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This theorem is proved: For finite charge renormalization constant Z3, the form factors describing any
vertex with two particles on the mass shell must vanish at infinite momentum transfer. The relation of
this result to the work of Lehmann, Symanzik, and Zimmermann is discussed.

I. INTRODUCTION
' 'N constructing dispersion relations it is necessary to

~ answer, among other things, the question of how
many subtraction constants are required. Mandel-
stam's' representation tells us unambiguously what
constants must appear for any process involving four
external particles. However, for the simpler three-
particle vertex function this question still remains
unanswered. Here we wish to point out the following
simple statement: For finite charge renormalization
constant Z3 ', the form factors describing any vertex
with two particles on the mass shell must vanish at
infinite momentum transfer. Consequently, no sub-
traction constants are required, and the unsubtracted
form of dispersion relations may be used for such form
factors.

Lehmann, Symanzik, and Zimmermann' have shown
that the usual vertex function of quantum field theory
must satisfy a condition which implies that it vanishes
at infinite momentum transfer, independent of any
assumption on Z3 '. Their result differs from the one
presented here in that the form factors of dispersion
theory are not the same as the vertex functions of
field theory. The usual vertex function is defined as the
sum of all proper vertex diagrams, while the
conventional form factor includes all diagrams—
including improper ones —contributing to the blob of
Fig. 1.The form factor, therefore, includes all graphs of
the type shown in Fig. 2. These additional self-energy
blobs reduce to unity for external particles on the mass
shell; hence, for the vertex usually of physical interest,
where particle No. 1, for example, is virtual, only blobs
on the No. 1 leg remain. Since these contribute a factor
Z3 ' when particle No. 1 carries infinite momentum
transfer, the LSZ result implies simply that

F(q')/Zs~ 0 as q' —+ ~,
where F is the form factor and q' the momentum

Fxo. i. Dispersion theory
diagram for form factors;
the blob includes proper
and improper graphs.

' S. Mandelstam, Phys. Rev. 112, 1344 (1958), and to be
published.

'H. Lehmann, K. Symanzik, and %. Zimmermann, Nuovo
cimento 2, 425 (1955). Their proof has recently been carried
through explicitly for the specific case of photons and electrons
by L. E. Evans (to be published).

transfer. Thus, in order to obtain a statement about
the physically measurable function F, a statement on
Zs is required. If, however, one is willing to make an
assumption about Z3 ', the result that F—+0 can be
obtained directly with much greater ease than required
by the development of LSZ.

IL PROOF BY SCHWARTZ INEQUALITY

In order that any given form factor satisfy an
unsubtracted dispersion relation, it is necessary that
the imaginary part of it vanish at infinite momentum
transfers; consequently, we shall begin with a study of
the properties of these imaginary parts. We shall
concern ourselves explicitly with the nucleon electro-
magnetic form factors, since at present these are
receiving the most attention in the literature; but it
will be evident that the same discussion may be applied
to the form factors associated with any three particle
vertex.

The nucleon form factors, F& and F2, are defined by

where q=p+p' is the four momentum of a virtual
photon in the reaction y —+ %+X. p and p' are the
four momenta of the nucleon and antinucleon, respec-
tively; E~ and F„are the corresponding energies.
(pp'& '

I
denotes an ingoing Heisenberg state of the

indicated nucleon-antinucleon pair, IO) is the Heisen-
berg vacuum, and finally

Fxo. 2. Diagram for form factors with the blob of Fig. j. separated
into proper vertex and self energy parts.
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where A„(x) is the renormalized Heisenberg electro-
magnetic field operator. '

As we have stated above, what will concern us now
are the functions ImFi and Imj 2, these are de6ned as
follows'.

