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Surface Elastic Waves in Cubic Crystals*
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A theoretical investigation of surface elastic waves in cubic crystals has been carried out using a theory
developed by Stoneley. The range of elastic constants for which Rayleigh type surface waves exist on a (100)
free surface has been determined. For other allowed values of the elastic constants generalized Rayleigh
waves exist which are characterized by complex attenuation constants. In either case waves may not be
propagated in certain directions parallel to the surface depending on the values of the elastic constants. A
lattice dynamical theory of surface waves has been developed for a monatomic simple cubic lattice with
nearest and next nearest neighbor central forces and angle-bending forces involving successive nearest
neighbors. The surface waves exhibit dispersion when the wavelength is comparable to the lattice spacing.
In the case of Rayleigh waves a critical wavelength exists, in general, such that for shorter wavelengths the
atomic displacements show a reversal in phase between successive layers parallel to the surface.

I. INTRODUCTION

HE existence and properties of elastic waves on
the surface of a solid have been the subject of

investigation since the time of Lord Rayleigh. Seismol-
ogists such as Stoneley' and Press and Ewing' have been
interested in the possible interpretation of seismic waves
in terms of various types of surface waves in either a
semi-infinite solid or a material made up of many layers.
In engineering applications of crystal plates' such as to
frequency control, surface waves have been considered
as limiting cases of extensional or flexural modes at high
frequencies. The properties of many semiconductor de-
vices are strongly influenced by surface characteristics,
e.g., the mobilities of electrons and holes in surface
layers. An understanding of surface waves and their
interaction with current carriers may contribute to our
knowledge of these mobilities. Finally, the physical
properties of very small crystal particles may be in part
determined by surface modes of vibration. For example,

specific heats and optical absorption coeKcients of very
finely powdered crystals may exhibit e6'ects due to
surface waves.

The first investigation of surface waves was carried
out by Lord Rayleigh' who discussed the case of waves
at the surface of a semi-infinite isotropic medium. These
waves are characterized by an exponential decrease of
displacement amplitude with increasing distance from
the surface and as customary will be referred to as

*A preliminary account of this work was presented at the
New York meeting of the American Physical Society, January
27—31, 1960 [Bull. Am. Phys. Soc. 5, 40 (1960)g.

f Consultant to the Research Laboratories, General Motors
Corporation.' Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1887).

2R. Stoneley, Monthly Notices Roy. Astron. Soc. Geophys.
Suppl. 5, 343 (1949).' F. Press and M. Ewing, Trans. Am. Geophys. Union 32, 677
(1951).

4H. Deresiewicz and R. D. Mindlin, J. Appl. Phys. 28, 669
{1957).

Rayleigh surface waves. For straight-crested Rayleigh
waves in an isotropic medium the displacement of a
point executes an ellipse in the sagittal plane, i.e., the
plane normal to both the bounding surface and the
wave front. Another type of "surface" wave, which has
been treated by Love, ' involves transverse shear de-
formation and occurs in an isotropic slab of infinite
length and breadth resting on a diGerent semi-infinite
isotropic medium.

The existence of surface elastic waves in anisotropic
media has been investigated by Stoneley' who considered
the special case of cubic symmetry. Other work on sur-
face waves in anisotropic media includes that of Gold'
on cubic crystals, that of Deresiewicz and Mindlin4 on
monoclinic crystals, and that of Synge.

Stoneley showed that in cubic crystals Rayleigh-type
surface waves exist for certain values of the three elastic
constants cia, cl2, and c44 but not for others. In the latter
cases a real phase velocity is associated with attenuation
constants which are complex rather than real. This im-
plies that the displacements contain components which
vary with distance from the free surface as the product
of a trigonometric function and an exponentially decay-
ing function. Surface waves of this type will be referred
to as generalized Rayleigh waves. Synge has recently
given a formal treatment of the various types of surface
waves which may occur in anisotropic media. Synge
found that surface waves may not propagate in certain
directions for particular values of the elastic constants.

Another approach to vibration problems in crystals
is provided by considering the material as a lattice of
interacting discrete particles rather than a continuum.
Theories of surface modes of vibrations in crystals have

'A. E. H. Love, Some Problems of Geodywamscs (Cambridge
University Press, London, 1911),Chap. XI, p. 160.

6 R. Stoneley, Proc. Roy. Soc. (London) A232, 447 (1955).
7 L. Gold, Phys. Rev. 104, 1532 (1956).
s J. L. Synge, J. Math. and Phys. 35, 323 (1957).
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been discussed from the discrete atomic point of view

by Lifshitz and Rosenzweig' and by Wallis. "Lifshitz
and Rosenzweig employed a technique comparable to
that used by Montroll and Potts" in their investigation
of localized vibrational modes at point defects. They
found that two types of surface modes may exist in
diatomic crystals, one analogous to Rayleigh waves and
a second type derived from the optical branch and
having no analog in continuum theory. This second type
of surface mode was also found by Wallis.

The work. of Lifshitz and Rosenzweig' is primarily
formal, and it is not clear that their method is easily
adapted to calculations based on realistic models. The
work of Wallis" is based on very specialized models.
For these models the surface modes disappear if the
lattice becomes monatomic and are replaced by ordinary
bulk modes.

In the present paper we report the results of an in-
vestigation of surface elastic waves in cubic crystals
from both the continuum and discrete particle points of
view. We employ methods which are sufficiently Aexible
so that detailed calculations can be carried out for
realistic models. Using Stoneley's' continuum treatment
of cubic crystals we have studied the nature of the sur-
face wave displacements, velocities and attenuation
constants for various possible values of the elastic con-
stants c~~, c~2, and c44. The discrete particle method has
been applied to the study of surface wave characteristics
in the monatomic simple cubic lattice. Nearest and next
nearest neighbor central forces and angle-bending forces
involving successive nearest neighbors were assumed.
For wavelengths long in comparison with the inter-
atomic distance the discrete particle theory, as to be
expected, yields results equivalent to those of the con-
tinuum theory. When the wavelength becomes com-
parable to the interatomic distance the particle theory
leads to dispersion, whereas the continuum results re-
main nondispersive for all wavelengths, since the con-
tinuum solutions can be scaled.

