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The orientation of a rigid body is speci6ed by the Cayley-Klein parameters. A system of such bodies
subject to small random changes in orientation but not subject to any externally applied torque is then
considered in some detail. A di6usion equation is derived with certain linear combinations of the Cayley-
Klein parameters as independent variables. This equation is expressed in terms of quantum-mechanical
angular momentum operators and a Green's function for the equation is obtained as an expansion in angular
momentum eigenfunctions. This expansion can be used to calculate averages of various physical quantities
in a nonequilibrium distribution of orientations. It may also be used to calculate the spectral density of
fluctuating quantities in an equilibrium distribution. Illustrative examples of both of these applications
are given.

INTRODUCTION

~
URRY' has treated the problem of the rotational

Brownian motion of a sphere. He represents the
orientation of a rigid body by a quaternion. Then,
using three components of the quaternion as independ-
ent variables, he derives a diffusion equation for the
random rotational motion of spheres and finds a
Green's function for the equation. The present paper
is an attempt to generalize Furry's calculation to a
body of arbitrary shape.

The description of rotations used here divers from
Furry's in that the independent variables are derived
from the Cayley-Klein parameters rather than the
equivalent representation by quaternions and in that
Furry's description uses laboratory coordinates while

body coordinates are used here. This distinction
between body and laboratory coordinates is trivial
when the body is spherically symmetric but is quite
important when' this is not so. Therefore, Sec. I is
devoted to a rather detailed discussion of the proper
interpretation of the variables that are used in this
paper.

Section II contains a derivation of the -diffusion

equation which applies to the random rotational
motion of an asymmetrical rigid body. The method of
derivation is essentially the same as Furry's and the
resulting equation reduces to his when the body is a
sphere. However, instead of being expressed explicitly
as a differential equation in the variables as Furry's
equation is, this equation is written in terms of certain
rotation operators defined in Sec. I.

In Sec. III it is shown that it is possible to use a
Green's function to solve the diffusion equation of
Sec. II. It is also shown how one can exploit the
similarity of the form of the diffusion equation to the
form of the Schrodinger equation to expand the

*Based on part of a thesis presented to the Department of
Physics, Harvard University, May, 1959, in partial fu16llment
of the requirements for the degree of Doctor of Philosophy.

~ Present address: Department of Physics, Columbia Univer-
sity, New York, New York.' W. H. Furry, Phys. Rev. 107, 7 (1957).

Green s function in quantum-mechanical rigid-rotator
eigenfunctions.

Section IV treats the special case of a body with an
axis of symmetry. It includes a derivation of expressions
for quantum-mechanical angula™omentum eigen-
functions in terms of the present variables and an
expansion of the Green's function in the derived eigen-
functions. This expansion is exact.

Section V treats the case of a completely asymmetric
body but the expansion of the Green's function is only
approximate. The first few eigenfunctions and their
coe%cients in the expansion are obtained and written
in tabular form. In addition, it is shown how one may
obtain higher order terms (but not the general term)
in the expansion.

In Sec. VI the results of the previous sections are
applied to the calculation of the expectation values of
several simple functions of orientation in a non-
equilibrium distribution of orientations. The use of the
Green's function to calculate the spectrum of the
Quctuations which occur in an equilibrium distribution
is also illustrated by simple examples. It may be noted
that the results in this section are all exact in spite of
having been obtained from the approximate expansion
of Sec. V. This is due to the fact that the neglected
terms in that expansion make no contribution to any
of the averages in this section.

Finally, in Sec. VII the parameters appearing in
the diffusion equation in the form of a diffusion tensor
are expressed in terms of the elements of the viscous
drag tensor in a form commonly referred to as an
"Einstein relation. "

I. DESCRIPTIONS OF ROTATIONS

The orientation of a rigid body is completely deter-
mined by fixing one set of coordinates in the body
and another set in the laboratory and specifying the
rotation which transforms one set into the other.
Consider the case in which the body coordinates are
rotated away from the laboratory coordinates through
an angle 0' about the axis specified by the unit vector 8.
Such a rotation can be represented quite simply by
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means of the Cayley-Klein parameters. ' In this
representation any vector A is replaced by a 2X2
matrix, o A, where e indicates the three Pauli spin
matrices. The components of A in one coordinate
system are then obtained from the components in the
other by performing a unitary transformation on
e A. Thus,

body & ' lab (1 o)

It is easily shown that Q may be written in terms of n
and n as

Q= exp(M. R e/2),

&=&p&i+&i&p —&iX&p, (1.3)

it is the inverse of (1.0) rather than (1.0) itself, which
is the fundamental transformation in laboratory
coordinates. Body coordinates are used throughout
this paper since certain useful quantities associated
with the shape of the body (inertia tensor, diffusion
tensor, etc.) are constants when referred to these
coordinates. Then, keeping in mind the fact that Q~
must be referred to the body axes, one obtains for the
transformation Q=QiQp,

or alternatively as
F=Fgl'p —Qg- Qp (1 4)

Q=I'+ie 0, (1 2)

where P= cos(n/2) and Q=S sin(a/2).
The four elements of the matrix Q are the Cayley-

Klein parameters for the rotation (nn). Although these
parameters themselves may be used as variables to
describe the rotation (orientation) of the body, it is
often more convenient to use the linear combinations
F and Q defined above. This leads to two geometrical
descriptions of the rotation. In the first description,
the variables QI, are plotted as coordinates in a three-
dimensional space with F defined merely as a function
of Q. In the second description, I' and the QI, are
treated symmetrically by plotting them as coordinates
in a four-dimensional space with the subsidiary condi-
tion that I"+Q'= 1. In the 6rst description, the region
of interest is the interior and surface of the unit
sphere centered at the origin. In the second description,
this region is the surface of the unit four-sphere, also
centered at the origin. In each case points at opposite
ends of a diameter of the sphere are physically
equivalent. ' Therefore, any physically meaningful
function of the orientation must assume the same
value at both ends of a diameter.