('Gy
I
IliiFi"rp+ImF2o'p, qp I

sy~)
(4E,E,,):

&ply (o). I.-'}
k—Z(2~)'~'(p q—)

n (2E„)'
X&~&-&Ij„(0)lo); (2)

here

jii (x)= (ip„V„M—)tp(x),

ation replaces the left side of (5) by'

I Spl (P+M)(imF»„+imF2~„„q„)
E (4E„E„.)-'*

X (P' M—) (ImFiyp+ImF2op„q„) j
= —(4/q') {q'(ImFi—4M ImF2)'

+2 (M ImFi —q' ImF2)') (6)

where we have chosen the center-of-mass system p
= —p', and p—=pB'„.

On the right-hand side of (5) it is necessary to
evaluate P„;„,Ilail' and P„llbll'; we first discuss the a
term. Explicitly, we have

where tP(x) is the renormalized Heisenberg nucleon
field operator. The sum runs over a complete set of
Heisenberg states

I n}; we have for convenience chosen
those with ingoing boundary conditions. Equation (2)
may be rewritten as

l&~' 'I~, j~(0)lp}l'= 2 Z(2 )'~'(P.-q)
SPins n 2E„

(7)

(u~ I ImFiy„+ ImF, o-„„q„
I
v„.)

(4E„E,)4

with the help of the definitions
this reduces to

,(~' 'l~'&(0) I p)
(2E„)'

2 ll~ll'= & &(2~)4~'(P.—q) I
2'-,- I'

since the scattering matrix for the reaction N+N —+ I
ls

u.*=I:(2~)'~'(P-—q)3',&p I i~(0)~'I ~' '»
(2E. )' (4)

spina spina m

=~ r((q')'*)

b-=L(2~)'~'(P- —q) j'&~' '
I j.(o) I o).

From Eq. (3) it is evident that a bound may be placed
on ImF» and ImF~ by the use of Schwartz's inequality,
VlZ. )

( 1 ) 2

, I l(~.fi~».+I~2~"q I")I'
( (4E~E„)'

&(Zl -I')(Zl&. l')=—
ll II'II&Il' (5)

We shall obtain some conditions on the asymptotic
behavior of ImF& and ImF2 by examining the inequality
(5) as q'~ ~. Equation (5) presents a useful bound
because of the possible limits on the right-hand side.
By (4) we see that Ilail' is proportional to the total
cross section for a nucleon-antinucleon collision in

specified angular momentum channels according to the
selection rules and is limited by unitarity; llbll' is
proportional to the weight function for the photon
propagator and is limited by what we say about Z3.
First, however, it will be convenient to rid ourselves of
the spinors and Dirac matrices by summing Eq. (5)
over the spins of p and p', and the index p, . This oper-

' We follow here the notation and spinor convention of S. D.
Drell and F. Zachariasen, Phys. Rev. 111, 1727 (1958).

where O.r((q') t) is the total nucleon-antinucleon annihi-
lation cross section at a total c.m. energy (q')&, and
v=

I
(q' —4M')/q'jl is the relative velocity of the

nucleon and antinucleon in the c.m. system. One
further observation on Eq. (8) will be useful —that is,
that in Eq. (2) it is evident that the only states which
contribute are those with total angular momentum one
and even parity in the c.m. system. The same is
therefore true in Eq. (7); thus, 0 r((q') i) is actually just
the nucleon-antinucleon annihilation cross section for
the 'S& and 'Di states of the EX system.

Next, consider the b term: Here we have to evaluate

„(2~)4t'4(P„—q) I(~i-&
I j„(o)lo}I2. (9)

Now &ei il j„(0)IO)=P„'(ei &Id„(0)IO); furthermore,
recall that the definition of the weight function in the
spectral representation of the photon propagator is just

p(q~) —
z3
iP (2m.)884(P„—q)P„I(NIA„(0) IO}l (10)

e g iy
4 Note that while it is true that the sum over p is to be made

in accordance with the usual convention

A pA p
=A ]A g

—AaAx —A@Ay —A zA z

the inequality which was expressed in Eq. (5) is not destroyed
by summing over p, . This is because both sides of Kq. (5) are
positive definite, while both sides of Eq. (6) are negative de6nite
after summing over p, hence, the direction of the inequality is
reversed upon summing on p and reversed again upon multiplying
by the minus sign this sum produces in each side.
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Putting this together, we see that

