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Asymptotic Conditions and Perturbation Theory
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The formulation of Geld theories based on few postulates but
not using Lagrangian, Hamiltonian, or Geld equations has been
investigated by many authors. In such a theory the coupled
integral equations for Green's functions play the role of a sub-
stitute for Geld equations and serve to determine various physical
quantities from the theory. In this paper we give a general
prescription for the systematic solution of the coupled integral
equations in perturbation theory.

We discuss two kinds of Green's functions: {1}the retarded
functions, and (2) the time-ordered functions. Especially in the
solution of the latter we have to use dispersion relations, and one
finds a complete correspondence between the numbers of subtrac-
tions in the dispersion relations and the types of interactions in
the conventional Geld theory; furthermore, the so-called renormal-
ized coupling constants can be introduced into our theory through

the boundary conditions supplementing the substracted dis-
persion relations. On the contrary, however, it is not possible
even to deQne the unrenormalized coupling constants in our
scheme. In other words, all unobservable divergent quantities
are completely eliminated in our formulation, and no divergences
occur in the course of the entire calculations.

We apply this method to quantum electrodynamics to illustrate
the, above statement and also to show how one can get convergent
unambiguous solutioas in agreement with the conventional
renormalized quantum electrodynamics. In discussing quantum
electrodynamics, it is necessary to discover how to express the
requirement of gauge invariance without referring to Lagrangian,
Hamiltonian, or Geld equations; it is found that a set of equations
which is a straightforward generalization of the Ward identity
meets this requirement.

I. INTRODUCTION
' 'N the conventional held theory one starts from a

~ Lagrangian or a Hamiltonian, derives fieM equa-
tions, quantizes the theory, applies perturbation theory,
and applies the renormalization procedures to get
convergent solutions. Should those solutions correctly
describe nature, there should be another way to achieve
the same results without encountering any kind of
divergences, and the divergences inherent in the
conventional theory would suggest that there are
physically meaningless and unnecessary concepts
involved in the conventional theory. For this reason
it is desirable to reformulate the theory by eliminating
divergent meaningless quantities from the conven-
tional theory. There is also another reason for requiring
the improvement of the present renormalization
procedures since they apply only to perturbation theory.
We have no ideas at present how to apply the renormal-
ization prescription to approximations other than
perturbation theory. '

The starting point to reformulate 6eld theory would
be to 6nd out and exhaust all kinds of relationships
among finite renormalized expressions. A powerful
approach along this line of reasoning would be dispersion
theory, and in fact it has been suggested by Mandel-
stam' that the combination of the dispersion relations
and unitarity of the 5 matrix would determine the
dynamical behavior of the system of few elementary
particles. Our approach in this paper is more or less
similar to his, but we start from Green's functions
rather than from the 5 matrix.

*Present address: Department of Physics, University of
Illinois, Urbana, Illinois.' To illustrate the situation, we have not succeeded in renormal-
izing the Bethe-Salpeter equation for meson-nucleon scattering.' S. Mandelstam, Phys. Rev. 112, 1344 (1958), and sub-
sequent papers. See also the review article by G. F. Chew,
University of California Radiation Laboratory Report UCRL-
8670 (unpublished).

An important step in this direction is the discovery
of the expressions of the 5-matrix elements in terms of
Heisenberg operators. First, the expression of the 5
matrix for the pion-nucleon scattering was derived by
Low, ' by Goldberger, 4 and by Nambu, ' and sub-
sequently it was applied to the Chew-Low theory and
dispersion relations. A more general method was
proposed by Lehmann, Symanzik, and Zimmermann, '
who showed the importance of the asymptotic condi-
tions in the derivation of the 5 matrix elements in .

terms of Heisenberg operators.
Since then a new approach to quantum field theory

has started using the idea that one could determine the
dynamics of fields based on only few postulates without
reference to a Lagrangian or Hamiltonian.

The postulates which seem to be of the most general
validity in the conventional field theory are (1) Lorentz
invariance, (2) microscopic causality condition, (3)
asymptotic conditions, and (4) irreducibility condition.
In such an approach we do not assume even the
existence of the field equations„which have only a
korresportdertsrrtassig meaning even in the conventional
renormalized Geld theory in the sense that renormalized
field equations always involve divergent expressions
such as divergent self-energy terms and so on.

In a previous paper' to be referred to as I hereafter, an
'

interesting conclusion was drawn that in principle one
cannot distinguish composite particles from elementary
particles as far as the above mentioned postulates are

~ I". E. Low, Phys. Rev. 97, 1392 (1955}.
4 M. L. Goldberger, Phys. Rev. 99, 979 (1955).
5 Y. Nambu, Phys. Rev. 98, 803 (1955).
6H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo

cimento 1, 205 (1955).
7 K. Nishijima, Phys. Rev. 111,995 (1958).See also W. Zimmer-

mann, Nuovo cimento 10, 597 (1958); R. Haag, Phys. Rev. 112,
669 (1958).
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concerned. ' In the present paper we would like to show
the equivalence of our theory to the conventional re-
normalized theory by solving the integral equations re-
sulting from the asymptotic conditions in perturbation
theory.

Since our equations provide us with the renormalized
solutions without applying the renormalization proce-
dures, it is expected that they Inight be applied to the
problems of strong interactions to get renormalized
solutions without recourse to the perturbation theory.

In Sec. II we shall brieRy review the derivation of the
coupled integral equations for Green's functions from
the asymptotic conditions, Two kinds of Green's
functions, the retarded functions and time-ordered
functions, are introduced. In Sec. III we shall present
a general prescription for solving the integral equa-
tions for the retarded functions, and in Sec. IV we
discuss the solutions of the integral equations for the
time-ordered functions, and introduce dispersion rela-
tions for these functions. Next we illustrate the method
by applying it to quantum electrodynamics for which
perturbation theory is meaningful. In Sec. VA we
investigate the problem of how to express the require-
ment of gauge invariance without reference to Lagran-
gian, Hamiltonian, or field equations, and we obtain
a set of relationships which are equivalent to the gauge
invariance. These relationships, as combined with the
assumed existence of the Lagrangian, lead to the familar
gauge invariant. Lagrangian. A closer examination of
these relationships shows that they are generalizations
of Ward's identity. ' Finally in Sec. VB we apply the
method to quantum electrodynamics.

prove the existence theorem for such a complicated set
of equations, we shall be content with the general
prescription for solving the coupled integral equations
in perturbation theory.

Let us first introduce the recursion formulas, which
we call the asymptotic condition in this paper, and
then derive the coupled integral equations for the
Green's functions.

We first postulate the existence of two complete
sets of state vectors fC &+') and &C '—&}.4 '+' denotes
a state vector for a scattering state satisfying the
outgoing wave boundary condition. C ( ) denotes a
similar state but satisfying the incoming wave boundary
condition.