The composition of two rotations is accomplished
in the Q representation by multiplying the matrices
involved. Thus, if one first performs the rotation Qp
and then performs Qi, the resultant rotation is given

by Q=QiQp. It is at this point that the important
distinction between body and laboratory coordinates
appears. The components of the vector n& specifying
the axis of the second rotation must be taken relative
to the rotated axes as obtained with Qp in order to
possess a consistent description in terms of body
coordinates. For a description in terms of laboratory
coordinates, the components of Bi must be taken relative
to the laboratory coordinates and Q~ exchanged for Q
everywhere. This last requirement is due to the fact that

See, for instance, H. Goldstein, Classical 3fechamcs (Addison-
Wesley. Publishing Company, Inc. , Reading, Massachusetts,
1950), pp. 109—118.' This double valuedness of the representation results from the
fact that the transformation (1.0) is quadratic in Q. Thus Q and
{—Q) are indistinguishable. In the three-dimensional description
this affects only those points representing rotations through m.

away from the standard; in the four-dimensional description all
representations are double-valued.

where a set of three operators M has been defined as

M, =-,'i(FB,+Q,p,pBp). (1.9)

Equation (1.8) is the usual form given to rotation
operators in quantum mechanics where M plays the
role of the angular momentum operator. It may be
iterated in the familiar fashion to obtain the operator
for the finite rotation (nn),

R(ai1) =exp( —in@ M). (1.10)
4 The use of the word weight" here may be clarified by thinking

of ordinary spherical coordinates, (r,8,@), where the weight
associated with (dr, d8,d@) is r' sin8.

'The Einstein summation convention is henceforth to be
applied to all indices repeated within a term.

In addition to being regarded as a rule for the
composition of rotations, (1.3) can be regarded as a
change of independent variables from Qp to Q in the
three-dimensional Q space. The Jacobian associated
with the change is

i&(a)/cj(Qp) j =P/Pp. (1.5)

This leads to the important conclusion that the weight'
associated with the volume (d'0) is P '.

The matrices Q above sufFice to describe any rotation
or combination of rotations which a rigid body may
undergo. However, it is often desirable to possess a
rotation operator that operates directly in terms of
the variables QI, . That is, it is desirable to possess an
operator which, when applied to any function of Q,
produces the change of variables given by (1.3). The
infinitesimal form of such an operator is given by the
translation operator in Q space, '

(1.6)

where 8; indicates diGerentiation with respect to Q,
and DQ; is obtained from (1.3) by putting hQ= (Q—Qp)
and passing to the limit of small Q~. In this case Q~ is

just half of the angle of rotation, say s/2, and the
operator (1.6) is

T(DQ) =1+-', (I'p, B;+Q,p, ,; cj ), (1.7)

where e;;I, is the usual completely antisymmetric unit
tensor. This may be rewritten in the form,
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The three operators 3f; of course satisfy the usual
angular momentum commutation relations, P(Q, t) = I'W(Q, t), (2.3)

$M;,Mkj= se;stMt. (1.11) Eq. (2.1) becomes with the aid of (1.5),

There exists, however, an additional set of three
operators which satisfy these commutation relations. '
These may be defined as

P(Qp, t)drp=dr exp(ie M)P(Q, t). (2.4)

The integral equation (2.1) may now be written in the
form

so that
N, = ,'i( -I'8—,+Q,e,p,8g),

(N;,Ns j= ie,stNt.

(1.12)

(1.13)
P(Q, t+at) = dse P(e,at) exp(is M)P(Q, t). (2.5)

Furthermore, it may be shown that LN, ,M&j=0 and
that N'= M'.

Both of these sets of "angular momentum" operators
will be of considerable use in the later sections of this
paper.

IL DIFFUSION EQUATION FOR
ROTATIONAL MOTION

To first order in ht this equation is

(a/at) P(Q, t) = —M,D;,M,P(Q, t),

where a diffusion tensor, D,g, has been defined as

D&g =— I d e e&egp(e, dt)/6t
2~

(2 6)

(2.7)

We now consider an ensemble of similar rigid bodies
each of which undergoes a large number of small
random rotations in any macroscopic interval of time.
It is assumed that the probability of a body's under-
going the rotation e in a time ht is given in body
coordinates by p(e,ht)tPe where'

(a) P(e,dd) =P(—e,ht),
(b) J'd'e p(e, tIt) ee is proportional to ht,
(c) it is possible to choose ht so smail that higher

moments than (b) may be neglected.

Let W (Q, t) d'0 be the probability of finding the
orientation of a randomly chosen member of the
ensemble in the volume element d'0 at some time t after
the establishment of the ensemble. This probability at
some later time t+At may be obtained from W(Q, t)d'0
by adding the contributions due to all possible elemen-
tary rotations e, which may take place in the time At
This yields an integral equation for W(Q, t)d'0,

W(Q, t+ht)d'0= d'e P(e,ht)W(Qp, t)d'Qp. (2.0)

Qo here is just that orientation which, upon rotation
through e, will yield Q. Thus, by using a rotation
operator of the form (1.10), one may write

W(Qo, t)tPQo= exp(ie M) W(Q, t)dPQ. (2.1)

Now, if one defines a weighted volume element d7.

and a probability density per unit weight P(Q, t) as

dr=I' ~d30 (2.2)

6 The existence of another set of operators is a result of the
possibility of describing the rotation {o,6) as a folr-Chmensionc1
rotation on the unit sphere in {j.,Q) space. In four dimensions
there are six independent planes of rotation and hence six in-
dependent rotation operators.