P„IIbII2= —(3q4)L22rp(q')g (11)

Here D~j is the complete renormalized propagator of
the photon, and Ds 1/——q'. Thus, as qs~ ~, we have

Finally, inserting Eqs. (11), (8), and (6) into (3) we
have the result

lim P(q') =Zs lim I'(qs)
Q ~00 Q ~00

(14)

Zs '=1+ p(q2)dq2; (13)

therefore, since p is positive de6nite, if Z3 is finite,
qsp(q2) ~ 0. As q' ~ co, then, (12) becomes

L (ImF i)'+ 2q'(ImF2)' —12M ImF i ImF2] (0,
which means (q')' ImF2~0 and ImFi-+0. To con-
clude, then, the finiteness of Z3 ' forces the vanishing
of ImF& and ImF2 at ~.'

The statement that ImF ~ vanishes as q' —+ ,
incidentally, does not of itself require that the entire
form factor F~ vanishes as well, although we shall show
in IV that this result is also a consequence of the
finiteness of Z3 '.

III. LSZ PROOF

At this point it is convenient to insert a brief dis-
cussion of the work of LSZ' on the vertex function of
field theory. In Sec. II we have shown, and in Sec. IV
we shall show directly that in order to ensure the
vanishing of the form factor, for example in quantum
electrodynamics, at infinity, it is necessary that Z3 be
finite. LSZ show that the vertex function vanishes at
in6nity with no restrictions on Z3 '. The difference
between these results is easily stated; the vertex
function I' of field theory is related to either form
factor F~ or F2 of dispersion relations by

Ds i(q')
P1,2(q ) — I 1,2(q ).

Dp(q2)

' For the three-boson vertex it is necessary to make the stronger
assumption that the self mass,

si'= f~(q')q'dq'

is 6nite in order to assure the vanishing of the form factor as
q' —+ ~. This is easily seen because Eq. {6)lacks the q' from the
spur for the three-boson case, and, therefore, takes the form
(1/q2)[ImF(q2))2 when F is the three-boson form factor.' They must assume the absence of "ghosts, " i.e., the positive
delniteness of the spectral function p; this is an assumption we
used implicitly in Sec. II also. S. Weinberg has recently shown
{private communication to be published) that their proof is valid
even if subtractions are required in the representations of the
propagator.

(4/q') fq2(ImFi —4M ImF2)'+2(M ImFi —q' ImF2)2)

&6-q L«-4M )/q]-:"«q)~). (q-). (»)
Consider what happens in (12) when q' is allowed to
approach infinity. On the right-hand side qsoz((q2)i)
& II-I where II.

I
&oo, since o is the cross section for

two partial waves only, and is therefore bounded by
unitarity in the physical region q') 4M'. Furthermore,
we have

since Dr i/Dp -+ Zs as q' —+ ~. Therefore, a vanishing I'
owly insures a vanishing F provided Z3 is 6nite.

The LSZ proof of the vanishing of I' uses the fact
that the spectral function p of Eq. (9) is bounded below

by the contribution of only the two-nucleon states in
Eq. (9), and the contribution of the two-nucleon state
is proportional to Dp&'I', so that. if DJ j is replaced by
its expression in terms of the spectral function p an
integral condition results for I" which requires F —+0
as/ ~(x).

However, this proof, which is a bit involved, is
involved only because of the reappearances of Dp& in
the two nucleon contribution to p. If Dpjr is replaced
by just D&F, then conditions may be obtained on F,
which is after all the interesting quantity, with much
greater ease.

