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Theory of the Low-Energy Pion-Pion Interaction*
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The double-dispersion representation is applied to the problem of pion-pion scattering, and it is shown
that, if inelastic effects are important only at very high energies and S-wave scattering dominates at low

energy, a set of integral equations for the low-energy amplitudes can be derived. The solution of these
equations depends on only one arbitrary real parameter, which may be defined as the pion-pion coupling
constant. The order of magnitude of the new constant is established, and a procedure for solving the integral
equations by iteration is outlined. If P-wave scattering is large the equations become singular and must
be modified. Such a modification can be performed, at the expense of introducing an extra parameter, but
is not considered here.

I. INTRODUCTION
' 'T has become evident in recent times that no further
~ ~ substantial progress will be made in the theory of
strong-interaction phenomena involving pions and
nucleons until somethAsg is understood about the
pion-pion interaction. Previous theoretical work on this
problem has lacked a framework in which to make
plausible approximations, so the results of past calcula-
tions are not considered reliable. Recently, however,
one of us has proposed a generalization of dispersion
relations that allows the simultaneous extension of
energy and momentum transfer variables into the
complex plane. ' If the double-dispersion representation
is accepted as correct, it becomes possible to formulate
an approximation method for elementary-par tide
scattering at low energies that is extremely plausible.
We propose in this paper to apply the new method to
the pion-pion interaction.

The underlying motivation for the new approach is
the property of an analytic function that its behavior
in a limited region of the complex plane is dominated by
nearby singularities. This circumstance is the basis of
all "effective-range" theories for partial-wave scattering
amplitudes. Effective-range theory leads to approximate
formulas for partial amplitudes, valid in a small range
of energies, that include nearby poles and branch
points but ignore distant singularities. These formulas
approximate the inQuence of the neglected singularities
by arbitrary constants to be fitted by experiment. The
content of the double-dispersion representation is
essentially to give the location and character of a/1 the
singularities of a scattering amplitude as well as the
behavior at infinity. Armed with this information, one
may extend the usual "effective-range" approach so
as to reduce drastically the number of free parameters.
Of course one can never include all the distant singulari-
ties, but in the pion-pion problem the first difIicult
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branch point occurs at such a high energy that we
believe the omitted effects can to a good approximation
be absorbed into one or two real parameters. If all

phase shifts for /&0 are small, a single parameter
suffices.

In the conventional Lagrangian formulation of field

theory an independent constant appears in the pion-pion
interaction, so one may be tempted to regard an
effective-range approach with a single free parameter
as the equivalent of a complete dynamical calculation.
We prefer not to delve here into this very difficult
question of principle but leave to the reader the
theoretical interpretation of- the constant ) that is to
be introduced. Our definition of X will be unambiguous
from the experimental point of view.

As the price for including more of the nearby singular-
ities than is usually attempted in effective-range
theories, we shall have to solve nonlinear integral
equations to find the pion-pion scattering amplitude.
These equations will perhaps seem complicated, but
they can be put into a form amenable to numerical
solution. The results of the numerical solutions for
various values of ) are given in the following paper.
The equations are, strictly speaking, singular, and may
possess a class of solutions which cannot be obtained

by this direct procedure. We shall defer consideration
of such solutions to a later paper.

II. SYMMETRIES AND KINEMATICS

Pion-pion elastic scattering may be represented by
the diagram of Fig. 1, where the ingoing four-momenta
and isotopic-spin indices are (pr, n) and (p2,p) and the
outgoing are (—ps, y) and (—p4, 8).' It is convenient for

P3,7

FIG. 1.The pion-pion inter-
action, ~+sr ~ ~+x.

///
P, , a p, P

2 The isotopic indices o,, P, g, and 8 can each assume the values
1, 2, or 3. The value 3 corresponds to the neutral pion, while
linear combinations of 1 and- 2 correspond in the usual way to
charged pions.
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and

$= (Pt+Ps)'= (Ps+P4)'=4(q'+t")
u= (Pt+P4)'= (Ps+Ps)'= —2q'(1+c»e) ~ II 2

t = (P +P )'= (P +P )'= —2q'(1 —c»0)

where q is the magnitude of the three-momentum and
8 the angle of scattering in the barycentric system.
Note the important supplementary condition

$+t+u= 4ps (II.3)

which means that only two of the three variables s, t,I are independent even when extensions are made into
the complex plane.

Since isotopic spin is conserved and the three values
I=0, 1, 2, can occur, we expect to have three independ-
ent invariant functions of s, t, N. These functions are
conveniently introduced by writing the complete
amplitude as

A ($,t,u) t'& t&b,s+B ($,t,u) t'&,bt&s+C ($,t,u) t& s5t&~. (II.4)

Crossing symmetry leads at once to the relations

discussions of symmetry to use a notation in which all
momenta are formally directed inward, although in the
physical region pt and ps are positive timelike, with

Ps and P4 negative timelike. The convenient invariant
dynamical variables for the double-dispersion represen-
tation are the squares of the total center-of-mass
energies for the three reactions:

I (P;)+(P.,~) - ( P.,~-)+(-P.,~),

II. (p„)+(p„~) (—P„P)+(—p„&), (II.1)

III (Pt,~)+(Ps,v) ~ ( Ps,P—)+( P4,~—)

Thus we de6ne

At this point one may verify that (II.S), together with
(II.2), means that only even powers of cosg appear in
the amplitudes for I=O, 2 and only odd powers of
cosg for I=1. The implications of (II.6) and (II.2)
are much more subtle, as we shall see later.

