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Unfortunately however we have not yet been able to
calculate S „t for the general case (one can do all the
integrals analytically except for the time integration).
We have, however, been able to carry out the calcu-
lation in the impulse limit and get the correct answer,
thus providing a welcome check on the formal manipu-
lations of Sec. III. We now briefly sketch this calcu-
lation. From (5) with (9), or directly from (7) it follows
that in the impulse limit'

pQQ

S '= dx y„*(x)e'~*y (x)

' This same integral, for obvious reasons, also occurs in the
theory of the infrared catastrophe. See W. Pauli and M. Fierz,
Nuovo cimento 15, 167 (1938), Eq. (18).

where d and P„are harmonic oscillator wave functions.
One can carry out the integration by use of the known
result' for Hermite polynomials that

(tN) t'tt)
(y)H„(y) = P 2"y!

] [ ( [H~„s/, (y),(k) (p)
ttt & tt, (10)

and the fact that J'„"dy HL, (y) exp(t'ys y—') is easily
evaluated by performing l. integrations by parts. The
sum introduced by (10) is then recognized as being
proportional to an associated Laguerre poIynomial and
in this way one derives exactly Ludwig's result.

7 A. Erdelyi, et al. , Higher Transcendental Functions (McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. 2, p. 195.
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A Furry theorem for heavy mesons and photons is given for a class of highly symmetric interactions,
neglecting the ™-Nmass difference. Because of this neglect most rules are only approximately valid, but
a few depend on charge conjugation alone and are absolute.

XTENSIOX of the Furry theorem' to heavy bosons
~ has proceeded gradually from special to more

general cases, ' ' with considerable duplication and re-

discovery along the way. We here base similar remarks
on a separately described' scheme of seven-dimensional

* Assisted by the Air Force once of Scienti6c Research.
t Now at University of Pennsylvania, Philadelphia, Pennsyl-

vania,' W. H. Furry, Phys. Rev. 51, 125 (1937).
2Particular cases were considered by H. Fukuda and Y.

Miyamoto, Progr. Theoret. Phys. (Kyoto) 4, 389 (1949); C. B.
van Wyck, Phys. Rev. 80, 487 (1950); K. ¹shijima, Progr.
Theoret. Phys. (Kyoto) 6, 614 (1951); L. Michel, Progress in
Cosmic-Ray Physics (Interscience Publishers, New York, 1952).

'General forms for pion and nucleon systems were given by
A. Pais and R. Jost, Phys. Rev. S7, 871 (1952);L. Michel, Nuovo
cimento 10, 319 (1953);T. D. Lee and C. N. Yang, Nuovo cimento
3, 749 (1956); with applications to nucleon-antinucleon systems
by D. Amati and B. Vitale, Nuovo cimento 2, 719 (1955); C.
Goebel, Phys. Rev. 103, 258 (1956); S. Barshay, Phys. Rev. 109,
554 (1958).

4 D. C. Peaslee, Nuovo cimento 6, 1 (1957) defines an analogous
operator, essentially the A of reference 7, applicable to E mesons
and baryons as well as pions and nucleons.' R. E. Pugh, Phys. Rev. 109, 989 (1958),gives a Furry theorem
involving pions, photons, and baryons.

6 G. Feinberg and R. E. Behrends, Brookhaven National
Laboratory Report BNL-4090, 1959 (unpublished), give analogous
considerations involving E mesons.' D. C. Peaslee, Phys. Rev. 117, 873 (1960).

charge space: the conclusions are not all new, but there
is some generalization of previous results, and the whole
exercise shows how simple and compact is the seven-
dimensional scheme for such purposes.

The "antiparticulation" operator 3 defined in refer-
ence 7 has the property that A'= 1, and

Ap= —(~ )' AZ+= —(Z )'
A~=(™'), Az =(r, )

Aq= —q,

~v=v,
where p is any meson field and p the photon. Invariance
rules under 3 are valid only to the extent that the
"-E mass difference 6 can be neglected; according to
the scheme of reference 7 this mass difference has an
"intrinsic" basis, while there is no asymmetry in the
(unrenormalized) strong boson-fermion interactions.
Thus 3 forbiddenness may mean reducing the matrix
element of a process by only about 6/M=20'%%u~; but
this is sufhcient to be of some practical importance, and
in special cases the reduction in the matrix element
could be of order (6/M)'. Invariance rules based on the
charge conjugation operator C are of course exact
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FIG. 1. Virtual baryon loop,
with mesons. Fxo. 2. Baryon-antibaryon

annihilation.

(C valid); those based on the combined operator AC
are only A valid, i.e., as approximate as those based
on A.'

Consider first a virtual baryon loop attached to any
number N of real meson lines, as in Fig. 1. A contri-
bution of equal magnitude comes from the same loop
with 0' —+ AN for the baryons. The relative sign of the
two loops follows from A y= —y and the fact that the
1-, 2-, S-meson vertices' are invariant under A:
this relative sign is thus (—1)~, implying the rule

E=even. (2)

Any internal boson line would have two vertices on
the baryon loop and leave this result unchanged.

The restriction on Fig. 1 under C is less clear-cut
and depends on the number of K4 mesons (CE4 —E4)——
involved; for N(E4) =even, the mesons in Fig. 1 must
be symmetric' in + and —,while N(K3)=even. to
conserve strangeness. Then in combination with Eq.
(2) we have the A rule

N(K4) = even,

N (E3)= even,

N (E+)=N(E ),
-

N(m+) =N(vr ),
-

N(m') =even.