'The absence oi Q in the expression p(e,htl indicates that
there is no externally applied torque tending to orient the body
in any specific direction. Hence, the body described here is "free."

it = -,'I' 'i(1"Dts+Q, egtD, s)Ms. (2 9)

If one considers P(Q, t) to be a function defined in the
three-dimensional Q space, in order to solve (2.6) it is
necessary to apply boundary conditions on the surface

~

Q
~

= 1. It is clear physically that one such condition
is that the outward normal component of the current
density at one end of a diameter of the sphere must
equal the inward normal component at the other end.
This insures the conservation of total probability
within the sphere. Another boundary condition is the
obvious one that P(Q, t) have the same value for
points at opposite ends of a diameter of the sphere.

However, it is also possible to interpret P(Q, t) as a
function defined on the surface of a hypersphere in
the four-dimensional (I',Q) space. The "boundary"
above is then just the surface between the two physically
equivalent hemi-hyperspheres. Since this surface has
no particular significance in four dimensions, we can
make the space formally continuous across it. Thus,
every point in the space is connected with other
points on every side and there is no boundary upon
which to apply conditions on P. However, this apparent
loss of the boundary conditions is compensated for by
the addition of the condition for physical meaningful-
ness on the four-sphere: P must be even under reQection
through the center of the sphere. This last condition,
which can be shown to be exactly equivalent to the

A direct derivation of this expression for j~ is contained in an
Appendix to this paper.

Equation (2.6) will henceforth be referred to as the
"diffusion equation" since it is the rotational analog
of the ordinary translational diffusion equation. It
may also be written in terms of a divergence of a
current density in Q space,

(8/Bt) P= I'BtitP, — (2.8)

where the current density operator )& is defined as
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two boundary conditions above, will be used in this
paper since it is more easily applied in practice.

III. USE OF A GREEN'S FUNCTION TO FIND P(Q, &)

Consider now another function P'(Q, t' —t) satisfying
the diGusion equation,

BP'/8 (t' —t) = —M,Dp,Mi,P'. (3.0)

After multiplying (2.6) by P' and (3.0) by P and
subtracting one from the other one obtains,

(8/8)) (PP') = I'Bi(P—'jiP Pl P—'). (3.1)

This may be integrated over the three-sphere in Q
space with the weighted volume element dv. dined
in (2.2) to obtain

rotator. Therefore, our problem is equivalent to the
problem of 6nding the energy eigenvalues and eigen-
functions of a rotator. It is well known that this may
be done exactly for a rotator with an axis of symmetry,
but only approximately for a completely general rotator.
The method used here will be to treat the axially
symmetric case first and then obtain an approximation
to the general case from it.

IV. DIFFUSION OF A BODY WITH AN
AXIS OF SYMMETRY

In actual calculations it is convenient to use that
set of body coordinates in which D;I, is diagonal so
that the operator in the diHusion equation is DI,M~'.
This may be rewritten as

DiMi, '=D+M'+ (D3 D+)M32+—D (Mi2 M2'), (4—.0)

(d/dt) P(Q, &)P'(Q, &' —&)d~=0. (3 2) where
D+—=—,

' (D,&D,).
After integration over I from 0 to t' this becomes

,
P(Q,e)P'(Q, O+)d. = P(Q,O+)P(Q, ~')d.. (3.3)

That particular function I" which satisfies the
initial condition, ' P (Q,O+)=8(Q,Q') will be denoted
by G(Q, Q', t' —t) and referred to as the "Green's
function" for the diffusion equation. From (3.3) it is
apparent that P(Q, t) may be found in terms of G and
the initial value P(Q,O+) as,

P(Q', t') =, P(Q,O+)G(Q, Q', ~')d~. (3.4)

Furthermore, G(Q, Q', t) may be obtained from G(Q, O, t)
by a simple change of origin in Q space." Thus the
particular Green's function G(Q, t)f—=G(Q, O, t) $ suf5ces
to solve the diGusion equation for any choice of initial
conditions.

The calculation of G(Q, t) is particularly simple if
one possesses a complete set of eigenfunctions 1t„(Q)
of the operator M;D,~& for then one may write

b(Q,O) =g„g„*(0)P„(Q),
so that the Green's function becomes

(3 5)

(3.6)

'8(Q, Q') here is the Dirac delta function so normalized that
1's(Q, Q')d =1.

"This change of origin may be interpreted as a change in the
initial or "standard" orientation of the rotating body. Algebraically,
the transformation os of the same form as (1.3) where the new
coordinates of a point are QI, and the new origin is located at QO.

where E„indicates the eigenvalue corresponding to P„.
Thus, the problem of finding the distribution P(Q, t)
has been reduced to one of 6nding the eigenvalues and
eigenfunctions of M;D;p3/Ip. It will be noted that this
operator is of the same form as the quantum-
mechanical Hamiltonian, M; I;i, Mi,/2 of a rigid

M m,

Ã, ~n,
2+ 1&' '~2~

e= —j —j+1 . . j
(4 2)

and the eigenfunctions corresponding to the set of
eigenvalues are complete and nondegenerate.

It is useful to define certain auxiliary operators to
facilitate the calculation of the eigenfunctions of (4.2).
The first of these and their associated eigenvalues are

(M3+Sg) —+ p, IJ.=nz+e,

(Ma —1V3) —+ i, v=m rc—
The other auxiliary operators are those which are
usually referred to as "ladder" operators,

M+= Mg+iM2,
S+=ÃgaiE2.