The unitarity condition on the pion-pion amplitude
is most usefully expressed in terms of the partial-wave
expansion of the amplitudes A when these are con-
sidered as functions of q' and cose:

A (qs cosg) = Q (23+1)Ai&& (q )Pt(costi). (D.9)
L even, I =0,2

l odd, I =1

Unitarity allows the partial amplitudes A "&r(q') to be
written in terms of phase shifts b~ according to'

A "&I(q') = L(q +p ) i/q$ exp(st&&1) sin5&r, (II.10)

where the phase shifts are real for q'&3p, ', the threshold
for inelastic scattering with the production of two
additional pions. 4 At higher energies the phase shifts
are complex, but the content of (II.10) can generally
be expressed by the relation

ImA&'& =Lq/(q'+p')'*jR&'& ~Ai'& (q') j',
or (II.11)

Im(A o')-'= $q/(q'+t&—') t]R&',

where R~ is the ratio of the total to the elastic partial-
wave cross section.

III. THE DOUBLE-DISPERSION REPRESENTATION

A prescription for extending the scattering amplitude
to complex values of $, t, and u, subject to (II.3), has
been given by one of us. ' This rule is embodied by the
representation'

A~A1 't~ Q~ $~$~
8—&C ($'—$) (t'—t)

1 t t A „($',t')
(II 3) A (Sit&u) = ' d$ dt

and

A~B~
S —+t, N~N,

C C

S~N, t~t.
8 —+8

(II.6)

(II.7)

1
t

1 A,„(u',$')
+— ' d$'du'—

s.s g g ($ $)(u u)

+—
i

dt'du', (III.1)
tr' & & (u' —u)(t' —t)

The first of these relations simply expresses the Pauli
principle, but the remaining two place a powerful new
condition on the combined energy and angular depend-
ence of the amplitude. Such a condition, even though it
arises from very simple considerations, is not known
outside field theory.

An elementary calculation gives the connection
between A, 8, C and the three amplitudes A corre-
sponding to well-defined I spin:

A'= 3A+B+C,
A'=8 —C,
A'= B+C.

where the integrations in the primed variables extend
in each case over regions of the positive real axis
extending to in6nity, and the weight functions A;;
are real. The functions 8 and C have similar representa-
tions, but the crossing conditions tell us that only two
out of the total of nine weight functions are independent,
with one of these a symmetric function of its two

' The normalization of (II.10) is arbitrary, but the dependence
on q follows from the Lorentz invariance of the S matrix.

4 Production of any odd number of pions is forbidden by the G
parity of T. D. Lee and C. N. Yang, Nuovo cimento 3, 749 (1956).

5As shown in reference 1, the correct m-~ representation
probably requires also single dispersion integrals and an over-all
subtraction term. See the remarks below, following Eq. {III.5),
in this connection, as well as those following lIV.7).
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and
x=16p, 'y/(y —4p'), for x)y,

y= 16tr'x/(x —4p'), for y) x,
(III.3)

as shown in Fig. 2. The large distance to the boundary
from the corner, y=x=4p, ', is associated with the
absence of a three-pion vertex and considerably simpli-
fies our problem. The absence of a three-particle ver-
tex also is responsible for the absence of poles in (III.1).'

A point of maximum symmetry in the s, t, u variables
is the nonphysical point, s=t=u=4p'/3, where A,
8, and C are all real and equal to each other. It is
appropriate then to introduce the pion-pion coupling
constant ) through the definition~

A (4@2 &ps &~2) — B(4~2 4p2 4ps)

= —C(su' st
'

st ') (III 4)

It follows from (II.S) that at this symmetry point we
have

Ao= —pit At =0, As = —2X. (III.S)

Simple relations involving the derivatives at this point
are also easily obtained and will be discussed in a
later paper.

Normally a coupling constant is defined through the
residue of a pole, but here there are no poles. The new
constant X may be explicitly introduced into (III.1),
if .desired, by making a subtraction at the symmetry
point. Subtractions are probably necessary to give a
meaning to the double-dispersion representation (III.1),
but we only need this expression in order to locate the
singularities of the scattering amplitude. Thus we
proceed at once to consider the analyticity properties
of the partial-wave amplitudes A'"'(q'), which can be
correctly obtained by inspection of (III.1).

IV. ANALYTICITY PROPERTIES OF THE
PARTIAL-WAVE AMPLITUDES

In this paper we shall concentrate most of our
attention on the low angular-momentum states. In

' We assume that there exist no strongly interacting particles
with the same quantum numbers as a pair of pions. If such a
particle should be found, corresponding poles must be added to
(III.1), whether or not the new particle is interpreted as a two-pion
bound state.

7This X is, in conventional terminology, a rerIormalised un-
rationalized coupling constant. It corresponds to a term in the
Lagrangian of the form 4m%(&„4„l'.

arguments. In particular, in order to satisfy (II.5),
(II.6), and (II.7), we require

p (x y) =A, q (x y) =A,„(y,x) =B,& (y x) = Bq (x,y)
=C, (x,y) =C, (y,x), (III.2)

p, (x,y) =p, (y,x) =A& (x,y) =B, (x,y) =C„(x,y).

The region of the (x,y) plane in which the weight
functions fail to vanish is bounded by x=4p, ' and
y=4p, ', but the region is not rectangular. According to
the rules developed by one of us on the basis of perturba-
tion theory, ' the boundary is given by the curves,

C
Jt
I
J

I

I'zo. 2. The do-
main in which the
spectral functions of
the two-dimensional

representation
are nonvanishing.

I
I
I

P' J
1

I
J

I
I

ISg
I
I
I
J

J
0

4g

J

le X

principle, the approximation scheme based on the
double-dispersion representation does rot consist of
taking more and more angular-momentum states into
account —such a procedure would be . inadequate
owing to the failure (to be discussed below) of the
Legendre expansion to converge in the unphysical
region. It will therefore ultimately be necessary to
calculate the spectral functions in (III.1),so as to include
effects of all the angular-momentum waves. An approxi-
mation scheme for calculating the spectral functions
can be worked out and was outlined in reference l.
Even if the sp'ectral functions were known, however,
it still would be necessary to treat separately the low
angular-momentum states. The reason is that, when
the single-dispersion integrals are included in (III.1),
the absorptive parts of the low angular-momentum
states will no longer be determined by the spectral
functions, as has been explained in reference 1. We
shall see below that, because of special properties of
the vr-x system, the calculation in the lowest approxima-
tion can be based entirely on the low angular-momen-
tum states.