We further assume that a state vector may be
written in the following form:

@ay ~ ~ a (+) means that this stationary scattering sta, te
is formed by incoming stable particles a&, a2 . , a„
and the outgoing scattered and/or produced particles.
Similarly Ca& a„( ) is the superposition of outgoing
stable particles c~, a2, a and the incoming particles.
If we assume the neutral scalar theory for simplicity
the recursion formulas are given by"

(«)«I ~(s) I o&

II. ASYMPTOTIC CONDITIONS AND THE DERIVATION
OF INTEGRAL EQUATIONS FOR

GREEN'S FUNCTIONS

The asymptotic condition as introduced by LSZ
assumes that the matrix elements of field operators
converge to those of incoming or outgoing field operators
for remote past or future. Based upon this assumption
they derived recursion formulas for the matrix elements
of the time-ordered products of Heisenberg operators.

The asymptotic condition cannot be proved, but is
postulated in their theory. We also postulate this
condition in our theory, so that instead of trying to
prove it we try to prove the self-consistency of this
condition, or the self-consistency of the recursion
formulas. In I it has been proved that the self-consist-
ency of this condition is equivalent to the existence of
solutions of a set of integral equations derived from the
recursion formulas. Since, however, it is not possible to

That means, for example, that the existence of field equations
might be a clue to distinguish elementary particles from composite
ones. This is, however, just a guess and not conclusive.

J. C. Ward, Phys. Rev. 77., 293 (1950); 78, 182 (1950);
Proc. Phys. Soc. (London) A64, 54 (1951); H. S. Green, Proc.
Phys. Soc. (London) A66, 873 (1953);T. D. Lee, Phys. Rev. 95,
1329 (1954). For the proof of the generalized Ward identity see
especially Y. Takahashi, Nuovo cimento 6, 371 (1957).

(~s)&~I9 (s)Io)
J

E.(8, —
~
TE~(»). 9 (a.) ~(s)j ~~, +&, (2.2b)

where (ds)=d4s, ~rra, &)= ~at . a„a && and ln/a, &&
denotes a state obtained by omitting a from a& -a„
if a is involved, and equal to 0 if a is not involved in

a& .a„. E, is the Klein-Gordon operator U,—m, '
where m is the rest mass of the quantum of this neutral
scalar field. Starting from the above formulas one can
derive many diferent formulas as has been shown in I.

In the above formulas T denotes Wick's time-ordered
product, " and similarly if we define the anti-time-

"e,= ~0) denotes the vacuum state. For the single particle
state ~o) we need not distinguish between + and —."G. C. Kick, Phys. Rev. 80, 268 (1950).
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ordered product T, we get

T[s(»)" s(x-)1'=7'[s'(g-) s'(»)]
=7[v(g-) "s(g~)] (23)

one writes

E(x:yx&. x„)—R(y: xx, . x„)

+'2 Z &01~[*:*' *.']I-, +)
Comb aBy using the complex conjugate of Eqs. (2.2), and

(2.3) one can derive recursion formulas for rproducts
of field operators.

Next the retarded or R product"" of field operators where
is defined by

X &~ + I~[y:»+~'".g.']10&—(g ~ y) =o, (2.7)

Z(g:yg, " g.) = &Z[g:yx," *„]&,. (2.8)

&[s (g): s (») s (g-)]

(-i)"8(x—xg')8(x, '-x2'). 8(x„g'—x„')
Perm.

The iterated use of the recursion formulas (2.5) enable
us to express &OI RIn, +) znd &n, + IDIO& in terms of
the vacuum expectation values of the R products of
field operators, and we finally arrive at

X[.. [s(*),s(*')]s(*')] .s(*-')] ( ) g(, . „.. ., ) g( .„,. . ., )
where x~', -, x„' is a permutation of x~, , x„, and
8(x) = 1 if xo)0, and =0 if xo(0.

Then combining the recursion formulas for T and
Tproducts we get the recursion formulas for E products:

&0, + l&[s (*):s (») s (g-)] I «, +)
=&Pl~, +l&[s(g):s(»)".s(g-)]l~, +)

+ Q P —l(d )(d)x, E,
Comb l=l i 1

X R(x:x,' xp'u, u,)6&+~ (ug s,)—. A~+' (u( sl)—
1XEv$. Evg(y: 'gfj+] g~ vy .v()

—(* y) =0, (2.9)

and

+ (ds) &01 cp(s) I a& E;&P, + IR[s (x): q (x,) where (du) and (ds) denote d'u~. d4uq and d4s~ ~ d'vq

respectively, and 6&+' is defined by" s(g-)s(s)]1~, +& (25a)
i~ + (g—y) =Z. (01 ~(x)I o&&mls (y)I 0)

&Po, +1&[v(g):s (») . s(g.)]I~ +)
=&~, +I~[«*):~(x) "~(x-)]I S., +&

(ds) &a I s (s) [0) Z;&P, + I Z[s (x): s (x,)

s (g„)s (s)]1~, +&. &2.5b)

and
T[s'(») . ~(g-)]= T'[»

E[(p(x): q (xg) s (x )]=E[x:xg x„].
First from the definition of the E-product the

following equation is obtained:

R[x:yx, x„]—Z[y:xx&. . x.]
+i P [8[x:xg'. xb'],

Now by making use of these formulas we shall
derive coupled integral equations for the vacuum
expectation values of R and T products of field
operators. For simplicity we use the following abbrevia-
tions:

(dp)8(p.)8(p+-).' ~- ~.

(2s)' ~

If we introduce the so-called Haag's functions" by

r(x:x, x„)=E.E*g Ezg(x:x, x„), (2.10)

they satisfy a simpler set of equations than (2.9) as
given by

r(x: yx& x„) r(y: xx—, x„)

z

+i Q Q — (du) (ds)r(g: x,' g„'u, u, )
Comb l=l ) J aJ

XA+'(u& —v&) a+ (u, v,)r(y: —
~x,

' x„'s,. s,)
—(x ~~y) =0. (2.11)

The new set of Eqs. (2.11) is simpler than (2.9) not
only in form but also in the method of solution. From
(2.10) one can express' functions in terms of r functions
as

Comb

g[y. g &. . .g q] 0 (2 6) E(x:xy ~ ~ ~ x„)= (—1)"+~ "(dy) (dye) ~ ~ ~ (dy„)

Taking the vacuum expectation value of this equation

"See I, reference 7; see also K. Nishijima, Progr. Theoret.
Phys. (Kyoto) 17, 765 (1957}.

"H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 6, 319 (1957).

X&a(x—y)&a(y —x ). &z(y„—x„)

Xr(y:y~ y-), (2 12)
"R.Haag, Kgl. Danske Videnskab, Selskab, Mat. -fys. Medd.