(4 4)

"This assumes that the scalar product (U, V) of two functions
is defIned as fV*Vdr. The operators are not Hermitian if one
uses the unweighted volume element d%"It may be observed that the half-integral values of j must
be excluded since their eigenfunctions do not satisfy the require-
ments of evenness under inversion in four-space.

I'or a diffusion tensor with an axis of symmetry D
may be put equal to zero. It is then apparent from
(4.0) that the simultaneous eigenfunctions of M' and
3f3 are also eigenfunctions of D~MI, '. Since the operators
M' and Ma do not form a complete set, their eigen-
functions are degenerate. It is usually convenient to
remove this degeneracy by introducing one of the
components of the operator N of (1.12) into the set.
Therefore we shall obtain the eigenfunctions of the set
(M', M3,%3). It will be observed that these operators
form a complete commuting set, that they are
Hermitian" and that either M' and M~ or M'(=N')
and E3 can be considered to be, respectively, the
square and third component of a quantum-mechanical
angular momentum vector. The eigenvalues associated
with the set are therefore"

M' —+j(j+1), j=0,1,2,3, etc. ,
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M+ib:"=L(jam) (jam+1)7',"+""
++P m;n —L(~~+) (~~ri+ 1)7—,'P pn;n+1

(45)

We now introduce a new set of variables (p, O,C)
defined as

p= (Qrs+0, ') *',

0= tan- (n,/r),
C = tan —'(0,/Qr),

in terms of which we obtain,

1 (1—3p'i
M'= -- (1-p')c[v'+I lc[v

4
'

L p

(4 6)

These operators, when applied to an eigenfunction
1!,"'"of (4.2), produce the results

Thus the function g,&'" may be written as

gi"'"=~ ""(1—p')'" p "~(Lz(l pl+ Ivl)+j+17
Ll(l pl+ lvl)-i7;(I pl+»; p') (4 14)

The normalizing'4 constants 2,&'" may be determined
by normalizing one function, say g,~j", and then using
(4.5) to determine the ratios of the various constants
by direct application of M+ and E+ to (4.14). The
result of this calculation is

(—p ) " (2j+1)'
v

I I
civ~/2

~lpl&

(Ci+z(Ill+ I l)7 Lj+z(foal —lvl)7[&
xf —I. (415)

(D—l(lpl+ I l)7!Ci——:(Ipl—I
l)7!&

Ms+%3 = iBe, —

3Is+1Vs =i88.

1 p 1
+

I
fi)o + r)@- ,

( & —p'j p'
(4.7)

It is now possible to write down the expansion of
the Green's function G(Q, t) for the special case Dr Ds, ——
In terms of the m»'"(=P m'~), from (3.6), (4.8), (4.13),
(4.14), and (4.15) one obtains,

00

G(O, [,') =z=' Q (2j+ )l Q (—)"w,"'"
Di =D2 j'=0 m=7'

where

tc Jl; v —g,v; v (p)c
—iveci/44 (4.8)

(1—3pl ( v

(1—p')~„'+I
p & (1—p'&

This equation for g,I"" may be put in a more easily
recognized form by making the substitutions,

g
—ps and gv; v —(1 g)i[v[($,[v[f » v (4 10)

to obtain

{(1—5)P '+Lc—(~+b+1)H~ —ub)f "'"=o, (411)

where

a=l (l pl+ Ivl)/2+j+17; b=L(lpl+lvl)/2 —j7;
c= (f p f+1). (4.12)

This is the hypergeometric equation satis6ed by the
hypergeometric function"

F(iJ; b; c; g)

~ (a+0—1)!(b+k —1)! (c—1)!
(4.13)

(b —1)! (c+k—1)!k!(g—1)!

"See, for instance, K. T. %'hittakex and G. N. Watson,
M'oderrI, Analysis (Cambridge University Press, New York, 1927),
pp. 281—296.

Now, putting it; '"=to,"'" we obtain from (4.7), (4.2),
and (4.3), X«p( —[D+j(j+1)

+ (Ds D)m'7—3) (4.16).

V. GENERAL CASE: COMPLETELY
ANISOTROPIC DIFFUSION

The case in which the di6'usion tensor possesses no
axis of symmetry will now be considered. In this case
one must diagonalize the complete operator (4.0).
Because 353 does not commute with this operator, the
functions P; '" of the previous section are not eigen-
functions of it. In fact, a complete set of eigenfunctions
of (4.0) is not available in any form. However, for
many purposes one needs only those eigenfunctions
with low values of j." These may be obtained by
diagonalizing (4.0) directly with the functions lt4

'" as
the unperturbed basis functions. Since M' will remain
diagonal in this calculation the term involving it in
(4.0) may be ignored. The remainder may be written as

g= (Ds—D+)3II +sr-,'D
I (M+)'+ (M )'7. (5.0)

In this form, the matrix elements of R are easily
obtained by using (4.5). The result is
(m'~'film~);=)(D, D+)ms'„—.y ,'D aa,-b-, -

+-,'D A,c[ b ~ s7b„. , (5.1)
where

A; =I (j—m)(j+m+1)(j—m —1)(j+m+2)7'l. (5.2)

Equation (5.1) shows that E never mixes even and
odd values of m so that the secular equation may be

'4 The normalization assumed is J'(rv I"")~(wiI4'")dr=1 or
Jo' (a"")*(g"").dp= 1/~+.