From (II.9) it follows that

CAt"r(q') =- d cos8 Ar(q', cos8)P&(cos8), (IV.1)
2

It is ossible, of course, to carry out the integration over
d cos0 in III.1) explicitly.

'With unequal masses, as in pion-nucleon scattering, the
singularities in the partial-wave amplitudes do not all lie on the
real axis, but they can be located without difhculty. See, for
example, S. W. McDowell, Phys. Rev. 116, 774 (1960).

so that, in view of (II.2), the projection of a given
partial wave amounts to an integration at fixed s over
either Ch or du. The two variables, t and I, each cover
the range between 0 and —4q', moving in opposite
directions. It is straightforward, then, by inspection
of (II1.1) to establish the nature and location of the
singularities of A&"r(q') in the q' complex plane. '

It is obvious, first of all, that all the singularities lie
on the real axis. ' Next it will be recognized that there
are three sets of branch points. The first set is associated
with the vanishing of denominators containing s, with
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A, —+A,
8,~C,
C, —+8,
A, —+8,
8]—+A,

for t~N, s~s,

for s-+ t, u-+ u,

the lowest branch point occurring at q'= 0,, the threshold
of the physical region. The next branch point of this
set will be at q'=3@', the threshold for producing two
additional pions, and so on. It is evidently appropriate
to choose a cut running along the positive real axis
from 0 to ~. We shall refer to this as the "right hand"
or "physical" cut.

The other two sets of branch points are associated
with the vanishing of denominators containing t or u
and are coincident, lying on the negative real axis.
The 6rst pair of branch points is at q'= —p, ', the
second at q'= —4p', etc. , the spacing being the same
as on the positive axis. A second cut may then be
chosen to run from —p' to —~; this will be called the
"left hand" or "unphysical" cut.

Finally it should be recognized that our partial-wave
amplitude is a real analytic function of q', whose
boundary value as the physical cut is approached from
above is the complex physical amplitude, but which is
real in the gap between —p' and 0 on the real axis.
The discontinuity in going across either cut is twice the
imaginary part of the limit as the cut is approached.
The required imaginary part is given for the right-hand
cut by (II.11).

The calculation of the imaginary part on the left-
hand cut is much more involved, as the unitarity
condition cannot be used for negative values of q'.
We shall have to use crossing symmetry to obtain the
imaginary part on the left-hand cut in terms of that
on the right-hand cut, and the most convenient way to
handle this problem is in terms of the absorptive parts
for the three reactions, I, II, and III, dered in reference
1.

The absorptive parts A„8„and C, may be identi-
fied with the imaginary parts of the corresponding
amplitudes in the physical region of reaction I, s&4p'
or q &0. Similarly, the absorptive parts with subscripts
t and I are equal to imaginary parts in the physical
regions of reactions II and III, respectively. These
will be regions of negative q'. It is possible to deduce
from (III.2) the following crossing rules, which corre-
spond to the relations (II.S) to (II.7):

ImA(q', cos0) = —A„(q', cos0) —A~(q2, cos0),
for q2(0, (IV.3)

with similar relations for Im8 and ImC.
If we now de6ne

q"= t/4 —p, 2,

q"= I/4 —p2,

cos0'= 1+s/2q" = 1+2 (q2+t22) /q",
and

cos0~ = —1—s/2q'2 = —1—2 (q2+ p2) /q'2

and recall from (II.2) that

and
q2 —S/4 p2

cos0 = ] +2 (q"+p')/q'= —1—2 (q"+.p')/q'

then the crossing rules (IV.2) allow us to write in place
of (IV.3),

ImA(q', cos0) = —C (q" cos8') —B (q" cos0'), (IV.3')

where q" ranges from —q' —p,
' to —p' as cos0 goes from

—1 to +1, while q" covers the same range but in the
opposite direction. It can be seen by inspection of
(III.1) that B, and C, vanish in the range between
0 and —p, ', and so we have achieved our goal of express-
ing the imaginary part of the amplitude on the left cut
in terms of absorptive parts on the right cut.

It remains now to project out the partial waves.
From (IV.1) we have for q'( —p2

ImA &'& (q')

p+I
d cos8 ImA (q', cos0)P~(cos0)

2 —I
—

I7
—p gq 2 ( q2+ 2~

c
J q2 ( q&2 )

( qI2+ 2) ~
—22—p2 d

x+gl —1—2 l+

( „q+t l ( q'+t'l
XB.

l
q", 1+2 —l&il 1+2 - l. (IV.4)

q" 0 ( q' j
The formulas for ImB&'~ (q ) and ImC&'& (q ) are similar,
and the corresponding expressions for amplitudes with
well-defined isotopic spin are

q"+t '&
ImA("'(q2) = E&l 1+2

q' 0 q'

A„—+C,
8„—+8, ~ for s —+I, t —+t.
C —+A, .