IV. SIMPLE PROOF

By adapting the LSZ approach to the dispersion
theory form factors, we can obtain an even stronger
statement on their in6nite q' behavior than that
achieved in II. Recall the form of the spectral function
for the photon propagator; namely,

&(q)= —-', P (2 ) S (P„)2Z„S(Z„—q)
n+1 y

&&XI(~' 'IA„(0) lo)I . (15)

This is a sum of positive terms, in spite of the indefinite
metric associated with the polarization sum. It is,
therefore, bounded below by the fermion antifermion
term alone. The contribution of this state in P„ is

1 1 ( 4Msqi
p&'i(q') = —

I
1—

I (Fi 4MF2)'—
12'q'& q' &

2M' t' q'
+

q' ( M

in terms of the electromagnetic form factors of the
fermion, defined as usual by

(&n I
Pn"+F2~"-q I en )

(4F~P~ )'
=(PP' 'li. (0)I0) (1&)

Here j„is the photon current, given by

j„(x)= ZA„(x),

where A„(x) is the renormalized Heisenberg field
operator of the electromagnetic field.
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Now since

"d'* e*"' *n(*o)&p ILj~(*)s, ,j.(o)7I o)
it is clear that if Z3 '( ~, then it is necessary' that
Fi —+0 and F2 —+0 as q'~ ~.

This condition is actually stronger than the one
obtained in II, in that here we get the entire form
factor F —+0, not just the imaginary part.

(2E,.)'~

(2~)'5'(P- —ii)&PI j~(0)eo its)&ssl j.(o) Io)

E„—E„—E„—ie(2E„)'*

(2sr)s5'(P —p')&pl j,(o) lss)&ssl jiv(o)e. Io)
(21)V. CONCLUSION

The integra, l in (20) can, of course, be evaluated
explicitly:

Z —i 1+ t
p(q s)dq s) 1+ I pisl (q&s)dq 2 (19)

2

Thus far our discussion has been limited to the
statement, "if Za ' & ~, then . . ." The critical
question then is whether Z3 ' is or is not 6nite. We
shall certainly not answer this question; nevertheless,
a few comments may be appropriate.

The form factors were defined by Eq. (1);application
of the contraction rule to the matrix element on the
right side of (1) yields

1 e
&pp'i &lj,(o)lo&=, l a. —v. " I

(4E„E;)*0 Zs-
i — d4x e'&' *r)(xp)
(2E )iJ

x&plU~(*), j„(0)jl0)s„. (2o)

The first term in (20) gives a contribution of e/Zs to
Fi(q'). If it could be shown that the integral in (20)
vanished as q' —+ ~, then one would find Fi —& e/Zs
as q'~ ~. This is consistent with our result that a
finite Z3 ' implies Fi —& 0 for q' —+ ~ only if Z3= ao,
i.e., Z3 '=0.

7 As remarked in S. G. Gasiorowicz, D. R. Yennie, and H. Suura,
Phys. Rev. Letters 2, 513 (1959), this is not a sufhcient condition
for finite renormalization constants.

One could now choose a coordinate system with p=0.
Then

E = (q' —2M')/2M (22)

s Looking just at (20) and (21) there is nothing to prevent the
integral in (20) from approaching a finite limit —e/Z assqs ~ ao.
This means F&(g') —+ 0, which is consistent with the possibility
of the finiteness of Z3 '. We were unable to see any further light
being cast on this problem by a second contraction. See G.
Kallen, in Encyclopedha of Physscs, edited by S. Fliigge (Springer-
Verlag, Berlin, 1958), Vol. V, Part 1, Sec. 47.

so as q' —& co, the denominators in (21) go to infinity.
This, of course, does not show that the entire expression
vanishes as q' —+ ~, for two reasons. First, the numer-
ator depends on q' through the momentum delta
functions, and it could be that the numerators diverge
as q'~ ~ also. Second, there are an in6nite number
of terms in Eq. (28) for q'= co, and even if each term
in g did vanish as q' ~ ~, there would be no guaran-
tee that the sum on e also vanished. Such a conclusion
would require the uniform convergence of the series in
(21), a property which is by no means obvious.

Attempts to show that at least one renormalization
constant is infinite have been made by making a second
contraction in (20). This question is presently under
active discussion. ~'