'5 The reader will note that it is possible to maintain the indexj on the eigenfunctions since M commutes with (4.0).
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TABLE I. The terms appearing in G for j=0,1,2.'

j=0
j=1

j=2

(~)—1@0;0

(tt)-t {3) 10;00—(D4+D3) 4

(~)—1 (3}2(+ 1;3+4rt 1; 1)0—(D—t+Dt) 4

(~)—1 (3 )$(41t
—1;1 41t

—1;—1)0—(Dt+Dt) t

(33)
—1(3)1(41t M;2 +2 2; 2)e-3—(D+D—t)t

(33)
—1 ( 3)0 (+ 3;1+41t21 l

—1)0—3 (D+D 4 ) t

(tt)
—1 ( )) (41t

—1;1 +2—1;—1)0—3(D+Dt) t

&(47rr3) '(15)&(Dt D2)e3—"e &' +'0&'

{4~g)—1(5)tom@ 0;00 (0D1—2tt)t

(433rt) 1(3)1—~+ (41t 2;2++ 2; 2)0 —(0D+—2 it) t

a(47th) '(15/2)&(Dt —Dt)(%2"'++2' ')0 &3 +'0"

a The following notation has been adopted in this table:
D =~s(D1+D2+Ds) 06 —= {D1'2+D2'2+D3'2 —D1D2 —D1D3 —D2D3)&,

a+ =—2h +3(Ds —D).

factored into an even and odd part by separating
these values in the secular determinant. A further
factorization may be effected by introducing a new set
of basis functions defined as

31i,m;n 2—',Q, m;n+p. —m;n) , 223)P
m;n 2,

—
4(g, tn;n /mt ,

—
) ,0233(0

@.0;n, I, .O; n

(5.3)

It is then observed that there are no matrix elements
connecting positive values of m with negative values
of m. This combined with the even-odd factorization
above produces a four-fold factorization of the secular
equation. For even j, there are three factors of degree
j/2 and one of degree (j/2+1) while for odd j there
are three factors of degree (j+1)/2 and one of degree

(j—1)/2. This makes the solution of the secular
equation relatively easy for low values of j'. The
eigenfunctions so obtained can then be substituted
into (3.6) to obtain an approximate" expression for
G(Q, 1).

Table I is a list of the terms appearing in G for the
hrst three values of j while Table II exhibits the
functions of Table I in terms of the variables (p, O,C).
These were obtained by the method outlined above.
In the next section they will be used to obtain the
average values of various quantities associated with
the orientation of a body.

VI. SOME APPLICATIONS OF THE THEORY

As an example of a nonequilibrium distribution we
shall take the Green's function itself. The most easily
calculated averages are those of powers of the com-
ponents of 0,. These quantities may be written in
terms of (p, O',C) by means of the equations,

0&——p cosC, 02= p sinC,

Qs= (1—p') l sinO I"= (1—p')'* cosO
(6.0)

(Q 2):1[1+e 3Dt(eD3t eD2—t eDlt)] (6 2)

The averages of Ql' and Q2' may be obtained from this
result by permutation of the indices. Another class of
nonvanishing" averages which will be useful in later
calculations are the fourth order terms such as

(Q 2Q 2) 1[1 le SDt(eDSt e
——3DSt)

+e ' '(6 '(Ds —D) sinh(23'6)
—

3 cosh (2th))], (6.3)
and

(Q 4) —1[1+se—3Dt(eDtt eD2t eDst)

L 1 —3D t g
—3Dlt ~

—3D2$ g
—3D3t~g8

+e ' cosh(236)]. (6.4)

It should be noted that the results above are exact
in spite of the use of the approximate Green's function
of Sec. V. This is due to the fact that the expansions
of the functions averaged above contain no terms with

j greater than 2. This is also true of all of the results
which follow in this section.

Now consider the problem of 6nding the average
values of the components in the laboratory system of

TABLE II. Expressions for the functions of Table I.

j=0
j=1

+00;0—(0.)
—1

@11'+1 (tt) 1 (3 )3/02'240p2 02248 (1 p2)j
4'1"= (2.) "(3) L1 —2p'j

@ —1;11—(~)
—1(~1){3)tt(g+24@p2+0+2ittt(1 p2)]

and then in terms of the +, '" by using Table II. For
instance, one may write as

Q 2 —1~[3It 0;0+ (1)~1 0;0+ (1)4~(31i 1;—1+31t 1;1

+31i —1;1 31t —1;1)] (6 1)

The average of 03' may then be obtained by simple
inspection of Table I since the 4; '" form an ortho-
normal set. The result is

The Green's function of the previous section
(represented by Table I) will now be used to obtain
some physically meaningful results. The cases to be
treated fall into two categories: the calculation of the
average of some function of Q over a nonequilibrium
distribution, and the calculation of the spectrum of the
fluctuations of some function in an equilibrium
distribution.

j—2 + 0;0—
+21;+1-

@2
—1;+1—

@ 2;+2

@M;+2

@0;k2

2;0—
2 '

( ) '(5)'L1 —6p2+~p43

(33) 1 (0 )$[0+240 (3 4p2)p2 0&2te (1 p2}(1 4p2)g

( ) '(+1)(l)'LS~'~(3 —4 ') '
+&"'e(1—p') (1—4p') 3

(tt-) (3 )3[0+4'@p4+SP448 (1—p2)2$

{tt)
—1(+1){3)tL04414p4 &+4ie{1 p2}2$

-(~) '(3o)'L0+"'~+e (1-p')p'L
—{~) '{15)'I (1—p')p'(0"'~ '+0 "'~ ')]

'6 The approximation here is the neglecting of higher values of
j.The result is exact for the values of jwhich are treated.

