962

a For the definitions of these states see reference 4.

Substitution of (23) and (24) into (21) and (22) yields
the following trascendental equation for p

pD(y2) =m-/2. (26)

we obtain
p~=Q—& Q. (r.(&)(r. (&) (28)

w(e) = (( ((t) IP»I 2 (4))
(2/~)2(1 ~2)I K2(~2)»2(~2) j

if X is even (00)
(2/~) 2 (1 ~2)K2 (~2) (~2/~2) L» (~2)

+»+~(y2)]2 if X is odd, (29)
where

cosXOd8
»(v')—=

~ p (1—y2 sin'0)'
(30)

Two quantities are of particular interest: the long-
range order p defined as

p= i)m p»(4), (31)

and the short-range order p((X=1). As 12(2q(y2) ap-
proaches zero as X becomes large we have

p = (2/2r)2 (1—y2) K2 (y2) =0.2633. (32)

From (29) we also obtain

p) = —0,59. (33)

Another order parameter frequently used is the
fractional number of spins pointing in the positive
direction of quantization on the sublattice formed by

Numerical solution of (26) gives y =0.9505. The
corresponding value of the energy is

E(P)= —(2N J/2r')K'(p') = —1.3646KJ. (27)

In Table I a summary is given of the results of several
calculations. We also give some of the order parameters
defined below.

We turn out attention now to the study of the order
properties of our trial wave functions. A measure of
the order is, for example, the correlation of the s
components of the spin of two atoms a distance X

apart. Here the s-direction is the axis of quantization.
In principle, one should calculate ((2; (2,+),) but this
turns out to be extremely difficult. If we define

0 .(6)—L(0 .(*)~20 .(W)) (34)

For the state &p(g) we obtain

f(4) = (~(4) lf I ~(4))= l+~ '(1—v')'K(v')
= 0.7566. (35)

In the opinion of the authors, the value of f((t)) is not
as faithful a measure of order as p. In fact, associated
with q(P) there is a state vector (p( —p) which gives
the same expectation value of the energy of the system.
Physically &p(

—P) is obtained from (p(g) by reversing
all the spins of the system in all terms constituting
(pQ). One can easily show that the states y((t) and

p( —p) are asymptotically orthogonal, i.e. , that their
inner product becomes vanishingly small as E ap-
proaches infinity. Each of the state vectors

4+=2 '*I:v (4)~v( —4)j (36)

has an expectation value of the energy E(P+) =E(g).
For the states P+ the expectation value of f is —',, i.e.,
there are X/4 spins pointing in the upward direction
in the even sublattice. It is interesting to observe that
low-lying states exist for which the net magnetization
of the sublattices formed by atoms in even and odd
positions are nonvanishing. These considerations are
enough to show that the results of Kasteleijn' are
spurious. Incidentally, it is a very simple matter to
prove that for the true ground state the expectation
value of f is also -', . In fact, the ground state can be
written as a linear combination of states

I t() in
which each atom is in an eigenvector state of the
operator 0,(') (the z-direction is the arbitrary direction
of quantization). Only such states Ip) for which the
total spin in the s direction vanishes will appear with
non-zero coefficients in the expression of the correct
ground state. Reversal of all the spins of the system
will reproduce the ground-state wave function except
perhaps for a constant factor of absolute value unity.
Thus the states lt() and

I p) each of which is obtained
from the other by Ripping all the spins have the same
probability amplitude in the expansion of the ground-
state wave function. Thus, it becomes obvious that, for
the true ground state of the antiferromagnetic lattice
f= ,'. However, if the -system is known to be in a state
such as p(g) at time t =0 it will take a time of the order
of years before it will be in the state 22( —g)."Then, if
the system is in 22(p) at time t=0 it will display a net
magnetization in each of the two sublattices (formed
by atoms in even and odd positions) during a rather
long period of time. Nevertheless, we prefer p as a

"P.W. Anderson, Phys. Rev. 86, 694 (1952).

atoms in even positions in the chain. Such an order
parameter is obtained by forming the expectation
value of the operator

f +——& P . (1+aim j)(r,(+)& (—)

where
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measure of the long range as the operation of reversing
all the spins of a state leaves p unchanged. There is
another more important reason for this choice. The
idea of ordering of an antiferromagnetic lattice arises
mainly from the results of neutron diBraction experi-
ments. In neutron diRraction one can show that the
system will display a superlattice structure if its
low-lying states have nonzero components' of the
tensor"

A(k)
I

27F'

AQT

(y=

y=l

which change sign as X changes from even to odd values.
Here e;(t) is the Heisenberg operator defined as follows

o, (t) =exp(itH/A)o; exp( itH—/5), (38)

and t is the time. The parameter p is one of the compo-
nents of (37) for t=0.

We conclude this work with two remarks. Firstly, the
transformation (11) is equivalent to introducing new
one-particle wave functions for the solution of the many
electron problem. It is, in this sense similar to the
Hartree-Fock approximation where the best one-
particle wave functions are obtained by an iteration
procedure. The new states have an implicit periodicity
which is twice that of the real system. From the
physical point of view this periodicity is obtained if
the sublattices of even and odd positions have net
(opposite) magnetizations. This was also obtained by a
semiphenomenological theory which led to the present
work. We expect, as in the theory of metals, that this
periodicity will produce a gap in the energy spectrum
of the antiferromagnet and such behavior is, in fact,
obtained in the present theory. The expectation value
of the energy of the state

F (w/2 e)k(w/—2+ a) v (4)

was calculated in the limit e=+0. A comparison with
the energy of the ground state (27) gives the numerical
value hE= 2.07J for the energy gap. This should not be
regarded as a proof that a gap in the spectrum of the
antiferromagnetic lattice exists but rather as an indica-
tion that such a behavior is possible. A similar result
has been obtained by des Cloizeaux" by a different

'2 L, van Hove, Phys. Rev. 95, 1374 {1954)."J.des Cloizeaux, J. phys. radium 20, 606, 751 (1959).

Fro. 1.A (k) as a function of k for several trial wave functions and
for the exact so1ution of the antiferromagnetic chain.

method. Secondly, we remark that a measure of the
accuracy of the trial wave function (14) can be obtained
by calculating the function A(k) as introduced by
Hulthen' and Orbach. '

—,'XA (k)dk is the average
number of spin-wave states in the ground state with
wave numbers lying in the interval (k, k+dk). For the
spin waves one must take the excitations created by
the operators rf~(k) because the exact ground-state
energy [see Eq. (52) in reference 9] is

fQ
2x

Ep= 1V e(k)A—(k)dk,
2 vo

with e(k) given by (5).Using (13) and (14) the function
A (k) for our trial wave function is

A(k) =w-'(~*(k)~(k))
= (2s.) '[1—y cosk(1 —y' sin'k) &j. (39)

This function is plotted in Fig. 1 together with the
values obtained for the exact ground state, s the Noel
state (y=0) and the state for which /=0, i.e., y= 1.
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