II. CONTINUUM THEORY

A. Frequency Equation

Our treatment of the continuum theory of surface
waves in cubic crystals is based on that of Stoneley.
We present only those of his results which are needed
in the subsequent discussion.

Consider a semi-infinite continuum of cubic symmetry
bounded by a principal plane a=0 which is free of
traction. At any point x, y, s in the medium the dis-

placement components u, v, m, are assumed to be of
the form

(N, w, w) = (U, V,W) exp~L —qs+i(le+my —6)), (1)

I. M. Lifshitz and L. N. Rosenzweig, J. Exptl. Theoret. Phys.
18, 1012 (1948).

'0 R. F. Wallis, Phys. Rev. 105, 540 (1957)."E.W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).

g1 ~11/~44)

g2 =&u/&44,

p =pc /cg4,

(3)

in which the c;; are the well-known elastic constants
and p is the density.

Equation (2) is a bicubic in q and p. Thus to a given
velocity-ratio p correspond three values of the square of
the attenuation constant q. The displacements I, e,
and w given by Eq. (1) decrease toward zero as s
increases provided that the constants q; are positive real
numbers or complex numbers with positive real parts.
This is possible if all three of q, as given by Eq. (2)
are either positive or complex. The amplitudes U, , V, ,
and iW; corresponding to any q, are given by

U; U, i';
=E,, j=i 2 3 (4)

where

kj= (~'+em' —p' —qj') (p'+eqj' —1)—m'qj'(g2+1)',

n =~m(g +1)tq'(g +1 g~)+1 —p')— (3)

f =~q (g +1)L '(g +1 g) ~'+P'+—q').—

Thus under the stated restrictions on q;, the general
values of the displacements which satisfy the equations
of motion and, in addition, tend to zero as s tends to
inanity are given by

Xexp~t —
q,s+i(h+my —cj)). (6)

The ratios of the E; are determined by use of the bound-
ary conditions which are that the stresses on the bound-
ary plane vanish. LSee Stoneley' Eqs. (10).)

Substituting Eqs. (6) into Stoneley's Eqs. (10) one
obtains a homogeneous linear system of equations with
three unknown variables E;. A nontrivial solution is
obtainable if

D(p)= ( f j~ =0, (i, j=1,2, 3),
where

f»=6 j qjG—
f»=mf j qjW~-
faj =l)j+mrjj+ (cll/c12)qji j

where c is the phase velocity, ~ the wavenumber, and q
the attenuation constant. Substituting Eq. (1) into the
equations of motion Lsee Stoneley' Eq. (4)) one obtains
a set of linear homogeneous algebraic equations for the
amplitudes U, V, 8' whose nontrivial solution requires
that

g&P+m' —p' —q' lm (g2+1) lq(g2+ 1)
lm(g, +1) P+g~m' —p' —q' mq(g, +1) =0 (2)
~q(f2+1) mq(C&+1) p'+g&q

where
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Equation (7) may be used for the determination of
the velocity ratio p, for given elastic constants and
direction of propagation, as follows. For an assumed
value of p three values of q; are computed from Eq. (2)
and the corresponding values of $;, rt;, t'; from Eqs. (5).
These values are entered in Eq. (7) and the zero of D,
considered as a function of p alone, is determined by a
suitable approximation technique. In the present in-
vestigation an "interval halving" technique was used
which determines a root in a given range of the inde-
pendent variable within a specified small relative error.
When the velocity ratio p, satisfying Eq. (7) is deter-
mined, the corresponding displacement components are
derived according to Eqs. (6). The numerical computa-
tions were performed on an IBM 704 electronic digital
computer.

B. General Remarks

The characteristic Eq. (7) pertains to the general case
of wave propagation along any arbitrary direction
(l,m, 0) on the plane s=0. There is no a priori assurance
that any root p of this equation corresponds to a physi-
cally acceptable surface wave. The nature of the' attenu-
ation constants q; which are involved in the formal solu-
tion of the problem determines whether or not this
solution actually describes a surface wave. If all the q,
involved in the solution are positive real then the dis-
placement components decay exponentially with s, a
case defined in the introduction as that of Rayleigh-
type waves. However, two of the three roots q,~ of the
bicubic Eq. (2) may be complex conjugate. The corre-
sponding attenuation constants q; are also complex con-
jugate and the displacements associated with these q;
may be expressed in terms of products of trigonometric
and exponentially decaying functions of s (generalized
Rayleigh-type). Finally, if one or more of the three roots

q,
' of the bicubic are negative, the corresponding q; are

pure imaginary. The displacements associated with pure
imaginary q; do not decay with s and hence no surface
wave is possible in this case.

As seen from the derivation of the general character-
istic equation, for an arbitrary direction of propagation,
all three waves associated with the three attenuation
constants q; must, in general, be superimposed in order
to satisfy the boundary conditions. Furthermore, the
displacement components I and e are not necessarily
proportional to l and m. As a result, the movement of
every point in the continuum, as described by Eqs. (6),
is along an ellipse which is, in general, inclined with
respect to the sagittal plane. Exceptions discussed by
Stoneley are the case of isotropy and the two symmetric
cases, (/=1, m=0) and (i=m=1/2. As pointed out
by Stoneley, only two of the three waves associated
with the three attenuation constants q, are necessary in
these special cases for the possible composition of
Rayleigh-type surface waves. Furthermore, the motion
corresponding to these waves is executed in the sagittal
plane and is uncoupled from motion associated with the

third attenuation constant, which is perpendicular to
this plane. The latter motion accounts for Love-type
waves which will not be discussed in this paper.