29, 12 (1955}.
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where egg(x —y) is the retarded function satisfying From (2.18) one can further derive

E,egg(x y) =——{&(x—y). (2.13)

These results have already been discussed by Lehmann,
Symanzik, and Zimmermann, " by Glaser, Lehmann,
and Zimmermann, "and by the author. ~"

The algebraic relation for the time-ordered products
corresponding to Eq. (2.6) for the retarded products is

given by'

XAv (x„y„)—r(yg .y„). (2.20)

The r and r functions are closely related to each other
and we can easily derive a few relationships between
them, for instance, "

Comb
(—i)"(—1)"Tkxg' ~ ~ ~ xg, 'jTt xo+g' ~ ~ x„'j=0 (2 14) r(xxg ~ x„)

If we introduce T(xg x )=(—i)"(TLxg x„])o, we

get by taking the vacuum expectation value of (2.14)
coupled integral equations for T functions correspond-
ing to (2.9):

T(xg x„)+T*(xg x„)

+ P' g — (du) (dv)Eog Eog
Comb l=0 $! 4

XT(x,'. . xg,.'ug ug)A{+& (ug —v,) . 6{+&(ug vg)—

XE. E.gT*(xg+ x„vg vg) =0, (2.15)

where Po,~b' means omission of k=0 and k=rg.
In order to simplify (2.15) we introduce

r(xg x„)=Erg. Ez„T(xg x ), (2.16)

then the v- functions satisfy the following coupled
integral equations

r(xg x„)+r*(xg x.)
i'

+ g' P — (du) (dv)r(xg' .xg, 'ug .ug)
Comb l=0 $! aJ

Xa{+&(u,—v,) . .a{+&(ug—vg)

X r*(x~g' x„'v, v,)=0. (2.17)

The Fourier transform of this equation represents the
unitarity condition of the 5 matrix when all four-
momenta are on the mass shell, ' so that the above
equation represents a generalization of the unitarity
condition.

The T functions are expressible in terms of r functions
as

T(x, x„)= (—i)" (dy, ) . (dy„)AF(x, —y,).
~J

XL4(x„y„)r(yg . .y„), (2—.18)

where Dg;(x—y) is Feynman's 6 function satisfying

E.d, g (x y) =H(x y)——(2.19)
'~ V. Glaser, H. Lehmann, and W. Zimmermann, Nuovo cimento

6, 1122 (1957).

= —v P g —
~
"(du)(dv)r(x, ' x,'u, u, )

Comb lM $!J

X6{+&(u, —v,) 6{+&(u —v,)

Xr(x:xg+g' x„'vg vg), (2.21)
and

r(x:xg x„)

'

(du) (dv) r*(xg' xg'ug ug)
Comb l~ $!J

X&{+&(ug—vg) 6{+&(ug—vg)

X r (xxg+g' x„'vg vg) (2.2. 2)

III. INTEGRAL EQUATIONS FOR THE r FUNCTIONS

In this section we shall discuss the systematic
solution of (2.11) in perturbation theory. Although only
the neutral scalar theory is treated here, the method
itself is general to cover all other cases. As a matter of
fact we apply this method to quantum electrodynamics
in Sec. VI.

a. Free Field

There are three boundary conditions to be imposed
on the r functions. '

(1) r(x:xg x„) is a Lorentz invariant function;

(2) r(x:xg x„)=0 unless xo) (*g)o, , (x~)o,

(3) r(x:xg x„) is symmetric in xg, , x„.

Now the condition characterizing the free field is
given by

r(x: xg x„)=0 for gg) 1.

In this case it is preferable to discuss the function
R(x:y) =R(x—y) rather than the function r(x:y)
=r(x—y). The equation for R(x—y) is given by

R(x—y) —R(y —x) = ' (du)(dv)E„R(x —u)

A(u —v) E R(y v) (3.1)—
One can derive (2.21) from Eq. (B.18) in I. One has to

multiply by a factor i the left-hand sides of Eq. (B.18) and the
next equation.
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r„(x:yx, x„)=Q„(xy:x& x„) if xo) yo,
=0 if xo(yo. (3.8)

R(x—y) = —hp(x —y) =B(x—y)D(x —y). (3.2)

where A(x) =A~+&(x) —6&+&(—x) =6&+&(x)+A~ &(x), and this purpose. We get
the only solution of (3.1) satisfying the three boundary
conditions is given by

From this solution we get

r(x:y) = —E.E„hp(x—y) =E.b(x—y).

This result is the basis for perturbation theory.

r(x:x, .x„)=O(e"-'), (3 4)

and in general we may write

r(x:xg x„)= Q r„(x:xg x„),
m=n —1

(3.5)

where r is the term of the order of e .
First let us pick up terms of the order of e from the

r Eq. (2.11):

r (x:yx& . )x-r„(y: xx& x„)

Nt —1 oo $~

+i Q Q P —t (dg) (dv)r, (x:xg' xo'u, I()
comb a=1 /=1 )I 0

X a&+& (I&—
v&) a&+& (u& —

v&)

b. Interacting Field"

Next let us assume that a weak perturbation is given
and that the r functions can be expanded in a power
series of a small expansion parameter e.

We further assume the order of magnitude of the
r function to be

However, we cannot determine r for xo——yo. The
microscopic causality condition requires that the solu-
tion of the homogeneous equation

r (x:yx& x„)—r (y:xx& x ) —0

should vanish unless x=y, and hence the general
solution of (3.7) will be given by

r„(x:yx, "x„).=e(x—y)Q (xy:x, . x.)
+8(x y)f(*—:*, *.)
+P derivative of h(x —y)

Xfunc. (x:x& x ). (3.9)

This solution satisfies Kq. (3.7) but will not satisfy the
symmetry requirement, the third boundary condition,
in general. One has to fix the additive undetermined
part of (3.9) so as to satisfy the symmetry requirement.
Suppose that we have found a special solution r ")
that satisfies all boundary conditions, then the general
solution satisfying Eq. (3.7) as well as all three boundary
conditions is given by

r (x:yx&. x.)
=r„&o&(x:yx& x„)+P(8/By, 8/Bx&, , 8/Bx )

XB(x—y) 8 (x—x&) 8 (x—x„), (3.10)

where I' is an invariant symmetric polynomial of
differential operators 8/By, 8/Bx&, , 8/Bx„and the
first few terms will be given by

Xr~, (y:xo&.&' .x„'v& vr) —(x+ y) =0. (3.6) P(8/By, 8/Bx&, .8/Bx„)8(x—y)8(x—x&). 8(x—x„)

It is worth while to notice that terms corresponding
to s=0 or m do not occur in the summation, '" for if we
insert ro(x I)=Kg—(x I) into —the above integral we

vill get

f
(dl)E~B(x—I) 6 (I—v) =E~A (x—v) =0.

Therefore, if the r functions are known up to the order
e ' the second term in (3.6) is known, and we may
write (3.6) as

r„(x:yx) .x„)—r (y:xxg x )
=Q (xy:x& x„), (3.7)

where Q (xy:xq x„) is assumed to be known and is
antisymmetric in x and y. Then the next problem is

to determine r (x:y ) and r (y:x ) separately,
and we make use of the boundary condition (2) for

'7 This is not the case, however, for the E functions.