'7 Since G(Q, t) is an even function of 0;, such averages as
(01) (+1+2), etc, , vanish.
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some vector A fixed in the body. Let the fixed body to the I'"ourier transform fr(&o) of f(t)
components be (Ai', Ao', Ao'). Then, if (Ai,Ao,Ao) are
the components in the laboratory system, our descrip-
tion of rotations is such that A is obtained from A' by
the unitary transformation

(6.12)

e A=Qio AoQ The exact relationship is that K(t) and the spectral
density

which yields A as a function of A' and Q,

A(Q, A') = (1—2Q )Ao+2(1 Qo)l(Q&&Ao)

+2(Q A') Q. (6.6)

Thus, the average value of A can be written as

(A(Q, A'))( ——(1—2Q'),A'+2(QQ)g A'. (6.7)

g(co) = lim (2T)-'~fr(&o) ~'

are Fourier transforms of each other:

E(t) = g(&o)e-'"'d(o

(6.13)

(6.14)

By using (6.2) one can evaluate the averages in this
expression explicitly to obtain

g(oo) = (2m )-' E(t)e'"'dt (6.14)
(A;(Q,A')), = e

—~'n — &'A '. (6.8)

The average of A for any other choice of initial orienta-
tion may be obtained from (6.8) by a transformation
of the same type as (6.6).

Equation (6.8) describes how the vector A relaxes
to the random state when the initial distribution is
represented by a delta function. The interpretation
that immediately suggests itself is the case in which
A is an electric or magnetic dipole moment fixed rigidly
in the rotating body but other interpretations are
possible.

One can also calculate the averages of products of
two components of A. The calculations are essentially
the same as the one above and are not given here.
Typical results are

Thus, one can obtain the spectral density of a random
variable from its correlation function. It will now be
shown that the correlation function for a random
variable associated with the orientation of a body can
be obtained from G(Q, t).

Suppose some function f(t) derives its time depend-
ence from a functional dependence on the orientation
of a rotating body, i.e., f(t) =F(Q(t)). The correlation
function is then

E(t)= lim (2T) ' F(Q(t'))F(Q(t'+t))dt'. (6.16)

By using the ergodic hypothesis, we may convert the
time average in (6.16) to an average over the ensemble,

(A ) =(-',A+th, -'e-' 'L(D D)(A ')'—
+ (Do—D) (Aoo)

+ (Do—D) (Aoo)') sinh(2th)

+e ' 'L'(Ai')' —-'A') cosh(236)). (6.1Q)

So far we have thought of the function G(Q, t) in
terms of a nonequilibrium distribution relaxing to the
equilibrium distribution. However, it also can be used
to describe the Auctuatiog. s which occur in the equilib-
rium distribution. This is possible because the under-
lying random processes which cause each phenomenon
are the same. The connection between the two
phenomena is achieved mathematically by utilizing
the Wiener-Khintchine theorem" " and the ergodic
hypothesis.

The Wiener-Khintchine theorem relates the cor-
relation function E(t) of a random variable f(t),

E(t)= -'~I F(Q') F( Q) G( Q,
Q'~ ~t) .dd'r. (6.17)

Here dr'/~' is the probability of finding the representa-
tive point at Q and t=O, and G(Q, Q'&~t~)dr is the
probability of 6nding it at Q and t= t if it was initially
at Q'." This result together with (6.15) makes the
desired connection between the diffusion process,
represented by G(Q, t), and the spectrum of a fluctuating
variable, represented by g(co).

As a specific example of the result above, consider
F(Q) to the the function A(Q,A') given by (6.6). The
correlation function may be written in terms of the
components as

E,(t) =n=' A, (Q',Ao)A, (Q,Ao)
J

&&G(Q,Q',
~
t

~

)dldr' (6.18). .

This integral is most easily evaluated by transforming
to coordinates centered at Q' so that the new variable

"N. Wiener, Acta Math. 55, 117 (1.930).
@ P, Khintchjne, Math, Ann. $09, 604 (1984),

"The absolute value bars on t allow for the possibility of
ejther Q or Q being considered ag the initial point.
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of integration is

a"=r'a —ra'+a&& a',
and the function A(Q, AO) is

A(~ Ao) A(Q tA(~ Ao))

The correlation function is then

(6.20)

of the molecule through the dyadic r;&r;&. Its cor-
relation function therefore involves terms of the form

X;,„=lim (2T) ' A;(t')A, (t')B&(t'+t)
—T

XB,(t'+t)Ct', (6.27)

=~-
~

a (a' Ao)at(a', Bo)d.', (6.22)

and then substituting the average

(A(Q A ))) t)
= A(Q A )G(Q f

t
f
)dh (6.23)

for the vector 80. The result is

lt.t(t) —&e—3D)t)L(Z 0)2eDy)tl+ (Z o)2eD2)tt

+ (A 30)2eD3) t)j8 t. (6.24)

The spectral density of A in the laboratory system is
then given by (6.15),

1 1 (A ro)2 (D2+Ds)
lim

f A, (~) f'=—
~ "2T 32r (D2+D3)2+yd2

(A 2')'(Dr+ DO)

(Dr+DO)'+(0'

(~3')'(Di+D2)

(Dr+ D2)2+oy2
(6.25)

The Anal example which we shall consider is a
problem that arises in the theory of nuclear magnetic
relaxation. " The problem is to obtain the spectral
density, or equivalently the correlation function for
the dipole-dipole interaction of a system of spin--,
nuclei, say protons, which are rigidly bound together
in the same molecule. This interaction is of the form

(&,"4)fr,of' —3&,4:ryder, s
(6.26)

E; (t)=or ' ~ ~A, (Q',A')A (O', A(Q",A'))

XG(a",
f
t f)t)yr"t)tr'. (6.21)

The integrations over dv-' and dg" may now be done
separately by erst calculating