(IV.2)
q'+t ')

en'A.
l

q", 1+2 —l, (IV 5)
r'M, 1,2 0 q

2 )

The other relation needed is that connecting the
imaginary part of the amplitudes for q'&0 with the
absorptive parts for reactions II and III. By examina-
tion of (III.1) we Gnd

for q'& —p', where

I'2/3 2 10/3"
ull = 2/3 1 —5/3

,2/3 -1 1/3.
(IV.6)
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Under the integrals in (IV.S) appear the absorptive
parts of scattering amplitudes at values of cos8 less
than —1. From the boundary curve of Fig. 2 and
Formula (111.3) it is possible to conclude that the
Legendre polynomial expansion of A,i(P, cos8) con-
verges for the values of cos9 required in (IV.S) so long
as q2~ 9&2 io For the "effective-range" approach of
this paper, such a limit might as well be —~ if all
phase shifts for l)0 are small. On using the Legendre
expansion, (IV.S) becomes

ImA'" (g')
—p —p dq 2 ( 2+ 2)

Pi] 1+2
q' & gp )

~p+up y
X Z on A ""(q")&t

~

1+2--
V,I'=p, 1,2 q

2

(IV.7)

for (q'( —ti'). If the Legendre expansion is rapidly
convergent, the sum over /' in (IV.7) can be terminated
at an early stage.

The surprisingly large magnitude of the limit
q'= —9p' is associated, as mentioned above, with the
absence of a three-pion vertex. Crudely speaking,
absence of a single-pion exchange mechanism reduces
the range of the force to 1/2ti and greatly improves
the convergence of the partial wave expansion. Also it
should be remembered, as emphasized by Lehmann, "
that the expansion of the absorptive part of the
amplitude always converges better than that of the
real part.

It is possible to view in a slightly diGerent way the
approximation made in keeping only the 6rst few
terms of the polynomial expansion of the absorptive
parts on the right of (IV.S). As shown in reference 1,
the absorptive part can be written as a dispersion
integral

A.{q'(s), cose(s, t)}
1 t A„(s,t')

=up(s)+ai(s)t+ ' '+(t tp) —
' dt

(t'-t, )"(t'-t)
1 t. A,„(s,u')

+ (u —up)"—
~l

du' . (IV.8)
(u' —up)" (u' —u)

The subtraction terms are here written explicitly, and
the value of the exponent n is equal to the number of
such terms. Perturbation theory prescribes that only
one subtraction is necessary. However, further subtrac-
tions may be made either because one distrusts per-
tubation theory in this connection or to increase the
accuracy of the calculation. " In this paper we make

"For a discussion of the convergence of the Legendre poly-
nominal expansion of a scattering amplitude, see H. Lehmann,
Nuovo cirnento 10, 579 (1958).

"Subtractions of this kind in one variable do not correspond
to the introduction of new parameters. See reference 1,

two subtractions, as shown below explicitly in Formulas
(IV.10) and (IV.11).

Let us examine the form of the region in which one
of the spectral functions, A, ~ for instance, is nonzero.
As explained in reference 1, this spectral function
consists of a number of parts corresponding to diGerent
Feynman diagrams. The two parts extending to the
1owest values of s and t are bounded by the curves AB
and CD of Fig. 2. Now, the part bounded by AB begins
at or above the value s= (4ti)', the threshold for the
production of two additional pions. In the following
section we shall approximate the absorptive part in
the physical region by neglecting inelastic processes
in the unitarity condition. This is in line with the
"effective-range" principle, which assumes that the
behavior of the scattering amplitude at low momenta
is dominated by the nearest singularities. The part of
A, ~ bounded by AB is therefore zero in this approxima-
tion. Similar considerations will apply to the other
spectral functions. If, further, we require the crossing
relations (III.2) to be satisfied, we shall also have to
assume that the part of A, ~ bounded by CD is zero in
the lowest approximation, so that the spectral functions
are to be neglected entirely. That is to say, all contribu-
tions to the spectral functions begin at values of s
and t which are so far from the region of interest that
they should be ignored in a consistent "efkctive-range"
approach.

From Eq. (IV.8), the absorptive part A, can then be
approximated by an expression of the form

A fV'() ~( t))= ()+ ()t''
which is terminated at an early stage. The absorptive
parts are thus represented by taking a small number of
angular-momentum states only. This conclusion bears
out the statement made at the beginning of this
section that, in the lowest approximation, the calcula-
tion can be based entirely on the low angular-momen-
tum states.

The approach just outlined enables us to understand
why the absence of a three-pion vertex is critical in
allowing one to terminate the Legendre expansion of
the absorptive part. Had there been such a vertex,
the curve bounding the shaded area in Fig. 2 would
have consisted of a single part which approached
asymptotically the lines x=4@', y=4p'. The neglect
of the spectral functions would then not have been
justified. It would have been necessary to insert them
in some approximation into Eq. (IV.8), with the
resulting expressions then substituted into the integrals
of Eq. (IU.S). LActually the fourth-order perturbation
approximation could be used for the spectral functions,
as all other contributions begin at values of either s or
t greater than (4ti)'.] Even in the actual problem with
no 3-pion vertex, if we were to go beyond the lowest
approximation it would be necessary to calculate the
spectral functions to an appropriate accuracy and then
insert them into Eq. (IV.8).
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lt is worth emphasizing that we only assume the
absorptive part of the scattering amplitude to be
represented by its lowest angular-momentum waves.
No such assumption regarding the rea1. part is made.
At the end of the calculation, the real part of the first
angular-momentum state omitted can be computed;
if its square turns out to be small at the energies under
consideration, we were presumably justified in leaving
out the absorptive part. There is thus a check on the
number of angular states which it is necessary to
include.