= cob(x y)b(x x&) —b(x x„—)-
I

+e,
~ P Z., ~8(x-y)8(x-x,)" &(x-x„)
( o=o

( 8 8 )
+coi Q . ib(x —y)5(x —xg)

& ~~Bx; Bx,i
XB(x—*„)+ ",

rg(x:yx, . x„) r(y: &xg —.xx„)=0. (3.11)

where we have used the convention y=xo.
By comparing these results with those of the conven-

tional field theory one sees that the introduction of the
additive 8-function terms corresponds to the introduc-

tion of interaction terms of the form y"+', q" 'Qq,
oo"(8&/Bx) (Bp/Bx), in the conventional theory. To
see this situation more clearly let us consider the first

order perturbation theory; then the r equation in

this order is given by
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The general solution of this equation is given by

rl(x:yxl x„)=P(8/r9y, 8/Bxl, 8/(3x„)

X8 (x—y) 8 (x—xl) 8 (x—x„),

and one can immediately compare this result with that
of the conventional theory and see that the above
statement is true. Apart from trivial numerical factors,
co, c1, c2 ~ are the coupling constants for the interac-
tions p2"+', y+'+zp, 22"(Bq/Bx)(Bq/Bx), Thus we
conclude that the constants of integration occurring in
the solution of r equations correspond to the coupling
constants in the conventional field theory. We will meet
a similar situation in the solution of the 7. equations.

A difficulty associated with the solution of the
r equations is the fact that one cannot write down the
formal convergent symmetric solution r s in an explicit
form. This is a serious difficulty in investigating the
general properties of the power series expansion.
Nevertheless, we shall illustrate how one can solve the
r equations in the application to quantum electro-
dynamics. This difficulty does not occur, however, in
the solution of the 7 equations as we shall see in the
next section.

where xi', . , x„' is the permutation of x1, -, x
and the summation shouM be taken over all possible
combinations that divide x1, , x„ into two groups.
Eq. (4.2) allows us to express r functions in terms of

p functions, and vice ~ersa. Therefore one can express
the 7 equations in terms of the p functions to get the
p equations. For this purpose, however, it is simpler
to use the following device: we first pick up those
terms from the v equation which correspond to con-
nected diagrams. First, it is clear from the definition
that we may write

Xl ' Xn 7 $1' ' Sn coIIII,

=p(xl .x„)+p*(xl . x„). (4.3)

To pick up terms corresponding to connected diagrams
from the nonlinear part of the r equation, express the
z functions in terms of p functions and check if they are
connected in any way, either through p functions or
through A&+& functions (Fig. 3). The p equation is,
therefore, given by

il
p(x, x.)+p*(xl x„)+ P P —~ (du)(dl)

Comb l=l

IV. INTEGRAL EQUATIONS FOR THE s FUNCTIONS

In this section we try to solve the 7 equations in
perturbation theory following the pattern described in
the solution of the r equations. The free field is char-
acterized in this case by the propagation function

(TLx,,x2])p——Ap(x, —x,),
and hence SS Fxo. 2. A disconnected

diagram.

X[r(xl' x2» u&)A~+&(u, —2,) &&+~(u,—2,)

Xr*(x~,' x„'2, 2 1)],.„„=O. (4.4)

r(xl x2) KzlKx2T(xl x2)
= —zKz,5 (xl—x2). (4 &)

We cannot, however, immediately apply the method
described in the previous section to the r equations,
but we first have to prepare for a new set of auxiliary
functions.

The Feynman diagrams contributing to the function
r(xl, ,x„) may be divided into two classes. The first
one consists of the so-called connected diagrams, and
the other consists of disconnected diagrams (Fig. I
and Fig. 2).

If the function p(xl, , x ) is de6ned as the sum of
contributions from connected diagrams alone, then it
is not difficult to derive the following formula on
graphical considerations

r(xx, . x„)=p(xxl x„)
+ P p(xxl'. x2')r(x2~, ' . .x„'), (4.2)

Comb

The connected part of the nonlinear terms in the above
equation may be found by applying the prescription
given above. To facilitate understanding of this prescrip-
tion we shall give an example.

ExarrzP/e

fr (X1X2ulu2)6 (ul 21)6 (u2 212) '7 (X2X4$1$2)]conn. .

There are three diGerent types of connected diagrams
as shown in Figs. 4(a), 4(b), and 4(c). Correspondingly
we get three diGerent types of contributions.

p(»x2ulu2) A (ul ztl) A (u2 22)p*(xpx4z1232) t (4 5a)

p (xix2ulu2) + (u 1 pl) A (u2 &2)

X [J3 (xp pi) p (x422)+ (xp+~ x4)], (4.5b)
and

Fxc. 1. A connected diagram.

(p(xlul)p(x2u2)+ (xl+—x2)]A (ul 21)

X6&+'(u2 —~2)p*(xpx4vlv2). (4.5c)

The free field is characterized in terms of the p
functions by

p (xlx2) = —iK*18(xl—x2),
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p(xix2 x„)=0 for I)2. (4.6)

which has been proved by Jost)8 from the fundamental
postulates alone. This relation leads to the following
equation for the v functions:

(rl)x) xg) r( xl) ) xS) ) (4.8a)

FIG. 3. A typical con-
nected diagram occurring
in the nonlinear part of
the p equation.

The functions r(xi . x ) for the free Geld, however,
do not vanish in general, and this is the reason for
preferring the p functions over the v functions in our
formulation.

To the p equation (4.4) we can apply perturbation
theory, and if we know the p functions up to the order
e ', where e is a small expansion parameter as in the
previous section, one can immediately 6nd the expres-
sion for p (xi .x„)+p (xi x„) from the p equation
quite similarly to the case of r functions. Then the
next task is to separate p from the sum p +p *.
In the case of the r functions, the separation was made
by using the retarded character of the retarded func-
tions, but in the present case we must discuss this
problem in momentum space.

First we write down the CPT theorem:

FIG. 4. Connected dia-
grams corresponding to the
expressions (4.5a), (4.5b),
and (4.5c).

(+)
x,

P
x,

".
;;;p

~p~ X,
pit

Xa p " (+) X4

x,

investigated in recent years, and we shall utilize some
results of dispersion theory

It is known that the Green's function g may be
expressed in the following version in all orders of
perturbation theory":

o.(c p,M')dc pdM'
B(p-ps) = „, (4 1o)

(P c I)p pp+M' ie)"—
and hence

p(xi, , x.)=p(—xi, , —x.).

where 0 is a real weight function, M is always positive,
and 1V is a suitable integer. Combining (4.10) with the

(4.8b)

Then we introduce the Fourier transform of p by

p(x„,x„)= (dpi) (dp-)
(2)r)4("-') "

Xg (p +. . .+.p ) &i(mx&+ ~ .+4)))z)))

and

r(cP'+M2) =e(—c)
gt

(4.11a)
c$+M'

x (i, one can Gnd the dispersion relation for b
The CPT theorem as combined with the Lorentz
invariance requires that ()(pi, , p„) should be a
function of scalar products p pt) and four-dimensional
() functions i) (pi'+ +p, '). Since, however, the p
functions correspond only to connected diagrams, the
Fourier transform of the p function will not involve
() functions other than ()(pi+ .+p„) expressing the
over-all conservation of the energy-momentum. Hence
g will be a function of scalar products p p)) alone.
Now the Fourier transform of p+p* is Imc) so that the
separation problem turns out to be the problem of
finding Ref when Im() is known. This kind of relation
called a dispersion relation has been extensively

' R. Jost, Helv. Phys. Acta 30, 40 (1957).