(a,(e',Ao)A, (e',80))„

where A and B are vectors fixed in the molecule. This
integral may be evaluated in the same fashion as E;~
to obtain

EttH 20A2——82('y, ,t'tent

+—,'oy(t) e-'Dl') (8,3B,t+8;the, ——325,;532), (6.18)

where y(t) is defined as

~(t) —(L(B 0)2(g 0)2+ (B 0)2(g 0)2+ (B 0)2(g 0)2

—2382A2j COSh(2
I
t

l a)+C(D&—D)
«(~:) (B:)+(~.) (B:)+(~ ) (B:)&

+(D2—D)((~2')'(B2')'+(~i')'(B3')'
+ (~3')'(Bi')')+ (D3—D) ((~3')'(B3')'
+(Aro)2(B20)2+(A20)2(Bio)2))6 ' sinh(2 ft f5)
+2+ og 0B B oe—3(D3—D))t)

+g Og OB OB oe—3(D2—D) it)

+22 A3 B2'B3 e '( ' D&)')j). (6.29)

The complete correlation function for (6.26) will

not be given here since it clearly depends on the
speci6c structure of the molecule and in most cases
many simplifications will result from using specific
values of the vectors r;I,.

VII. THE DIFFUSION TENSOR

In order to interpret the results of the previous
section physically, it is necessary to have some means
of calculating the diffusion tensor D;& defined by
(2.7). Perhaps the simplest way of doing this is to use
the method used by Einstein" in his discussion of the
translational Brownian motion. It is imagined that, in
addition to the random motion represented by D,7„
there is an externally applied torque, derivable from a
potential tt(Q), which causes the orientations of the
members of the ensemble to change systematically.
One then requires that the Boltzmann distribution

P'(0) = e expL —p/(kT) g (7.0)

be stationary in time. This results in ones obtaining
D;I, as a function of the temperature and the drag
coeScients of the body.

The first step in the calculation is to obtain the
current produced by the potential tyyy(Q). The torque
on a typical body is

where I, represents the jth spin and r, I, is the position
vector ofj relative to k. This depends on the orientation

T(o) =zMy(o), (7.1)

'For a detailed discussion of this probelm and a calculation
of correlation functions with Furry's Greens function, see P. S.
Hubbsrdy Phys. Rev. 109, 1155 (1958).

"A collection of translated reprints of A. Einstein's original
papers on this subject has been published as Investigations on the
Theory of the Brownian Movement, edited by R. Furth, translated
by A. D. Cowper (Dover Pubhcstious, New York, 1956).



ROTATIONAL BROWNIAN MOTION OF FREE RIGID BODY 61

so that its equation of motion in body coordinates is tensor, the expression"

I (d/dt) so+ ooX (I ro) = iMy(D) —g ~ oo, (7.2)
where

p~= 16s.ri (b'+c')/3 (b'8+ c'C) ) (7.11)

oo„=sy
—'My (7.4)

The rate at which the quantity Q changes is then

(d/dt) Q = —iso„MQ, (7.5)

so that the current density due to p is given by

where I is the inertia tensor and g the tensor represent-
ing the viscous drag on the body. Now we make several
simplifying assumptions. First, we assume that ~ is
so small that the nonlinear term oo&&(I oo) may be
neglected. Second, we assume that the variation of p
with Q is slow enough that the torque may be treated
as a constant over a small interval so that the solution
of (7.2) may be written as

oo —exp( —I—'(P) too

=i[1—exp( —I 'Ilk)] g 'MP(Q). (7.3)

Finally, it is assumed that sects which take place in
time intervals less than a typical element of g 'I can
be neglected. Then each element of the ensemble can
be taken to be moving with the "terminal" angular
velocity

8= (b'+P) '(u'+P) '(c'+P) ~df,

C= (c'+P) 1(u'+-P) t(b'+-P) idg, -
(7.12)
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and p is the viscosity of the medium in which the body
is immersed.

The validity of the approximations contained in
(7.10) and (7.11) will not be discussed here since the
analogous discussions for the translational case are
readily available in the literature. "The only special
precautions one must take in the rotational case is to
insure oneself that the nonlinear term in (7.2) is indeed
negligible and to be careful that the elementary
rotations a are not suKciently large to introduce the
eR'ects of noncommutativity on the elementary level.

Zoic added ie proof It ha.s been brought to the
author's attention that some of the results contained
in this paper have been published previously in a paper
by Perrin. "

g» —gr(~) (d/di)g, =I—rp(~) (p,,—rM,.y) (M,0,) (7 6) The author is greatly indebted to Professor W. H.
Furry who suggested this problem and provided advice

The total current is this current plus the random throughout its solution.
current obtained with (2.9). This total current is

APPENDIK
Jr= F '(M, ot) (D,;M;P+PP, , 'Mrb), (7.7)

which, for the special case of a Boltzmann distribution,
1s

Sp=r &(M,n,)(D,; bTp,;-)M;Po. —-
The condition that I"be stationary is then

0=BiJR=M, (D,, kTp,; ')M;P'. —

(7.8)

(7.9)

This yields the desired relationship between D and Il,

D*~=s&T(Pv '+.P~' ') (7.10)

oo D. Edwardes, Quart. J. Math. 26, 70 (1892).

so that the problem of calculating the diffusion tensor
is reduced to the problem of calculating the viscous
drag tensor g. It is this identification, (7.10), of the

diffusion

tensor which characterizes the random
process as "Brownian" and distinguishes it from other
processes which might cause the orientation of a body
to vary randomly.