The three special cases of physical or geometric sym-
metry are the only ones considered in detail by Stoneley
because of the considerable computational difFiculties
involved in the case of any other arbitrary direction of
propagation. Only one such direction was considered by
Stoneley for NaCl in order to demonstrate the character-
istics of motion in the general case. However, in his
investigation of a limited number of materials, Stoneley
gave an indication of what is to be expected from a more
detailed investigation of Rayleigh-type waves. He found
that such waves are possible for some materials of cubic
symmetry, e.g., NaC1. They are not obtainable in other
materials, e.g. , Al, for which the attenuation constants
are complex for /= 1, say.

As mentioned in the introduction, complex attenua-
tion constants yield displacements whose amplitude
varies with the distance from the free surface as the
product of trigonometric and decreasing exponential
functions. Waves which involve such displacements
were dered as generalized Rayleigh surface waves. It
is natural to ask what circumstances lead to one or the
other type of surface wave. In order to answer this and
other questions we have conducted an analytical and
numerical investigation, in the entire range of permissi-
ble elastic constants, as discussed in the following
sections.

C. Investigation of the Stable Region
of Elastic Constants

As is well known, the elastic constants cannot be
completely arbitrary if they are to correspond to a
physically stable material under arbitrary conditions of
strain. A well established criterion of stability is aGorded

by the condition that the strain energy be a positive
de6nite quadratic function of the strain components. "
This is true if the 6&6 matrix of elastic constants c;; is
positive de6nite. A necessary and su%cient condition
for this occurrence is that the discriminants of the
matrix c;; be positive. " For a cubic crystal the latter
condition yields the inequalities

cgg&0,

cz].—cy2) 0,

cn+2c~s) 0,

c44&0,

which determine the "stable region" of elastic constants.
In the plane g~=cn/c44 versus gs=c~s/c44 the stable

region is the sector which includes the positive g~ axis

n A. E. H. Love, Theory of Elasticity (Dover Publications,
New York, 1944), p. 99."R. A. Frazer, W. J. Duncan, and A. R. Collar, E/emeetary
Matrices (The MacMillan Company, New York, 1946), p. 30.
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/&44

FIG. 1. Region of stability of
cubic crystal continua. The bound
1 separates materials for which
only Rayleigh surface waves exist
from those in which generalized
Rayleigh waves may be propagated
in some or all directions. Excluded
directions of propagation are ob-
served for materials above bound
2. Also shown in this figure are the
line of isotropy and contours of
constant normalized phase veloc-
ity, c/c2, for waves in the (100)
direction.

and
gy R2 0)

&i+2&~=0)

and is bounded by the lines

(10)

continuity as the direction of propagation varies from
(100) to (110).Consequently we now direct our atten-
tion to these two special cases.

For waves in the (100) direction, the frequency equa-
tion degenerates into

as shown in Fig. 1.
%e now seek to establish the bound, or bounds, be-

tween subregions of the stable region corresponding to
materials which propagate the two different types of
surface waves, i.e., the Rayleigh and generalized Ray-
leight type. To this end we recall that the type of the
wave is determined from the nature of the associated
attenuation constants. It has already been mentioned
that, in general, these constants are the roots of the
cubic Eq. (2), provided that this equation and Eq. (7)
are simultaneously satis6ed for an appropriate value of
the frequency parameter, p. It is rather difficult to in-
vestigate the nature of the roots q; for the general case
of arbitrary direction of propagation. This is so because

p cannot be obtained explicitly in terms of the q;, and
also, because the q, are obtained from a cubic equation.
However, in the special cases of propagation in the (100)
and (110)directions these difficulties disappear, and one
can perform a reasonably thorough investigation of the
attenuation constants. This investigation is fairly ade-
quate for our purposes since it is reasonable to expect
that any phenomena observed here display some sort of

(1—P') (&i'—&2'—& P')' —P'& (&
—P') =o (11)

and the attenuation constants of the two superimposed
waves are obtained from an equation quadratic in q',
namely,

(&i—P' —0') (1—O' —&iU')+I'(&2+ 1)'=0, (12)

as discussed by Stoneley. A transition from Rayleigh-
type to generalized Rayleigh-type waves occurs when
the two roots gP of Eq. (12) change from positive real
into complex. A condition for the transition is obtained
by setting the discriminant of Eq. (12) equal to zero.
Thus, one obtains a possible bound, hereafter designated
as bound 1a, from the simultaneous solution of Eq. (11)
and the discriminantal of Eq. (12) which is obtained,
after reduction, in the form

~i =P'(&i—1)'+2(&i+1) (&i+&2) (&2+2—&i)P'

+ (&i+&2) (&2
—&i) (&2+2—&i) (&~+2+&i)=o (13)

The approximate position of bound 1a can be estimated
by observing that in the plane g& versus g2 the straight
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line

or
g4+2 —gl=0,

Clm+ 2C44 —Cil =0, (15)

obtain

gl(gi —p')+(1—p') —(g2+ 1)'

& (gl —1)+(al+g2) (gl —2—g2) &0, (»)
(gl —p') (1—p') & (gl —1)(1—p') &o.

d2=16gl(g2+1)'(gl+g4) (g2+2 —gl))

and it is negative if

(16)

corresponds to the isotropic case. The left-hand side of
Eq. (13) is positive if Eq. (14) is satisfied, hence, one
always obtains Rayleigh-type waves for an isotropic
material, in accordance with Rayleigh's results. ' The
left-hand side of Eq. (13) is a quadratic in p' and hence
it is positive if its discriminant is negative. This dis-
criminant is

Hence, surface waves are always possible in the (100)
direction, on both sides of bound 1a.