P t" d$' (' d$'(- )=—

XImg(p. p, p'), (4.12)

where $ is a scaling parameter to be multiplied into all
scalar products. The relation (4.12) can also be
expressed as

XImg(p. p& g'). (4.»)
"Y. Nambu, Nuovo cimeuto 9, 610 (1958).
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We have not given the proof of the above dispersion
relation, but we know that it is true in all orders of
perturbation theory of the conventional theory.
Therefore, when we formulate 6eld theories in terms
of the time-ordered functions, we may regard the above
dispersion relation as a postulate substituting for the
Lorentz invariance and microscopic causality condi-
tions. As a matter of fact both conditions are already
involved in the dispersion relation. It is very desirable,
however, to try to prove this dispersion relation without
recourse to the perturbation theory.

An important remark on the dispersion relation (4.13)
is that one needs subtractions for some g functions,
because in general one has to add a polynomial of
scalar products p pp to (4.10). As we shall see below
the number of subtractions in the dispersion relation
determines the type of interactions introduced in our
scheme.

(a) Two-Point Green's Function

In the case of the two-point Green's function it is
more convenient to discuss T(x~,xs) than to deal with

p(xq, xs). In this case we refer to the Kallen-Lehmann
representation. "
T (xg,xs) =—(T)xg,xs])p

= —Ap(xg —xs, m') t dM—' o (M')

since the nonlinear terms vanish in this order for the
same reason as that in the r equation, i.e.,

(dg) p (xl)6'+'(u s—) = iK a—+'(x—s) =0

From (4.16) we get

Imps(pg, , p„)=0. (4.17)

(d/dk) Re8 (p-pp 5) =o (4.19)

The solution of this differential equation is given by

Ref~(p pp $)=g, const. (4.20)

This result is exactly the same as that given by the
conventional field theory with the interaction

Hence the dispersion relation without subtraction,
Eq. (4.12), will require

ReB)(p), ~ . , p.) =0, (4.18)

or, in other words, no interaction can be introduced.
Thus the above statement is verified in perturbation
theory.

Next let us discuss the dispersion relations with one
subtraction. In the lowest order perturbation theory
we again get (4.17) and the dispersion relation with one
subtraction gives us

(g/~ t) V (x)" (4.21)
&& hp(xg —xs, M'), (4.14)

where 0(M') is a positive definite function of the
integration variable M, and the derivation of T(x~,xs)
from ReT(xq, xs) is trivial.

(b) n-Point Green's Function (n)2)
In general the subtracted dispersion relations are

obtained by differentiating (4.12) so that the true
dispersion relations will be given by

Thus we see that interactions are introduced through
subtractions. In general, when higher order corrections
are taken into account, we fix this constant of integra-
tion by an appropriate boundary condition. For
instance, for the 3-point Green's function we Gx this g
by a condition like

Ref(PP= —m' Pss= —m' Ps'= nP)=g (4.22)—
which defines the renormalized coupling constant.

Suppose that we used dispersion relations with two
subtractions, then we get instead of (4.19) the equation

Reg, (p p, g)=O.
d(2

The solution of this equation is given by

(4.23)

Rep, (xg, . . ., x„)=0, (4.16)
'0 G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann,

Nuovo cimento 11, 342 (1954); M. Gell-Mann and F. E. Low,
Phys. Rev. 95, 1300 (1954).

yImg(p. p, p'). , (4.15)

Let us first prove in perturbation theory that dispersion
relations without subtraction for all e) 2 give the free
field as the only solution.

For this purpose we shall pick up terms from the
p equation which are linear in the coupling constant.
Then we get

Regg=g+hg Q p pp $+hsp p '$. (4.24)
aQP tX

This solution corresponds, apart from trivial numerical
factors, to the following interactions in the conventional
field theory:

gy~ h~y~ s(gIp/gx)s and fgsys ~Q Ip. (4.25)

From this result we may draw an interesting conclusion:
The subtractions in the dispersion relations are

necessary in order to introduce interactions, and the
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number of subtractions determines the type of interac-
tions in the corresponding conventional field theory.

It is worth while to notice that one cannot introduce
an indefinite number of new interactions through
subtractions in the dispersion relations, since they
will bring about divergences in the higher order
calculations of the two-point Green's functions to
which one should not apply an arbitrary number of
subtractions. See Eq. (4.14).

The 7 or p equations are much more convenient than
the r equations in many respects. Especially in each
order of perturbation theory one can give the formal
solution of the p equation that is Lorentz-invariant,
symmetric in all variables, " and convergent. This was
not possible in the case of the r equation. We shall
discuss in this paper, however, the application of the
r equations and leave the application of the v equation
to another opportunity.

V. APPLICATION TO QUANTUM ELECTRODYNAMICS

A. Generalization of the Ward Identity

In this and'the next sections we shall discuss the
application of our method to quantum electrodynamics,
since this is the only subject to which one can apply
perturbation theory. Usually quantum electrodynamics
is characterized by the requirement of gauge invariance.
This invariance requirement implies that the Lagrang-
ian, the Hamiltonian, and the field equations should
be invariant under gauge transformations. Since,
however, we do not have a Lagrangian or Hamiltonian
to start with, the question arises of how to express the
gauge invariance in our scheme without using such
conventional concepts. The solution to this question
will be the subject of this section.

In order to solve this problem we start from the
Lagrangian and try to find relationships that hold
independently of the precise form of the Lagrangian
provided that it is gauge invariant.

The Lagrangian expressing the interaction between

a denotes the species of field. e is the charge of the
quantum belonging to the field p, .

Next we define the four current by the following
equation:

OA„(x) =—j„(x). (5 2)

Then from the Euler equation this four current is given
by

then the four current is expressed as

BD.,(x) BZmatter(x)
j,(x) =p

a BA„(g) itD, „(g)

pjZmatter(g)iP—e.y. .(x)—
a gD,„(g)

(5.4)

In this summation we always include the field operator
q, (x)=tr,*(x) corresponding to the antiparticle t3'.

ln particular, Eq. (5.4) gives

BZmatter(g)
jo(*)= -ij4(x) = —2 e.p. (*)

~L~tp .(~)l

aZt. t t(x)
i P e—,p, .