The most general calculation of the drag tensor g of
which the author is aware is that due to Edwardes"
for the ellipsoid represented by x/u+y /b +s /c =1.
He obtains, as a typical element of the diagonalized

This Appendix contains a derivation of the expression
for the current density operator b of (2.9). We consider
an element of surface dA, normal to the direction of
increasing Q~ at the point Q in Q space, and fix our
attention on small rotations of some fixed size a. All
such rotations that cause the point in Q space to pass
through the surface dA will contribute to the current
through the surface. In general a fraction, e, of a will
be needed to reach the surface; the remainder, (1—u) e,
will cause the point to pass through the surface and
beyond.

The probability transferred through the surface will
be P(Q', t)dr' where 0' is the point of origin of the
rotation. This may be written as

P(Q', t)dr'=exp(inc M)P(Q, t)dr.

The volume element d~ is now located at the point
Q. It is specified by a small parallelepiped seated on the

~ The result given here actually divers from the one appearing
in Kdwardes paper by a factor of 6/5. This is a correction of an
apparent misprint in the last equation of the derivation of P in
that paper.

25 The reader is especially referred to the collection of reprints
published as Noise and Stochastic Processes, edited by ¹ Wax
(Dover Publications, New York, 1954).

o' P. Perrin, J. phys. radium 5, 497 (1934).
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surface dA and oriented in the direction of the change
in Q under the rotation ado, ,

S~=—id ('M)~.
This yields the expression for the volume element d7-,

dr=F Iddr&I=F Idddn( —ie.MQI).

The probability passed through the surface due to
all rotations of magnitude a in the time Dt is then

This must be integrated over all possible values of e to
obtain the total probability passed through the surface.
The result, to first order in At is

dot), tF- yr, o,)D,,m„r(a, t).

This must be divided by dA and At to obtain the
current density, J&,

JI=I' I(MgI)D;sMsP(Q, t) =—IIE(Q,t).

~1

P(.,t) t)ds.
,

d~ F-'dA( —ie Mn, )

yexp(icra M)P(a, t).

Thus

or
II=F I(M,Qt)DyI, MI„

II=SF 's (FD/s+DrhjlDj7c)&k.
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Surface-Dependent 1/f Noise in Germanium*

A. V. MAC RAE$ AND H. LEVINSTEIN

Physics Department, Syracuse University, Syracuse, lVem York

(Received February 4, 1960)

The surface characteristics of 1/f noise have been investigated by using field eRect techniques on 100
micron thick single crystal germanium filaments. The 1/f noise is independent of the surface potential
when an accumulation layer is on the surface but increases rapidly as the surface conductivity gradually
becomes inverted with respect to the bulk. No 1/f noise is observed due to charge transfer between the
bulk and the slow surface states. An increase in the 1/1 noise associated with the inversion layer occurs
when the temperature of the germanium is decreased. The magnitude of the 1/f noise depends on the
ambient, increasing as the slow state relaxation time decreases. An investigation of the relaxation processes
associated with the charge transfer between the bulk and the slow surface states after the application of
a dc electric field to the field effect electrode reveals a 1/f noise relaxation which is independent of the mode
of the conductivity relaxation. The noise relaxes back to its original value with a logarithmic time depen-
dence which is characteristic of a 1/r distribution in time constants and the conductance decays with a
combination of exponential and logarithmic terms, depending on the surface conditions.

I. INTRODUCTION

INGLE crystal semiconductor 6laments generally
~ ~ ~

~

~

exhibit a noise power spectrum which varies in-

versely with frequency over a wide range of frequencies. '
The 1/f law has been observed at frequencies as low as
6)&10 ' cps' and as high as 12 Mc/sec. ' The absence of
an appreciable temperature dependence' ' of 1/f noise
has introduced difFiculties into the formulation of a
satisfactory physical explanation of the origin of this
particular type of Quctuation.

While the exact physical origin of the 1/f noise is
presently open to conjecture, there is considerable evi-
dence that the surface of the semiconductor may be the
source of at least part of this noise. 1/f noise seems to

* Supported by the Aerial Reconnaissance Laboratory, Wright
Air Development Center.

t Now at Bell Telephone Laboratories, Inc. , Murray Hill,
New Jersey.' H. C. Montgomery, Bell System Tech. J. 31, 950 (1952).

2 T. E. Firle and H. Winston, J. Appl. Phys. 26, 716 (1955).' F. J. Hyde, Proc. Phys. Soc. (London) 869, 231 (1956).
4 I. M. Templeton and D. K. C. MacDonald, Proc. Phys, Soc.

(London) 866, 680 (1952).

be dependent on the samples' ambient' ' as well as its
surface to volume ratio. The most promising experi-
mental evidence for assigning the origin of 1/f noise to
the surface is the 1/r distribution in relaxation times
of the slow surface states, ' which are located on the
oxide layer of a semiconductor. A 1/r distribution in
relaxation times will lead to a 1/f noise spectrum if
individual noise spectra of the generation-recombination
type are added. ' It has been pointed out, however, that
the experimentally observed 1/7 distribution does not
cover the range in times necessary to explain the com-
plete 1/f noise spectrum. "

Even though it is well known that the surface has a

' T. G. Maple, L. Bess, and H. A. Gebbie, J. Appl. Phys. 26,
490 (1955).

6 G. L. Pearson, H. C, Montgomery, and W. L. Feldman, J.
Appl. Phys. 27, 91 (1956).

7 J.J. Brophy, J. Appl. Phys. 29, 1377 (1958).' A. L. McWhorter in Semiconductor Surface Physics, edited by
R. H. Kingston (University of Pennsylvania Press, Philadelphia,
Pennsylvania, 1957), p. 207.

9 J. Bernamont, Proc. Phys. Soc. (London) 49, (extra part), 138
(1937).

'0 H. C. Montgomery (personal communication).