To illustrate the above considerations and for
future reference, we now derive formulas that clearly
show the difference in our treatment of low and high
partial waves. Kith no subtractions, one could write
the following momentum-transfer dispersion relation
on the basis of (III.1):

A (q', cos8)

1 r" A)(q' 1+t'/2q')
dt'

m. ~4„ t' —t

A (q', —1—I'/2q')
+i

64 s Q —Q

B (q" 1+ 2( q'+t')/ q")
dg

m."0 q"+y'+-', q'(1 —cos8)

1 p" C,(q", —1—2( 'q+p') /q")
+ ' dq

s." 0 q"+p'+-'q'(1+cos8)

1 p" ( q'+p')
dq"B,

1
q" 1+2

q'2 i

X
q"+tl, '+ ', q'(1 cos-8) q—"+p'+-', q'(1+cos8)

(IV.9)

with similar expressions for 8 and C. Now, the absorp-
tive part 8, is, in general, complex, but the imaginary

part of 8, vanishes in the lower range of the integral
(IV.9) because from the equivalent of Eq. (IV.S), for
q'&0 and q"&0) we have

ImB (q" 1+2(q'+t ')/q") =B ~(4(q"+t ') 4(q'+t '))

which is zero outside the shaded region of Fig. 2. Thus,
if we make a subtraction in the dispersion relation
(IV.9) to suppress the high-energy part, the remainder
will be almost entirely real for small q'. Figure 2 shows,
of course, that as q' becomes large, the imaginary part
cannot be suppressed. These considerations are identical
to those following Eq. (IV.S).

Let us make the subtraction by removing the S-wave
part of Eq. (IV.9):
A (q', cos8)

q2+ ~2)=A''&(q')+ — dq"B,
1

q" 1+2
vr ~0 ( q"

X
q"+tt'+-', q'(1 —cos8) q"+p'+-', q'(1+cos8)

——in' 1+ 1. (IV.9)
2 f q

q2 ( q&2+p2]

In the next section we shall determine A&" (q'),
allowing it to be complex, but the residual amplitude
(which starts here with the D wave) is real to a good
approximation, for q' not too large. Furthermore, so
long as the imaginary part of 8, is to be neglected, we
are ignoring the singularities of this function in the
variable q', and according to the arguments following
Eq. (IV.S), we may consistently approximate it by a
low-order polynomial. Since 8, when continued to the
physical region of reaction I is the imaginary part of the
amplitude, the appropriate procedure is to represent
8, in terms of precisely those partial. waves that have
been subtracted out, i.e., those that are allowed to be
complex.

We now give the formulas for I=0, 2 that correspond
to Eq. (IV.9'):

, I', q'+t ')
AI(q' cos8)=A+& (q')+ 'dq" Q u-rr A

1
q" 1+2

I 'I ' q'2i
2 2 1 1 f q 11X— —in' 1+—

1
. (IV.1O)

2 q"+p'+-'q'(I —cos8) q' +p'+ 'q'(1+cos8) q' -0 q"+tJ,')
For I= 2, we subtract the I' wave:

, I', q'+v'~
A'(q' cos8)=3c so8A&'&'(

q) +— dq" Q eU A r
1

q", 1+2
q"

2 2 1

X
2 q'2+@'+-,'q'(1 —cos8) q"+p' +'q'(1 +cos )8

3 cos8
— "+y'

1
1+2 l»1 1+,

q2 & q~ J "I, q2+p2j
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These formulas are exact, but in practice under the
integrals A,r'(q", cos8') will be approximated by

a subtraction at the symmetry point

= —2Pp= 3) (V.4)
A,' '(q", cos8') =ImA&'&' '(q"), for q")0,

A '(q" cos8') =3 cos8' ImA&i&'(q'2)

for q")0. (IV.12)

to obtain'4

v v— &
' ImA &'&r(v')

A&'& (v) =&&r+ i dv'
7l oo V P P Pp

It can be shown that such an approximation exactly
satisfies the crossing conditions (II.5)—(II.7), provided
A(') and A('&' are calculated by the equations of the
following section, in which a corresponding approxima-
tion is made.

v —vo p" ImA&0&r(v')
dv' . (V.5)

p V —V P Vp

It is possible that even an S-wave subtraction is
unnecessary in a treatment which includes in a serious
way very-high-energy inelastic processes such as nu-
cleon-antinucleon pair production. We do not believe,
however, that such a treatment will be practical for
a long time to come. Certainly nothing so ambitious
will be attempted here.

Thus, either by dividing by P' or by subtracting we
hope to suppress very high energies under the dispersion
integrals. To obtain a rough indication of the contribu-
tion from high energies let us investigate the error made
by cutting off the integral at v= &L. Equation (V.1)
then becomes

V. FORMULATION OF INTEGRAL EQUATIONS

Ke now have the task of translating our knowledge
about partial-wave amplitudes into integral equations.
After introducing the variable v=q'/p, ', the preceding
statements about the location of singularities are
equivalent to the dispersion relations,

1 t
' ImA &'&r(v')

A&'&r(v) =—
)

dv'
IF oo P V

1 " ImA &'&'(v')

d', (V.1
7l p V P v' r ' ImA&'& (v') v'

t
ImA&" (v')

dv +
s ~ r, v"(v' —v) m- ~0 v"(v' —v)provided the functions in question behave properly at

infinity. The unitarity condition (II.10) guarantees
that the partial-wave amplitudes behave asymptotically
no worse than like constants. In order to estimate the
error in our approximation, it is plausible to assume
that on the right-hand (physical) cut,

or the corresponding subtracted expressions for S
waves. Using Eq. (V.2) one can easily estimate the
order of magnitude of the neglected contributions to be

1P—Pp

gA (o)~
I.ImA &'&r(v) ~ —,',

ReA ' (v) ~0,
(V.2) andand (V.6)11(v)'

8A&n~
f I I) '

in other words, the limit of pure diffraction scattering. "
Such behavior, i.e., the ratio of the real to the imaginary
part going asymptotically to zero, can be consistent
with Eq. (V.1) only if the limits on the left-hand cut
are the same. "

A partial-wave amplitude of order / vanishes at the
origin like P, so we may consider new quantities

A""'(v) = (1/v')A'"'(v), (V 3)

which also satisfy relations of the type (V.1) but whose
imaginary parts, except for 1=0, now vanish at infinity
like P '. It is clear that the higher the angular momen-
tum, the smaller is the relative contribution from high
values of v' in the dispersion integrals (when v is small).
It is only for the S wave that distant contributions are
expected to be important, so for the S wave we make

ImLA'"'( )j '= —
L /( +1)j' (V 7)

Furthermore, as discussed in the preceding section,
the imaginary parts on the left-hand t.ut as given by
Eq. (IV.7) may be evaluated by taking only a few
terms in the Legendre summation over /'. In particular

' Such behavior is expected because of the overwhelming
competition from inelastic channels that sets in at very high
energies.