A similar investigation can be carried for waves in
the (110) direction, leading to the derivation of bound
1b analogous to bound 1a. Bound 1b separates materials
which are characterized by Rayleigh type and general-
ized Rayleigh type waves in the (110) direction. Follow-
ing Stoneley' the frequency equation for this direction is

P') Lgig4
—g2' —P'gl)' P'gl(g4

g2+2—gl(0. (17)
where

g4 ——(1/2) (gl+g2+2). (23)

It follows that only Rayleigh-type surface waves may
exist for materials corresponding to points below the
isotropic line, Fig. 1, and hence bound 1a is located
above this line. Eliminating p between Eqs. (13) and
(11)one obtains an implicit function of gl and g2. Points
of bound 1a have been determined by selecting a value
for g2 and computing the corresponding value of g& by
iteration. For gj))1 and g2))1 it may be ascertained
that the bound 1a is approximated by its asymptote

where

d4=A p4+Bp'+C) (25)

The squares of the corresponding attenuation constants
are the roots of the quadratic equation

(g4 O' V')( ——P—' gle')+C'—(gn+ )'=o (24)

The discriminant of Eq. (24) may be obtained in the
form

where

gl g2+S)

s=1.778.

A= (gl-1)',
8= (g2+ 2—gl) (gi —3gl+ 2gg+2glg2),

C= (1/4) (g4+2 —al)
X (4g2 gl gglg2+ gg2 ggl 3gl g2 6gl ) ~

(26)

Vl'V~'= (al—p') (1—p')/gi.

In view of the location of bound 1a we may assume

gl& g2+S)
and (20)

g~) 1.

Then, under the verifiable assumption that p(1, we

It remains to be checked whether or not the attenua-
tion constants obtained on either side of bound 1a
correspond to amplitudes actually decreasing with in-
creasing distance from the free surface. In the region of
generalized Rayleigh waves, i.e., d&(0, it is always
possible to obtain two complex conjugate g; with posi-
tive real parts which yield displacements attenuated
with z, as may be seen from Eqs. (6). In the region of
Rayleigh waves, i.e., d»0, the two values of q,

' obtained
from the quadratic Eq. (12) must be both positive. A
check of the coefficients of Eq. (12) reveals that this is
so in the entire region d~&0. In fact, the sum and
product of the two roots q~' and q2' are

S'+92'= Lal(gl —p')+ (1—p') —(g2+1)')/gl

gl g2+S ) gl))1)
s'= 1.7037.

(27)

Just as in the case of waves in the (100) direction, we
find that surface waves are always possible in the (110)
direction. In the region d3&0 both the sum and the
product of the two q,', namely,

Vi'+ V2'= C:gl(g4
—p')+ (1—p') —(a2+ 1)')/a»

(28)
Vi'V2' = (g4—p') (1—p')/gi,

are always positive. In the region d3(0 it is always pos-
sible to take two complex conjugate q, with positive
real parts.

A transition from Rayleigh-type to generalized Ray-
leigh-type waves occur across a bound, hereafter desig-
nated as bound 1b, which is determined from a simul-
taneous solution of Eq. (22) and one derived by setting
d3=0. Again, it is seen that the line of isotropy lies
within the Rayleigh region (d4&0). The bound 1b is
estimated by eliminating p between Eqs. (22) and (25)
and computing g& as a function of g2, by iteration.
It lies slightly to the right of bound 1a, for relatively
small values of g~ and g2, it crosses bound 1a in the neigh-
borhood of g&=9, g2=7.2 and tends to an asymptote
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It has already been mentioned in the preceding that
it is rather dificult to conduct an investigation of waves
in an arbitrary direction of propagation along the line
used for the two directions of symmetry. It is conjec-
tured, and verified by our computations, that bounds
between regions of Rayleigh type and generalized Ray-
leigh type waves, which may be established for various
directions of propagation between (100) and (110), lie
in the neighborhood of the very closely spaced bounds
1a and 1b. For all practical purposes the lower of the
two bounds, i.e., the one with smaller g~ for the same g~,

may be considered as a physical bound beyond which
generalized Rayleigh-type waves appear for some direc-
tions of propagation. This lower bound, designated as
bound 1, is shown in Fig. 1. In the range of g~ and g2 in
this figure bound 1 coincides with bound 1b.

D. Excluded Directions of Propagation

While computing the phase velocity for various ma-
terials and diferent directions of propagation, it was
discovered that some materials are characterized by the
existence of an excluded range of directions of propaga-
tion. In this range no surface waves are possible of either
the Rayleigh or the generalized Rayleigh type. The
excluded directions are generally in the vicinity of the
(110) direction. It has been observed that for the ma-
terials in question one of the attenuation constants tends
to zero as the angle of the direction of propagation with
the (100) direction increases from zero to some critical
value 8,. Beyond 0, it is not possible to obtain the three
surface waves which are needed in order to satisfy the
boundary conditions. All of the materials examined
which involve an excluded range of directions of propa-
gation are within the region of generalized Rayleigh
waves, and it is the real attenuation constant which
vanishes at 8,. The question arises whether or not it is
possible to establish, within the stable region of elastic
constants, a bound between subregions which are char-
acterized by the presence or absence of excluded direc-
tions of propagation. The answer is afhrmative and
such a bound, denoted as bound 2, is shown in Fig. 1.
This bound is essentially a contour along which the
condition

(29)

is satis6ed. It is conjectured, and verified by numerical
computations, that this contour leaves all other possible
contours of 8,(~/4 above itself in Fig. 1.