8 jp. (x)

=-i P e.y (X)3r.(X), (5.5)

where pr (x) is the canonical conjugate of tp, (x). Then
from the canonical commutation relation

Ja(g) = Smatter
tlA„(x)

)&(3.(x), pj„y.(x)-ie.A„(x)q.(x)). (5.3)

Next if we introduce D,„(x) by

D.„(x)= p„jq.( x)-ie A„(x)q, ( x),

matter fields and the electromagnetic field is given by
~ ( ) ( )~ g g3( ) f (5 6)

Ztotal=Smatter('P (ag)~ Etla teaAa(g)]gapa(x))+trad, (5.1) we immediately get

where

F„,(x)=
BA„(x) BA„(x)

1 tlA„(x) BA„(x)
Z„d=——,'F„„(x)F„„(x)——

2 8', 8$p

Lp .(g),Q]=e.t .(*) (5 8)

where Q is the total charge of the system defined by

Lp, (x), jp(y))=e, p, (x)83(x—y) for xp=yp. (5.7)

This equation is true independently of the spin of the
particle a. From this equation we also get the well-

known relation

This is an example of gauge invariant Lagrangians.
We assume that there are several fields and the subscript Q= ~ jp(x)d'x. (5.9)

~'This is because the p equation is completely symmetric in
all variables, whereas the r equation is not completely symmetric
but two variables x and y are distinguished from all others.
See Eq. (2.22).

Equation (5.7) involves more information than Eq.
(5.8) does.
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Then we can verify by a direct calculation the
equation

CI T[A„(x)A„(x')A.(x") bo, (x,) bob(xb)

= —T[j„(x)A.(x')A. (x") .
bo (x,) bob(xb)

—5(xp-xp') T[[A„(x),A„(x')],
XA.(x") lo.(x.) lob(xb) ]+

= —T[.(*)A ( ')A. ( ") " .(.) ( ) ]
+i64(x x')b—„„T[A,(x") y, (x,) yb(xb) ]

+' ' '
)

where use has been made of the canonical commutation
relation for the electromagnetic field [A„(x),A„(x')]
= —iIl„.„P(x—x') for xp ——xp'. The above equation may
formally be written as

,T[A„(x) ]
= —T[j.(*) . ]+ T[ "] (5 10)

5A„(x)

This equation is not yet meaningful, however, unless

j„(x) is explicitly expressed in terms of field operators,
so that we try to eliminate the current operator j„(x)
from the above equation. The Euler equation leads to

(1) The W-T equations hold independently of the
form of the nonelectromagnetic interactions provided
that the total Lagrangian is gauge invariant.

(2) Although we used unrenormalized field operators
in the above derivation, the W-T equations hold also
for renormalized operators.

(3) The W-T equations are the generalizations of
the Ward identity. '

(4) In the presence of a Lagrangian that is compatible
with the canonical commutation relations, the W-T
equations are equivalent to the usual requirement of
gauge invariance.

For the above reasons we may regard the W-T
equations as the substitute for the requirement of
gauge invariance in the absence of a Lagrangian to
start with, and in the next section we shall use them as
supplementary conditions characterizing quantum
electrodynamics.

Among other things the second property is especially
important to the formulation of divergence-free Geld
theories, so that we shall give its proof. We start from
the following renormalized Lagrangian:

~total ~matter (&pa (x) &[z}y zeaA a (x)]boo (x))
+Z„d, (5.13)

We apply cl/cjx„ to Eq. (5.10) and get

T[A„(x) ~ .]
BXp,

=5(xp —x.p) T[A„(x')A.(x"). .[qo.(x.),jp(x)]

8
X q b(xb) ]+. .+z5„, 5'(x —x')

BXp

~ T[A.(x") q.(x.) (pb(xb) ]+ . .

1—L 1 clA„(x) cIA„(x)
F„„(x)F„„(x)—— . (5.14)

2 (9' 8xv
Zrad=—

The current operator j„(x) is defined again by

aA„(x) = —j„(x).

The Euler equation gives us the equation

(5.15)

O'A„(x)
j„(x)= j„' '"" I. C]A„(x)———

, (5.16)
BxpBxy

(5 11) where all field operators as well as e, represent renormal-
ized ones. ln Kallen's notation, "Z„d is given by

= Q e.b(x x.)+i-
Bx„5A„.(x)

X T[A„(x')A.(x") qo. (x.) bob(xb) ],

where j„««' denotes the contribution from Z~««„
and the second term on the right-hand side of (5.16)
results from the modiGcation of Z„d. We get, as before,
the commutation relation

or again quite formally we may write
[p.(*),jo' '"'(y)]=e.p -(x)6'(x-y)

for xp = yp. (5.17)8
T[A„(x) . ]

8$p

(5.18a)[A„(x),A „(x')]=0,

The commutation relations for the potentials at equal
8 t' = ' '

b= P eJl(x x.)+i . — T[ ]. (5.12)
ISA„( )Jx

This equation will be called the Ward- Takahashi
equation for the reason to be mentioned later.

The characteristic features of the W-T equations
may be summarized as follows:

-W„(x)
, A„(x') = $„.5P(x —x'), (5.18b)

Bxo 1—I,
"G. Kalleit, Helv. Phys. Acta 25, 417 (1952};26, 755 (1953}.
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and

BA„(x) BA.(x')

where

and

L f 8 8 g
i 8„4 +6„4 ib'(x —x'), (5.18c)

1 I. I -Bx. Bx„

$P e.f'i(x x.))TLA—„(x'). .p.(x.) ]
8

(1—~„) ~4(x—x')
1—I, Bx,

.Tl:. v.(x.). )+. (5 2o)

The second term in (5.20) results from the noncom-
mutativity between j„(x)—Z'„( '""'~ (x) and A, (x').
The differentiation of the second term in Eq. (5.19)
yields

i(1—LB,4) 8
54(x-x') TL y.(x.) ]+ . (5.21)

1—I. Bx„

Summing up terms (5.20) and (5.21) we again find the
W-T equations for the renormalized field operators.

In order to verify the third statement we just need
to remember Takahashi's proof of the generalized
Ward identity. As special cases of the W-T equations
we get

and

8 8
(TLA„(x),A„(x')]),=i 5(x—x'), (5.22)

8$p ~&v

8
(TL&(x),4(x'),A.(y)])0

Bgp = —~{(TI:4 (x),k(y)])Ot'(y —*')

—~(x—y) (TB (y),N(x')])o}, (5 23)

where f denotes the operator of the electron field and
e the electronic charge. Then we define the vertex
operator by

= —e ~d$dgdt Si."(x—$)I'„($—g:q —{')

XSp '({—x')D„„(g—y), (5.24)

where j„.=8„,—L5„48„4. Using these commutation
relations we repeat the same calculation as before,
and we get

C.TPA„(x)A„(*') ]
= —TLi.(*)A.(*')".]