"Considerations of this kind were 6rst emphasized by I.
Pomeranchuk, J. Kxptl. Theoret. Phys. (U.S.S.R.) 34, 725
(1958), in connection with forward-dispersion relations.

'4 The two subtraction constants a0 and a2 are not independent
but are related to X through Eq. (III.5). The relation is given
below in Formula (V.18).

which are small provided I. can be made sufFiciently
large —in particular, if I. is chosen in the range where
inelastic scattering first becomes important. The
inelastic threshold is at P=3, but experience with
pion-nucleon scattering suggests that double-pion
production won't represent a substantial fraction of
the cross section until P 10. The important contribu-
tions to the integrals in (V.1) thus come from the region
where only elastic scattering is important, and we may
use the unitarity condition (II.11) with R& set equal
to unity:
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X Qrp ImA i'&'(v')+nrs ImA i (v')

v 1)
+3l 1+2 l~ri Immit'&'(v') . (V.8)

v' )
Now we put Eqs. (V.5), (V.7), and (V.S) together in
order to obtain a procedure for calculating phase
shifts in terms of the empirical constant A..

Consider first the two S-wave amplitudes. We
attempt to represent each of these by a quotient"

g(P) (v) iV (v)gDpr(v)~ (V.9)

where Np (v) and Dpr(v) are both real analytic func-
tions; the numerator contains the branch point at
v= —1 with the left-hand cut, and the denominator
contains the branch point at v=0 with the right-hand
cut. It is also necessary, , of course, that Dpr(v) have
no zeros. By assumption, then, we have

ImcVpr(v) =Dpi(v) ImA~P&r(v)
for P& —1

ImDpr(v) =0,

ImlVpi(v) =ImDp'(v) = 0, for —1 &v(0
ImrVpr(v) =0,

(V.10)

ImDp'(v) =A pr(v) Im
A ipir (v).

for P) 0,

The subtracted dispersion relation (U.5) normalizes
the S-wave amplitudes to al at the point v=vp. We
accomplish this normalization in our quotient by setting
iVpr(vp)=ar and Dpr(vp) =1. Furthermore, the ampli-
tudes Ai'&'(v) at most approach constants at infinity,
so we may assign constant asymptotic behavior to the
numerator and require the denominator not to vanish.
From (V.10), we are thus led first to write

v —vp r
—' Imdto' (v')Dp'(v')

iVpr(v) =gr+, I dv' . (V.11)
(v' —v) (v' —vp)

"To see that the X/D representation is always possible,
observe that if

v —vo ", S(v')
D(w} =. exp — dye'

then the denominator function is analytic, with the right-hand
branch point only, and along the physical cut has the phase
e ". The numerator function is therefore real on the positive
real axis and has only the left-hand branch point.

we shall keep only /'=0 and 1'=1 terms in these
integrals; the legitimacy of this approximation may
be checked a Posteriori by calculating the D waves
that emerge from our system of equations. In terms of
the variable v the formula (IV.7) becomes, in this
approximation:

' I. '', r '+1&
ImA&'&r(v) = — dv'Eil 1+2

"~ 'v~p & v )

Second, remembering (V.i), we have

P —Pp V

Dp'(v) = 1— dv i.+1)
Epr (v')

X . (V.12)
V —V P —

Vp

On defining

(„) Dp (v) fir(„) I~ior(v) (V 13)

the following integral equation is obtained:

Ep (co) =1+(cv+ vp)E((d, vp)Gr

pi+vs I" K(a,( ')fpr(a')Epr(cv')
+ ~ eke', (V.14)

VP ~i M +Vs
with

1 t." fv"/(1+ v")ji
g (cop) )=— I dv

s -I p (v"+or) (v"+(u')

2 ( co

l
»Lv'~+(~ —1)*'j

7r((a —pp') EM —1)

If the function fpr(cu') were known, Eq. (V.14) would be
a Fredholm equation, soluble by any number of
standard methods. The question whether or not the
equation is singular will be discussed below.

It is unfortunately true that fpr(M') is not known in
advance but is given only through Eqs. (V.13) and
(V.S) in terms of the amplitudes we are looking for.
Thus our system of equations is actually nonlinear. In
the following paper, however, it will be shown that
the problem can be solved by an iteration procedure in
which at every stage the linear equations (V.14) are
solved with fpr corresponding to the previous stage.
We must, of course, also formulate an equation for the
I' amplitude since this is required in Eq. (V.8).

Before considering the P amplitude, however, a
few general remarks about the S-wave problem are in
order. First, an inspection of (V.14) with fpr set equal
to zero shows that Dp will develop a zero for v(vp if
ar is negative. According to Eq. (V.8), both fp' and fp'
will be negative if the S contributions under the
integrals are dominant. "The zero will therefore not be
removed when fpr is included, but if the zero appears
suKciently far out along the negative real axis—beyond
the limit at which our calculation of ImA(" ceases to
be accurate —the associated pole in 3"' is of no physical
significance and cannot be excluded. A crude estimate,
based on Eq. (V.14) and neglecting fpr, indicates that
for —1.5(ar&0, the zero in Epr(oi) will occur for
co& 10.
"Recall that the imaginary part of a partial-wave amplitude in

the physical region is positive dehnite.
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al&
2v2

, f1)
(V2)

If al is positive, the requirement that there be no
zero of Dpz(v) in the region vp&v&0 (i.e., no bound
state of the pr-s system) puts an upper limit on az.
As al increases, the zero will appear first at v=0, so
we examine the condition that Dpz(0) be positive.
Here the neglect of fpz is a good approximation, so one
may deduce from Eq. (V.14) the requirement

1——s'&(OP, )az) 0,
or, since we have

E(OP) = (342/pr) tan '(1/v2),

we can write

Thus to a good approximation ap ——SX and a2 ——2P,
since we expect D and higher partial-wave amplitudes
to be small.