All the materials corresponding to elastic constants
which lie above bound 2 are characterized by the exist-
ence of an "excluded sector" of directions of propaga-
tion, in the vicinity of the (110) direction. It should be
remarked, however, that a surface wave can always
propagate along the (110) direction, although this
direction is within the excluded sector. This is because
the Rayleigh or generalized Rayleigh wave in the (110)
direction is uncoupled from the wave corresponding to
the third attenuation constant which vanishes at 6,.

According to the preceding discussion the bound 2 is
determined from the simultaneous solution of Eq. (22)
and the equation

Eliminating p from these two equations one obtains

The line of g& as a function of g& given by Eq. (31)
has been computed numerically and is shown in Fig. 1.
It intersects the axis g~ at g~=4/3 and tends to an
asymptote

g,+s", g,))1,
5"=1.7939.

(32)

A comparison of this asymptote with the asymptotes of
bounds 1 and 1a of the preceding section shows that
bound 2 crosses these bounds at some points. This im-
plies that excluded directions may exist also for ma-
terials of the Rayleigh region, for relatively large elastic
parameters g& and g2 (i.e., relatively incompressible
materials). No further investigation of the region of
large g& and g2 has been deemed necessary at the present,
since no real materials of cubic symmetry have been
found in that region.

~4 American Institute of Physics Handbook (McGraw-Hill Book
Company, Inc. , New York, 1957), pp. 2—56, 3—81, and 3—83.

'~Solid State I'hysics, edited by F. Seitz and D. Turnbulk
(Academic Press, Inc., New York, 1958), Uol. 7, p, 276.

E. Numerical Computations

The phase velocity and attenuation constants were
computed for different directions of propagation be-
tween (100) and (110) and for various cubic crystals.
The materials considered include typical metallic sub-
stances (Cu, Al), alkali-halides (NaC1, KC1) and ma-
terials of special crystallographic structure (diamond,
P-brass). The elastic constants of all these materials, as
well as all other known cubic crystals lie within a rather
limited region in the plane g~, g2, as shown in Fig. 2.
Very few substances have a negative c», or g2. Virtually
all of the simple elements lie within the generalized
Rayleigh region, and most of them above bound 2.
Most of the alkali-halides are within the Rayleigh region.
The values of elastic constants for all these materials
were taken from Trent and Stone, " Mason, " and
Huntington. "

Figure 3 contains a plot of the phase velocity ratio,
p, versus the angle 8 of the direction of propagation with
(100) for some of the aforementioned materials. It is
seen that the phase velocity varies very slowly with
0 in the case of the alkali halides, whereas its variation
is more pronounced in the case of materials which are
characterized by the existence of excluded directions of
propagation. The variation of the phase velocity appears
to be more rapid in the neighborhood of 8,. In any case,
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C»i&44

KCg

FIG. 2. Position of various ma-
terials with respect to bounds 1
and 2. The values for the elastic
constants are taken from references
14 and 15. It may be noted that
there are wide variations in the
measured values, for the elastic
constants of PbS.

Fe52

the minimum phase velocity is within 30%%uo of the maxi-
mum phase velocity for all the materials considered
here. Having obtained the phase velocity ratio p, one
can compute immediately the corresponding attenua-
tion constants q, from the cubic Eq. (2). Figures 4 and 5
contain plots of q; versus 8 for a material in the Rayleigh
region, KCl, and a material in the generalized Rayleigh
region, Cu.

Since the phase velocity does not vary too much with

8, one can obtain an estimate of the phase velocities gt =gs+h, gs))1, (33)

where h varies with the value of p, i.e., it is diGerent

which are to be expected in a given crystal by consider-

ing the velocity in the (100) direction. For this purpose

we have plotted contours of equal phase velocity in

Fig. 1, for surface waves propagating in the (100) direc-

tion. It may be ascertained that these contours are

symmetric about the g& axis, since the frequency Eq.
(11) is even in g, . All contours intersect the lower bound

of the stable region and tend asymptotically to
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FIG. 3. Normalized phase velocity, cjc2, versus angle between
the direction of propagation and the (100) direction, 0, for various
materials as given by the continuum theory.

FIG. 4. Attenuation constants, q;, versus angle between the
direction of propagation and the (100) direction, 8, as given by
the continuum theory, for KCl.
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for diGerent contours. The line of isotropy is the asymp-
totic line of the contour p=0.955. Since the line of
isotropy does not intersect contours with p smaller than
about 0.68, one obtains immediately an upper and lower
bound for the phase velocity of Rayleigh waves in
isotropic materials. The upper bound p=0.955 corre-
sponds to an incompressible isotropic material, and the
lower bound p=0.68 to a material on the verge of in-
stability with a Poisson's ratio equal to —1. In the case
of anisotropy, for g2=0and for g& ~ the phase velocity
ratio p tends to 1.

iVN1, m, n =n (&l+1,m, n 2211,m, n+ 2l1—1,m, n)

+p(2ll+l, m+1, n+rll —l, m+1, n+rll+1, m—l, n

+211—l, m—1, +sll+n1, m+1+m+1 l,m, n+1-
+2ll+l, m, n—1+2ll—l, m, n—I 8ll, m, n)

+ (P+Y) (&i+1,m+1, n+1 1—l, m—l, n

2 1—l,m+1, n, &1+1,m l, n+rrll+1, m—, n+1

+tol lmn-l ro—l+,l, m, , n—1 rol lm, n+1)—,

+4Y (Nl, m+1, n+Nl, m—l, n+2ll, m, n+1

+Nlmn 1421,l, m, ,—n) & (34)

with corresponding similar equations for the equi-
librium of the y and s components of forces. In the pre-
ceding Eq. (34), 2l, v, and w are the components of
displacement in the x, y, and s directions and /, m, and n
are integers specifying the corresponding coordinates of
a particle in the equilibrium configuration with respect
to some arbitrary origin. The determination of the cen-
tral force contribution is straightforward. '~ The com-
ponents of the angular stiffness forces are determined by
differentiating the expression for the strain energy due
to angular deformation with respect to the respective

"It should be noted that l and ns have not the same meaning
here as in the continuum discussion where they represent direction
cosines,

'~ K. W. Montroll, J. Chem. Phys. 15, 575 (1947).