+Li&„,/(1 —L)]P(x—x') TL ]+ . (5.19)

Next we apply 8/Bx„ to the above equation, and from
the first term we obtain

Combination of Eqs. (5.22), (5.23), and (5.24) im-
mediately leads to the generalized Ward identity

—i(p —q)„Si,"(p)I'„(p:q)Si,"(q) =Sp'(p) SF'(q—). (5.25)

Hence we may take it for granted that the W-T
equations represent the generalizations of the Ward
identity.

Finally, if we trace back the calculation leading to
the W-T equations assuming suitable commutation
relations, we arrive at a partial differential equation
for Z,tt„as a function of field operators. The solutions
of this equation are given by gauge invariant Lagrang-
ians. Thus the equivalence of the W-T equations to
the requirement of gauge invariance is verified.

B. Perturbation Theory

In this section we shall apply perturbation theory to
quantum electrodynamics. We solve the r equations
subject to the supplementary W-T equations, to
illustrate the method.

We first have to define the retarded product for
Fermion operators, and for this purpose we introduce
a fictitious auxiliary field g(x). The operator p(x) is
assumed to anticommute with all Fermion operators
and also with itself, i.e. , {g(x),g(x')) =0. For the sake
of convenience we shall review here the connection
between Wick's T product and Dyson's P product.
If we let P(x) be the field operator of a Fermion field,
then the connection is given by

&Le(»)4 (»),n(»)4 (»), , n(x.)4 (*.)]
=n(x.) v(x2)n(»)TL|t (»)4(») "4(x-)] (6 1)

This suggests the way of defining the retarded product
for Fermion operators. We define the retarded product
by

Afq(x)|t (x):g(xi)lp(xi), , i1(x )g (x )]
=~(x-) "~(x )~(x)~LA(x):0(x )" 0(x-)] (6.2)

The generalization of this definition to other cases is
evident. Next in the case of Boson fields we have the
following equation connecting E with T and Tproducts:

RLx:xi x„]=2 i"(—1)'T(x,+,'. x„']
Comb

X Tt xxi' .xa']. (6.3)

In the presence of Fermion fields this equation is
modified as follows:

(1) When x is the argument of a Fermion operator,
we get

E i"(—1)"(—1)"'"'+"( 1) T(»+i'' ' 'x ']
Qomb

&& T[xxi' . .xi, '], (6.4)
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where e'is the number of Fermion operators in xl'. . x„',
and k' the number in xl' x '. I' denotes the permuta-
tion (xi x„)~ (xi'. . .x„'), and (—1)~ is equal to
+1 or —1 according to whether P is even or odd.

(2) When x is the argument of a Boson operator,
then we have

Q i"( 1)"(——1)"'i"'+'&(—1) T[xI, i' x ']
Comb

XT[xxi' .x&,']. (6.5)

These relationships will be used in later calculations.
Next we have to give the asymptotic conditions for

the electron and electromagnetic fields. First one has
to be careful about the order of subscripts designating
a state vector. When a; and a; denote the incoming
or outgoing electrons, the Pauli principle requires the
relation

!ai a" a" a m$

——
I ai a" a' a +). (6.6)

Also we have to define the state In/a, && by

m

ai . u /a +)= P (—1)'-"5(aa)
i=1

X
I
a, a, a,+ . a, a). (6.7)

The asymptotic conditions are then given by

(1a) &Pa, + I
~[:]l~, +&—

&P, + I ~[:]I ~/a, +&

(«) (a I A„(s) I 0)

By applying the operation of charge conjugation to
(2a) and (2b) one finds the asymptotic conditions for
the positron.

(») ~&pa, + I
~[:]la, +&+&p, + I ~[:]l~/a, +)

(«) &all (s) I o&

XD.(P, + IZ[: P(s)]I, +&, (6.1Oa)

(») &p, +I&[:]I a, +&~&p/, +I&[:]I,+&

(«) &oil (s) I a&

XD.&P, +!Z[:P(.)]!~,+), (6.1Ob)

where
I a) denotes a one positron state.

In practical calculations we need contraction func-
tions, which are de6ned and given by"

&ol~.(*) I && IA(y) lo&
one electron

= —iS.pi+& (x—y) = —i (Vp&,—m).phd+& (x—y),

« I 0-(x)la&(al A(y)l o&
one positron

iS p—i+&(x—y) = i(y~—8,+m) i&hi+&(x y), —(6.11)

(o I
A„(x) I a& &a I A„(y) I o&

one photon

= i(S„,+2MB'/Bx„Bx„)Di+&(x—y).

It is convenient to introduce the following functions:

Sz (x) = (y8 m) 6g—(x), Sg (x) = (a~8+m) ag (x), (6.12)
XCI, P, + R:A„s n, +, 68

where
and its complex conjugate equation. Ia) denotes a
one photon state.

(2a) ~&Pa, +I~[:]I-, +&+&P, +I&[:]I-/a, +&

(«) &a I &(s) I o&

XD.&P, +I&[:4(s)]l, +&, (6»)

a (*)=—0(x,)A(x), and E~,(x)= —S(x). (6.13)

The corresponding D functions may be obtained from
6's by putting the rest mass equal to zero.

With these preliminaries we shall solve the r equations
in quantum electrodynamics.

Vertex FNncti oe
(2b) &P, + I&[:]I«, +&~&P/a, + I~[:) l~, +&

In developing perturbation theory it is of fundamental
importance to determine the lowest order vertex

(«) &ol~() I & function, since it corresponds to the determination of

XL& &p +!~[.~(s)]I ~& (69b) the interaction Hamiltonian. We have to solve the
r equation to determine (R[A„(x):f(yg(s)])p.

quation

(6.14)

where la) denotes a one electron state, and one has to The arguments given in Sec. H& render the e

take a —or + sign depending on whether the number
of suppressed Fermion operators in the R-product is
even or odd. D's are defined by

D.=y„(8/Bs„)jm=yB, +m, in the first order approximation. The retarded property

D, =y„~(B/Bs„) m=yrB, —m— "This equation requires a special choice of the gauge. 3II is a
gauge dependent constant.
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of the E product assures us of the following solution: the fact that they are unrenormalizable. If we put
(6.21) into (6.15) we find

t:l *DuD*&RLA I(*):|t (y)f(s) 3&o

=8„8(x—y)8(x—s), (6.15) &RI A„(x) f (y)ge(s) j&,

where 5„ is a vector formed of y matrices and differen-
tial operators. In order to determine 8„more precisely
we shall refer to the W-T equations. First, from the
relation

=ie (dg)Dz(x —n)LSz(a —y)y„Sii(N —s)j e, (6.22)

and similarly
RLA: PP$ = Tttd ~—$ TgiPtP j—A

&TL~—&3+&TL~&» (6 16) (RLA. (x):%t-(y)A(s) j&o

which follows from (6.4), we get with the aid of the
W-T equation ie—(du)D g (x n)—

t9

&REA.(*):4-(y)A(z)3&o
l9XIz

XPS&~(N —y)v„~Sii~(N —s)].e. (6.23)