It is possible to correct for the higher waves within the
approximation outlined at the end of Sec. IV. Formula
(IV. 10), when evaluated at cos8=0 and v=vp leads
to the following result:

1 t' 1 ( vp $ 1
ap= —5X+— dv' —in' 1+—

pr "o vo E v'+1) v'+1+ vp/2

10
&( —,

' ImA t"'(v')+—Imd ~'i'(v')
3

vp+1)
+6~ 1+2

)
Immit»'(v')

(V.18)
1

( vp+1)
)
1mt»'(v')

v'

The integral correction given by Eq. (V.18) to the
simple relation between the al and A is very small'
and may be ignored except for highly refined considera-
tions. The most restrictive conditions on X are obtained
by considering the I=O state, for which co ——SX.
The absence of zeros on the negative real axis for

~

v
~
&10, as discussed above, then leads to the limits

—s(18)&&&—s(—15)
or

Ao(vp, O) =—SX,

A'(vp, O) =0,
and

A'(v p,0) = —2X.

The second of these relations is identically satisfied,
since A' contains only odd powers of cose. The erst
and the third, however, give us the required information
about ap and a& which are defined by Eq. (V.5) to be

(V.19)—0.36&X&0.3.
A study of the formula for the cotangent of the S

(V.17) phase shifts reveals another interesting circumstance.
We have for v&0

ap ——A tp&o (vp),

g —g(ois(v )
and

v
One may inquire also about the possibility of zeros

in Dpz(v) that are not on the real axis. Inspection of 1 t"
~

1 t' vp

Eq. (V.13) shows that such zeros are impossible so izs= —2&+—
J

dv' —»~ 1+
lpng as ~pz (v) has no zerps pn the ppsjtjve resl sxjs i7 pr p l vp 4 v +1) v +1+vp/2
Should we find a solution that does have zeros in the
physical region, this point would have to be investigated -,'ImAtoio(v')+is ImA&P&'(v')

further.
Let us now determine the relation between a~ and A,

and the consequent restrictions on X that follow from
the above limitations on az. According to (III.5),
we have

where

(" )'
cotBoz=

iv+1)

ReDoz(„)

1Voz(v)

v vo t
"—I( ~'v) foz(~')&oz(~')

(v —vp)I(v~ vs)zzz I dip
~'+vs

v —vo t' fo (pp )+o (tp )
zzz+

(~'+ v) (a'+ vp)

(V.20)

I:v"/(v"+1)j'*
I(v,a)') =— dv"

pr ~ p (v"—v) (v"+rp')
(V.21)

2 ( ro' i i ( v

1»r V'~'+(~' —1)'3—
I I »L&v+(v+1)'j

~(v+~') (~'—1i & v+1)
For v= vs+ivz, the imaginary part of Dp" (v) is given by

v' & XO'(v')
dv

V +1 (V —Vg) +V/
and therefore vanishes only for vi =0 if Epz(v') has a single sign.

' The smallness is due to the expression in the first curly bracket in the integrand of Eq. (V. '18), which has a maximum
value of 0.15 at v'=0 and falls rapidly to zero as v' increases.
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Again in the approximation where fpi is neglected we

may study the possibility of a resonance developing,
that is, cotbo vanishing. We have

( v )* 1 2 (1p
1

cotBp'= ———stan '1 —
10v+1i ar ~ (v2)

v

cotai
(v+1&

ReDi(v)

1Ui(v)

1»Pl v+(v+1)'j, (V 22)1( v

(v+1) 1

1 t
' Im—A&'&'(v')D(v')

Ei(v) =— dv'
v'(v' —v)

(V.24)

v t"
I

v' i Ãi(v')
Di(v) =1—— &"

1 1, (V.25)

where E& has been assigned a 1/v behavior at infinity
and Di required not to vanish. Introducing E&(pi)
=Di(v), fi'(pp) =ImA""(v), the following integral
equation is obtained by substituting Eq. (V.24) into
Eq. (V.25):

,&(, ')f '( '% ( ')
E,(~)=1+- d~'

'
. (V.26)

7l 4y CO

The P phase shift in the physical region for v&0 is
given by the formula

"The absence of S-state resonances in simple two-body systems
is a very general circumstance and may be traced to the lack of a
centrifugal barrier that can "con6ne" a positive energy state.
The only way to get an S-wave resonance is to have the force
sufBciently complicated so that a strong inner attraction is
surrounded by an outer repulsion. I'-wave resonances, in contrast,
arise naturally whenever there is a sufIIIciently strong attraction.

an expression that does not vanish for p)0 if it is
positive at v=0. The condition of being positive at
v=0 for a& positive is, however, exactly the condition
that there shall be no bound state. Thus it seems
unlikely that a resonance will develop in either 5
state for negative X unless the effects of the fpr are
very strong.

For positive X and negative ar, formula (V.22) has
a zero but only for v) 10 if the condition (V.19) is
obeyed. Thus we tentatively conclude that there are
no low-energy 5-wave resonances in pion-pion scatter-
ing." The results of the following paper confirm this
conclusion.

We turn now to the P wave and again attempt to
represent the amplitude by a ratio

(1/v)A&"'(v) =Xi(v)/Di(v), (V.23)

with the same division of singularities between the
numerator and denominator as for the S wave. By
arguments analogous to those used above, we may
derive the equations

I(v,pi') fi'(pi')Ei (pp')
1——

J
lpga

X' I CO

fi'(~')&i(~')
(SGO

(V.27)

If fi' is predominantly positive and su%ciently large
it is apparent that a resonance develops in the I' wave.