III. DISCRETE PARTICLE THEORY

A. jrrequeocy Equation

Consider a monatomic simple cubic lattice composed
of particles with mass M and nearest neighbor distance
a. We assume Hooke's law interaction of nearest and
next-nearest neighbors due to central forces character-
ized by force constants n and p, respectively. We also
assume forces due to angular stiGness of a system of
three consecutive nearest neighbors which form a right
angle in the equilibrium con6guration. These angular
stiGness forces are characterized by a force constant y.
No account is taken of changes in geometry and force
constants caused by lattice distortion near the free
surface. Ke shall use a coordinate system with axes
parallel to the principal axes of symmetry and assume
that the material extends to positive infinity in the s
direction and is bounded by a plane perpendicular to
this direction. In the absence of body forces the equa-
tions of motion can be written in the form'
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FIG. 5. Attenuation constants, g;, versus angle between the
direction of propagation and the (100) direction, I, as given by
the continuum theory, for Cu.

displacement components. Thus, for example, the strain
energy due to the deformation of the angle composed by
the particles (l, m+1, e), (l,m, e), and (l+1, m, e) is

~=(Y/2)L(. ..—,-.-)+( ".-- .-)7', (35)

and the corresponding contribution to the x component
of force on the particle (l,m, e) is

where
d;;X,=O, (38)

dll ——Mols+2n (cosgl —1)
+4P (cosg1 cos$2+ cosg1 coshq —2)

+8Y (cos&j4+cosll q
—2),

d12 d21 —4 Sin/1 Slugs(p+'Y) )

dls =dll = —4 sin/1 Slnhq(p+'Y),

d22 =3IAo'+ 2n (cos$2—1)
+4P(cosgl cos$2+cos$2 cosllq —2)

+87(cosgl+ coshq —2),
d22= —LMols+2n (coshq —1)

+4p(coshq cospl+coshq cos$2 —2)
+8Y (cos@1+cosf 2

—2)7)

d„=d22
———4 siny2 sinh'q(P+Y),

Xg= U, Xg= V, XI=iW.

(39)

='YL(2ll, m+1, n rll, m, n)

+(&l+1, ,
—

&1, , )7. (36)

We seek a solution of Eqs. (34) of the type

(NPP') l,m, n

= (U, v, w) expt —qe+2(lt ll+ysm+ol])7. (37)

Introducing Eqs. (37) in Eqs. (34), one obtains,
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A nontrivial solution of Eqs. (38) requires that

~
coshq,

~
)1. (41)

The case cosh', & 1 yields a positive real q, and hence
a Rayleigh-type surface wave, i.e., one whose displace-
ment amplitude decreases monotonically and exponen-

tially away from the surface. The case cosh';& —1

corresponds to a q, of the type

For a given set of force constants and wave numbers

QI and p2, Eq. (40) constitutes a relationship between
the frequency co and the attenuation constant q. Since
it is a cubic in cosh', to a given frequency co correspond,
in general, three attenuation constants q, with possible
physical interest. As in the case of the continuum

theory, a surface wave results only if the q; which are
involved in the solution have real parts greater than
zero. This condition is satisfied, for real cosh', , if

the boundary layer, m=0. Thus one obtains

0(Il+ I,m, I+—II—I,m, —I 2241, m, 0)

+P(wl I—m, I,—wl+I, m, —I)+47(241,m, —I 241,m, 0)

+7(WI—I,m, 0 Wl+I, m, 0

+wl I,m, I—wl+I, m, —I) =0,
P(&l,m+I, —I+III,m—I,—I 2IIl, m, 0)

+P(wlm —1, -1 , wl, m+I, —I)+47(Ill, m, —I 2Il, m, 0)

+V(WI, m—1,0 Wl, m+1, 0

+Wlm-l, ,—I W l, m+I, I)—
(46)

n(Wl, m, —I Wl, m, 0)+p(WIpl, m, —I+Wl—l, m, —I

+Wl, m+I, I+Wl,—m—I;I 4Wl, m, 0)

+P(24I—I,m, —I 241+1,m, —I+&I,m—I,—I &l, m+I, —I)

+2 f (W l+I,m, 0+W l—lm0+, W, l, m+ I, 0

+Wl, m—1,0 4Wl, m, 0)

1'r(Ill+1, m, 0 241+1,m, —I+24l—I,m, —I 241 Im0—), ,

+r(&l,m+1, 0 &I,m+I, —I+ I lm1, —,I I'I, m—1,0)

If Eqs. (45) are substituted into Eqs. (46) one obtains

qI ql'0+ Zmi (42)
where

Q, T,,K,=O, (8, j=1, 2, 3),

(43)

where

$1 d22d83 d82d28y

gg
—d23~3s —d2&d33~

t j lt21d82 4t81d22 ~

(44)

The general solution of the equations of motion, corre-

sponding to surface waves, is given by

Xexp[ q, n+ 8(pit+—y2m+~t) j, (45)

where the E; are to be determined from the boundary
conditions. The boundary is formed by removal of all

particles on one side of the boundary layer, which is

assumed to be the one defined by I=O. The boundary

conditions express the vanishing of the components of

forces, on a given particle, which arise from interaction
with any of the removed particles. In our particular
model the only particles which are aGected are those of

where q, o is positive real. The associated wave is a
special case of the generalized Rayleigh surface wave

involving phase reversal between successive layers in the
direction normal to the free surface. The amplitudes

U;, V;, and (iW;) corresponding to a particular q, are
determined by

For a direction of propagation specified by &I and

p2 the frequency 40 and attenuation constants q, are
determined by the simultaneous solution of Eqs. (40)
and (49). In order to carry out the calculation for a
given material it is necessary to know the values of the
force constants n, P, y. The latter can be related to the
elastic constants and the interatomic spacing, a, by ex-

panding displacement components such as N~+, +,. „+~
in power series about Nl, , „substituting into Eqs. (34)
and comparing the results with the continuum equations
of motion. The results are

CII-—(n+4p)/48,

c12= 2p/48,

c44 ——(2p+47)/48.