Photon Propagator
= —eP(x—y)0(y —s)+S(x—s)~(s—y)j

ieDi(x—y)Sii(—y s) e+—b(x s)Sz(—s y)e.7—

A typical example to illustrate our method is the

X &(f (y) pe(z)))0 (6 17) calculation of the photon propagator &RLA„(x):
A. (y)j&o. Although this problem was discussed pre-

To the erst order in e we can approximate this expres- viously" it seems to be worth while to reproduce the

sion by argument here in connection with the W-T equations.
The W-T equation for the photon propagator provides

us with

Hence we get in the e' approximation the equation
8

(R[A (x):A.(y)]&o= B(x—y) (6.24)
8$p, ~&v

t9

DoD.&RLA, (x):
t9$tz

(y) ( j)o Combining this equation with the Kallen-I. ehmann

ieyQ P (x y)P (x z) (6 1$) rePresentation we find

Comparison of Eqs. (6.15) and (6.18) yields the relation " * ' " y ~ ' "" ~(* y)+~""(

fO 1
/pe(x) =, ds'o(s') X ~(dh)e"*

(2s)' "o
The general solution of this equation is given by

in the gauge used to write down Eq. (6.11), and b„„ is

—iey„S(x—y)S(x—z) =8„8(x—y)8(x —s). (6.19)
t9$y BXp,

8„= iey„+iP(8)—o„„(8/Bx„), (6.20)

where P(8) denotes an invariant polynomial of differen-
tial operators as appeared in Sec. III. The first term in
(6.20) represents the Dirac type interaction and the
second term gives the Pauli type interaction or the
derivatives thereof, i.e., if we pick up the constant term
from P(B) we are left with a term of the form iso„,
X (8/Bx„) which is known by the name of Pau1i interac-
tion. Anyhow the solution (6.20) gives gauge invariant
interactions as was predicted.

In the following calculations we retain only the 6rst
term in (6.20) and put

h„h, )
(6 26)

h' ) h'+s'

where the contour of integration C over ko should be
chosen infinitesimally above the real axis. Thus our
problem is reduced to the determination of o (~').

The integral equation for the photon propagator,
which is correct to the order t.', is given by

«LA. ( ):A,(y&j&.—«LA, (y):A.(*)S&.

+iL 2 &0l A, (*) I v&(vl A (y) I0&
one photon

8~= —icy„, (6.21)
+ P &0( A„(x)

~
ab, +)(ab, + lA (y)10&

for as we shall see in the next calculation the other
terms give rise to divergent results corresponding to

one pair
—(x~~y, ti+~ v))=0. (6.27)
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Retaining only terms of the order e', we get

g t" (x—y) —ct "&(y x—) 2—M"&(8'/Bx Bx)

XD(x—y)+ (du) (dt&)D~tDus

X &ELA„(x):it (ut)it (us) j&pSt+& (ui —vt)

XS'+&(us —»)D iD s

X &~LA.(y):4(»)4 (~ )J&p
—(x y) =o

Inserting the expressions (6.22) and (6.23) one arrives
at

g»"& (x—y) —g»t'& (y —x)—2M t'& (c&'/Bx„Bx„)D(x—y)

i (du) (d—t&) Dtt (x u) D—rt (y t&) Q„—„(u,t&), (6.29)

where Q„„ is given by

Q„.(u, n)

=e'SPIty St+&(u —
t&) q„S&+&(u—t&)'j —(u ~~ t&)

e' t" m ] 4m'i
dtt' —(tt' —4m') ll 2+

(2m-)e &4„~ 3' ( tt' )

(dk)e'"(u t&) (5 k'——k„k,) e(kp)ti(k'+tt') (6.30)

Inserting Eq. (6.26) into Eq. (6.29) one finds

a' s& (tt') =— „s+2ms
(tt' —4m')i

3(2rr)'
0(tt' —4m'), (6.31))

$ i&tote added tn proof Eq (6.31) gives the cor.—rect s.olution of
(6.29) provided that M&2) is given by

2M(2) dK2
0 K

The author thanks Prof. G. Kallen for suggesting him the use of
this special gauge.

and thus we obtained an unambiguous gauge invariant
photon propagator to the order e'. This result agrees
with the calculation in the conventional renormalization
theory.

In the above calculation we chose 6„=—icy„, but
we could take 8„= i e&„+intr„„(8—/Bx„) by including the
Pauli term. Then, however, . o.t'&(tt') would tend to a
constant for I&.

' —+ ~ and the ~' integral in the Kallen-
Leh mann representation of g„„(p) would diverge
logarithmically. For this reason (6.21) is the only
solution we can employ as far as perturbation theory
is concerned, and all Green's functions in quantum
electrodynamics are uniquely determined in perturba-
tion theory.

Compton Scattering

We have shown that our method is more convenient
than the Feynman-Dyson theory to calculate the photon
propagator, since our theory leads to an unambiguous
gauge invariant result. It is, however, not the case for
the calculation of simple matrix elements such as the
lowest order Compton scattering. Nevertheless we
think it instructive to show how to solve this problem
in our scheme.

The matrix element that we want to know is given by

&ptl~LA. (*):A.(y) jl p'& (632)
The r equation for.this matrix element is easily written
down

&Pf ILIA. (x):A (y)lip'& —&PfI~LA (y):A.(x)jIP'&

+i Z- L&Pf IA. (*) l~, +&&~, + IA (y) IP'&

—(x~~y, p, ~~t)(=0. (6.33)

In the e' approximation we can readily evaluate the
following quantity:

i &- &pt I *A.(x) l~ +&&~ +
I &.A (y) I p'&

=i&, &prll-ja„(x) Ip&&pl „A,(y) Ip;&

+i 2.&Ptl -0*A.(x) I pfp'P +)
x&ptp, p, +I „A,(y) Ip, &

= Z„&p I
H.A„( ) I p&&p I

i:i„A,(y) I p, &

&.(*) I p'p +&
x&ptP +I .A (y)lo&

where use has been made of the asymptotic condition.
We already know in the e' approximation all the
matrix elements occurring in the above expression, and
we are ultimately left with the following result:

.n „&pf I ALA„(x):A, (y) 3 I p, )
e &Pflp(x)I0&v. Lb~*™)tl'tt(x—y)l

xy &0lo(y) I p'&-"&ptl~t (y) I o&

Xy„l (ya.+m)a~(x —y) jy„&0lp(x)
I p, ). (6.34)

This solution is certainly compatible with the W-T
equation

t9

Rl A„(x):A,(y)j= 5(x—y).
ggtt BXtt

The general solution of (6.33) is obtained by adding
terms involving 8(x—y) and derivatives thereof. They
are not taken as solutions for the same reason as we
have excluded the Pauli term, namely, they lead to
divergences in the higher order calculations.

We have shown in this section how one can apply our
method to quantum electrodynamics and learned how
it works especially when the conventional theory gives
ambiguous results. Although we used the r equations
here, the 7. equations are more convenient for most
purposes and simpler to formulate, and we hope to
discuss various topics on the 7- equations at another
opportunity.