Let us finally consider the question of a possible
singularity in the integral Eqs. (V.14) and (V.26) at
co= ~. A careful examination shows that the equations
'are nonsingular if fpr(pi) and fi'(pi) tend to zero like
any negative power of a, or even like (logp~) ' (n) 0),
as p~ tends to infinity. Now it follows from (V.S) and
(U.13) that the contributions to fir(pi) from ImA""(v')
and ImA &P&'(v') at a particular value of v' tend to zero
like co ' as co tends to in6nity. The contributions from
indefinitely large values of v' behave like the functions
ImAi'i'(v) and ImA&+'(v) themselves, but, as these
functions tend to zero with increasing v like (logv) ',
our equations are still nonsingular. However, the
contribution to fir(pp) from ImA&'&'(v), even for a
particular finite value of v, behaves like a constant at
infinity, so that our integral equations are now just
singular.

It is usually true of such marginally singular integral
equations that, if the term in the kernel responsible
for the singularity is less than some critical value, the
equation still has a unique solution obtainable by
standard methods. Such is the case with our equation,
so that the equation will be singular if and only if
ImA &'&'(v) is suKciently' large.

It turns out that the P phase shift cannot be at all
appreciable before the transition to the singular case
is reached. We shall see in the following paper that the
equations do have a class of solutions for which all
phase shifts other than in the S-waves are small,
but that there may be in addition a class of solutions
with large P-wave phase shifts. The methods described
in this paper must be modified before they can be
applied to this second class. Our basic scheme of
approximation needs then to be reconsidered, since the
polynomial expansion on the left is no longer reliable.
A new calculation method has been developed for this
situation, and it is hoped to describe it in a subsequent
paper. Unfortunately the new method requires the
introduction of a second independent parameter.

The sum of the higher partial-wave amplitudes is
to be calculated from Eqs. (IV.10) and (IV.11). If
individual phase shifts are desired, the appropriate
projection from these formulas is straightforward.
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VI. CONCLUSION

A set of coupled integral equations for the S- and
E-wave pion-pion amplitudes has been formulated and
in the following paper the numerical solution of these
equations for various values of P will be described.
The D and higher phase shifts can consistently be
calculated by integration over the left-hand cut only,
where the discontinuity across this cut is expressed
in terms of the S and I' amplitudes. The complete
amplitude generated by this method satisfies crossing
symmetry exactly.

The physical meaning of our approximation in
conventional language is that we consider explicitly
only the exchange of pairs of virtual pions between
the two physical pions being scattered, lumping
4-pion and higher multiplicity exchanges into the
constant A. . Furthermore we only attempt to calculate
accurately the exchanged pairs of lower energy —those
which are mainly in S and I' states. The higher energy
pairs are included in P along with all sorts of other
high-energy exchanges. In terms of the range of
various contributing mechanisms to the pion-pion
force what we are trying to do, of course, is to calculate
the longest-range eGects in detail and to represent the
short-range eGects by an empirical constant. If there
is an intrinsically incalculable zero-range force, as
suggested by Lagrangian field theory, this also is
included in A, .

Beside the solution discussed in the foregoing
paragraphs, there are also an infinite number of other
possible solutions, corresponding to the Castillejo,
Dalitz, and Dyson (CDD) ambiguity. " We can add
to the right-hand side of Eq. (V.12) any number of
terms of the form a„/(v —p„), since the only effect of
such terms is to introduce zeros into the scattering
amplitude. While a rigorous treatment of the CDD
ambiguity has not been given for relativistic field

theory, the problem has been solved for several models, "
and there seems to be little doubt as to the meaning
of the extra solutions. They correspond to theories in
which, before the coupling is turned on, there are one
or more particles with the same quantum numbers as
two pions. Once the coupling is turned on, these
particles become unstable, and appear experimentally

"L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev.
101, 453 (1956).

"N. G. Van Kampen, Physics 23, 157 (1957).

FIG. 3. Diagram for the
reactions, m.+N ~ m+N
and m+m +-+ N+N.

as resonances. These "kinematical" resonances diGer
from "dynamical" resonances, such as that which we
have suggested might appear in the I' state of this
problem, in that they occur for arbitrarily small
values of the coupligg constant. The absence of such
unstable particles must be regarded as an additional
postulate to be inserted into the theory.

A knowledge of the pion-pion scattering amplitude
will allow a systematic calculation of many important
properties of nucleons. The application to the nucleon
electromagnetic structure has been emphasized already
by Frazer and Fulco." This application, however,
actually requires a prior knowledge of the full amplitude
for the graph shown in Fig. 3, which describes not only
pion-nucleon scattering but also nucleon-antinucleon
annihilation to form two pions. One of us has outlined
a procedure for attacking this problem which is identical
in spirit to that described here for the w-z problem. "
The procedure requires a knowledge of ~-m scattering
and may now be implemented. It is hoped that a
reasonably accurate description of the low-energy m-S
phase shifts in terms of a single additional parameter,
the pion-nucleon coupling constant, will result.

With an understanding of the graph of Fig. 3 one
can proceed to a systematic calculation not only of
nucleon electromagnetic structure but also of the two-
pion exchange terms in the nuclear force. One can also,
of course, make a solid theory of photopion production.
All these problems are under investigation.

There is no reason why the generalized eGective-range
approach based on the double dispersion representation
cannot be used in more complicated problems, such as
those involving strange particles. As the structure of
the nearby singularities becomes more complicated, of
course, it becomes more and more dificult to include
enough of them to constitute a good approximation.
It is doubtful that any other problem can be found that
is as favorable in this respect as x-x scattering.

2'W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1959) and Phys. Rev. 117, (1960)."S.Mandelstam, Phys. Rev. 112, 1344 (1958).