(50)

It may be noted that if power series expansions of ) he
displacement components are substituted in Eqs. (46)

TI,——2)Q(expq, cosgI —1)+2y(expq, —1)j
—2t;[8 expq; sin&I+y(expq, +1) sin&I j,

T» ——2q, [8(expq; cosset 2
—1)+2y(expq, —1)j

—2|,Q expq; sing2+y(expq, +1) sin&21,
(48)

T8,= 2$, sin/I[p expq;+y(expq, —1)j
+2g; sing2[P expq, +y(expq, —1)j
+t;(n (expq, —1)+2p[expq;(cos&I+ cos&2) —2j

+4r [cos@I+cos$2 2]) . —

The secular equation which must .be satisfied in

order to have nontrivial solutions of Eqs. (47) is
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FIG. 6. Diagram showing the
region of stability of simple cubic
lattices, and the position of bounds
1 and 2 and the line of isotropy
within this region. Also shown are
contours of constant critical wave
number qb, . The meaning of @, is
that for greater wave numbers, the
atomic displacements show a re-
versal in phase between successive
layers parallel to the surface.

and use is made of Eqs. (50), one obtains the continuum
boundary conditions.

The force constants n, p, y must satisfy conditions
for the stability of the lattice which are analogous to
the conditions imposed on the elastic constants in con-
tinuum theory. By substituting Eqs. (50) into Eqs. (9)
and introducing the ratios B=p/n and C=y/n, one
obtains the following stability conditions:

(51)

(52)

One therefore has two regions of stability in the 8-C
plane. It is unlikely on physical grounds that the nearest
neighbor force constant is negative, however, so the
stable region of importance is specified by Eqs. (51).

The entire stable region is shown in Fig. 6. Also shown
in this figure is the mapping of the bounds 1 and 2 which
were discussed in the preceding sections. It should be
noted that these bounds as indicated correspond to
wavelengths large in comparison with the interatomic
distance, in which case the lattice theory matches the
results of the continuum theory. As the wavelength de-
creases the positions of these bounds may change in
the plane 8 versus C.

B. Numerical Computations

Calculations of the surface mode frequencies and
attenuation constants for the monatomic simple cubic
lattice discussed above have been made for various
values of the force constants n, P, and 7 which are con-
sistent with the existence of Rayleigh waves in the con-
tinuum limit. Only waves propagating in the (100)
direction were considered.
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A typical result for the normalized frequency,

(~/~0)4 =~r~/(20+47))', (~3)

as a function of the wavenumber &=&2 is plotted in
Fig. 7. The physical parameters were chosen to Gt the
data for potassium chloride which is nearly monatomic
in so far as atomic masses are concerned and which
crystallizes in a simple cubic array. For small values of
p, o5 is proportional. to p and the phase velocity o263/p is
nearly constant with the value given by continuum
theory. For values of p such that the wavelength is of
the order of a lattice spacing, dispersion becomes ap-
parent, and o5 is no longer proportional to p. The phase
velocity decreases continuously as p ranges from zero to
its maximum value, ~. The qualitative behavior of the
dispersion curve in Fig. 7 is similar to that shown by
the bulk modes of vibration in cubic lattices.

The dependences of coshqr and coshqs on
chic

are shown
in Fig. 8 for KC1. For small p both cohsq2 and Icoshqs
are greater than unity and q& and q& can be taken to be
real and positive. At a certain value of ct, which we
shall call the critical wavenumber ci5„ the value of
cosh'& approaches infinity. Beyond the critical wave-
number the value of coshq1 is less than —1 so that q~

haS the fOrm q20+i2r, Where q20 iS rea, l. COnSequently fOr

chic)g. the surface modes are of the special generalized
Rayleigh type in which the displacement components
corresponding to q1 are 180' out. of phase between ad-
jacent layers parallel to the surface.

The value of the critical wavenumber ctc, can be
determined fairly simply for surface waves propagating
in the (100) direction. For this direction Eq. (40) factors
into two equations, one linear and one quadratic in
cosh'. The quadratic equation is the equation of interest,
and the critical wavenumber occurs when the coeKcient
of the (coshq)' term vanishes. The value of g, is there-
fore determined by

(8 cosc6c,+2C) L1+28 (cosp,+1))
+2(B+C)' sin'P =0. (54)

In Fig. 6 the values of the critical wavenumber are
shown as contours in the 8-C plane. The regions of
stability are also indicated as well as the bounds for the
various types of surface waves in the continuum limit.
The values of g, range from 0 to 2r, the former occurring
for 8= —2C and the latter for 8=2C. It should be
noted that the critical wavenumber p, has the physical
significance discussed in the preceding paragraph pro-
vided that coshq; as determined from Eqs. (40) and (49)
are real and greater than unity in magnitude. The con-
tours for constant p. were only drawn for the important
section of the stable region corresponding to positive
primary central forces, i.e., o, &0.

IV. DISCUSSION

The results of the continuum calculations reported in
this paper are restricted to surface waves on (001) sur-
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Fro. 8. Variation of the hyperbolic cosine of the attenuation
constants, cosh';, versus the dimensionless wave number @, as
given by the lattice theory for waves in the (100) direction in a
KCl crystal.

faces of cubic crystals but are otherwise quite general
within the framework of linear elasticity theory. Vsing
Fig. 1 one can readily determine what types of surface
waves exist for any cubic material for which the elastic
constants are known. Thus, in the region below bound 1
in Fig. 1, Rayleigh-type surface waves exist. Above
bound 1 generalized Rayleigh waves may exist which
have displacement amplitudes decreasing from the sur-
face as do products of trigonometric and exponentially
decaying functions. Between bounds 1 and 2 generalized
Rayleigh waves exist for all directions of propagation
in a (001) surface. Above bound 2, surface waves do
not exist in a range of directions of propagation about
the (110) direction, although a surface wave is always
possible in the (110) direction itself.

The continuum treatment presented here has assumed
that the elastic constants and density of a crystal do not
deviate from their bulk values in the region near the
surfa, ce. Such deviations may be expected to be small
for crystals of macroscopic size and should not seriously
modify our results.

The discrete lattice theory of surface waves discussed
in this paper is restricted to (001) surfaces of cubic
crystals just as is the continuum theory. The lattice
theory is further restricted by microscopic considera-
tions which limit the applicability of the results. For
example, we have considered only the monatomic simple
cubic lattice which, to our knowledge, occurs only rarely
in nature. Despite the paucity of materials for applica-
tion, calculations on the monatomic simple cubic lattice
are important for establishing qualitative phenomena
and providing a basis for comparison with results on
more complicated lattices. Furthermore, the qualitative
behavior of low-frequency (acoustic branch) elastic
waves is a little diferent in monatomic and diatomic
cubic crystals.

Our results show that surface waves indiscrete lattices
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exhibit dispersion, i.e., a variation of the phase velocity
with wavelength. This behavior is very similar to that
found with bulk vibrational modes. We have also found
for the monatomic cubic lattice considered here that a
critical wavenumber generally exists in the Rayleigh
wave region. For wavenumbers greater than the critical
wavenumber the atomic displacements exhibit a phase
reversal between successive layers parallel to the surface.

A sufficient number of interactions has been chosen
in our model to permit the fitting of an arbitrary set of
elastic constants. Since the interactions are assumed to
be short-range, however, one must hold certain reserva-
tions concerning the validity of the quantitative results

for ionic crystals such as NaC1 or KCl where long-range
Coulomb forces are important.

Work is currently underway on the generalization of
the lattice theory to face- and body-centered cubic
lattices as well as to diatomic cubic lattices and the
diamond and zinc-blende lattices. It is hoped that a
unified treatment can be obtained of both Rayleigh-type
waves and the optical surface waves.
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Decrease of E-Center Photoconductivity Upon Bleaching*
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A quantitative study of the rapid decrease in photoconductivity accompanying the relatively less rapid
bleaching of P centers in additively colored KCl is reported. The experimental observations agree, except
during very early stages of bleaching, with an equation for the variation of sensitivity with total light ab-
sorbed derived upon the assumption that negative-ion vacancies are created and traps of smaller cross
section are ulled during bleaching. Except during early stages, where several kinds of traps may be present
in low concentration, only one kind of trap other than the negative-ion vacancy need be considered.

The e8ects of added divalent ions, both positive and negative, upon photoconductivity are reported.

INTRODUCTION

~ ~~

HEN Ii centers in an additively colored alkali
halide crystal are destroyed by irradiation with

light which they absorb, the photoconductivity of the
crystal is reduced relatively much more than is the
optical absorption, "In one experiment previously re-

ported, ' for example, the photoconductivity was re-

duced by about 80% during bleaching, while the
number of F centers, as given by the absorbance, was

decreased by only 10'%%uo. The decrease in photocon-
ductivity produced by bleaching is hereafter referred
to as fatsgle.

The sensitivity of a photoconductor depends both

upon the ratio of conduction electrons produced to
quanta absorbed (that is, upon the quantum efficiency,

rt) and upon the average lifetime of a conduction
electron, 7-. Oberly ascribed the fatigue to a decrease
of g with bleaching, and proposed that two types of I"

centers may exist: a soft center which is photoconduct-
ing and readily bleached by light (r)=1), and a hard

*Work supported by the Once of Naval Research and the
National Science Foundation. This paper, based in part on a
thesis submitted by F. C. Hardtke to Oregon State College as
partial ful6llrnent of the requirements for the Ph.D. degree, is
Research Paper No. 376, Department of Chemistry.

' J. J. Oberly, Phys, Rev. 84, 1257 (1951).
~ G. W. Neilson and A. B. Scott, Defects Az Crystalline Solids

(The Physical Society, London, 1955), p. 297.

center which is not photoconducting (r)=0), no«ap
able of being bleached, but continues to absorb light.
Accordingly, the photoconductivity would undergo a
sharper decrease during bleaching than the optical
density and approach a zero value as the "soft" centers
are destroyed. Markham' attributed the diminishing
photoconductivity to a decreasing r instead of g, and
suggested that the decreased electron lifetime was
caused by an increase in negative-ion vacancy con-
centration as F centers were decomposed.

This report describes experiments carried out to
provide quantitative information regarding the fatigue
of photoconductivity during bleaching. The data were
consistent with equations for the variation in sensi-
tivity with light absorbed, developed upon the assump-
tion that as bleaching proceeds traps of small cross
section, initially present in the crystal, are filled and
negative-ion vacancies of large cross section are created.
There appears to be no necessity to assume the existence
of two types of Ii centers.

EXPERIMENTAL

(a) Sample Preparation

All measurements were conducted at room tempera-
ture in the Ii band of single crystals of KCl. The

J. J. Markham, Phys. Rev. 86, 433 (1952).