(3)

'The one present experimental datum on A forbiddenness
seems to show practically no reduction at all: the isotopic scalar
part of the nuclear charge distribution p should be A forbidden
relative to the isotopic vector part, while approximate equality
of the two is suggested by the observation that p {neutron) =0.

~This statement takes all meson lines in Fig. 1 as outgoing;
conversion to real situations is by m+ {out)=—m+ {in), and likewise
for E+. There is no such distinction between incoming and out-
going mo, E3, or E4, although there would be for E and E~. By
"symmetric in + and —"is meant invariance on reversal of
charge sign for all charged mesons, without any other change in
the {real or charge space) meson state function. This restriction
can always be restated in terms of angular momentum and isotopic
spin, by virtue of the mesons Bose statistics; such restatement is
not germane to the present argument, however.

'o For the one- and two-meson interactions of reference 7;
presumably the N-meson interactions have the same property.

The other alternative, N(E4) =odd, can be considered
by examining in detail the forms of Tr(pio+pio3 )
associated with E+E3 ~ ~ etc., according to the scheme
of reference 7. One finds" that in fact N(K++K +E3)
=odd, N(m++n. +m )=odd; this is incompatible with
Eq. (2), which makes this case A forbidden.

Equation (3) can be applied indirectly to baryon-
antibaryon annihilation as follows: for any baryon-
antibaryon state compute the minimum number Ã0 of
bosons that can be produced; higher allowed states
follow by adding even numbers of mesons according to
Eq. (3). This is illustrated in Fig. 2 for No=3: the
baryon-antibaryon line is connected by go lines to the
loop, which must have at least Eo free meson lines
emerging, or a total of 2/0= even for the loop. One can
then add even numbers of external meson lines.

A special example is the case of -g annihilation,
where by the exclusion principle the initial state has

A = Pr,PsPz —(—1)~+s—+—r+', (4)

(i) Fquation (2) is unchanged for any e;
(ii) for I= even, Eq. (3) is valid with symmetry

of charged mesons;
(iii) for n, =odd, Eq. (3) is valid, but with anti- (5)

symmetry of charged mesons this implies
a C-rule that not all charged mesons can
vanish for e= odd, N(E4) =even.

These are elementary modifications of Eqs. (2) and (3)
according to A=+1, C= —1 for photons. The C for-
biddenness of H~ odd 7 is contained in (5 iii); the
A forbiddenness' "of m —+ even y is in (5 ii). One can
see also that (diagonal) neutral mesons have no con-
nection with odd powers of the electromagnetic field, as
~', E'~ ~', Ke+odd y is C forbidden by (5 iii) when
the K' is identical on both sides; on the other hand x',
E'~ ~', E'+even 7 is not forbidden at all. Since the
absence of N(K4) =odd terms is merely an A rule in
the above, E4 ~E'3+odd y is in principle only inhibited
but not forbidden, suggesting a possible interaction form

eA„f(Cl') [q 4a„q 3 +38 +4j

=ieA„f( ')Pq*a„p—a„p*pj,
"J.Tiomno, Nnovo cimento 6, 255 (1957l.

(6a)

(6b)

where the I' are exchange operators. This must equal

(—1)N, where N is the number of emitted mesons.
Here T=O or 1 is the conventional isotopic spin of the

( N) combination.
To Fig. 1 may be added e external &-ray lines to yield

the following, which are all A-rules with the single
exception noted:
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FIG. 3. Electromagnetic
interaction of A (or Z').

procedure a1so leads' "to

~(&')+~(& )=~(= )+i (p) =~(=')+~(~)=0.
Of course all these conclusions are only A valid.

APPENDIX

If interaction (6a) is present, 0'- ~ 0' conversion can
be induced by atomic Coulomb 6elds."Write

where p= (rps+ip4)/K2 represents a E' meson. Elec-
trical neutrality of the K' assures by Eq. (6b) that"
f(0)=0 but tells nothing about higher moments. " If
f(Cl') does not vanish identically, the possibility exists
of 0'~0' conversion by atomic Coulomb fields; it is
unlikely to be observable, however, according to the
discussion in the Appendix.

The combined operator (AC) is of interest in appli-
cation to A and Z', which are eigenfunctions of (AC).
Consider Fig. 3, in which the "closed loop" consists of
a baryon and boson, with two external baryon lines.
The relative signature of the loop under the operation
AC follows by applying Ac to external lines, since all
vertices are invariant: (AC)'=+1 for the two baryon
lines, so that the signature is (—1)", where m is the
number of photons. Thus an A rule is

4rrfsZe'(le+ Ir,')„(K+K')„
OK=

(16'oi'00') ~Ms
(A2)

where k„, k„' and E„,E„' represent the initial and final
states of 0 and recoil nucleus, respectively, and cv, ~',
0, 0' are their time-like components. Taking (E+E')4
=20=20'))(K+E'); we have

'3)7 =4rrfsZe'/M'. (A3)

The corresponding conversion cross section is

f(&')=fo+fs( '/M')+f4( '/M')+" (A1)

where fs——0 as remarked in the text, and M=1.1 Bev
is the baryon mass. The matrix element of the second
term in (A1) for conversion in the Coulomb field of a
nucleus of charge Z is

e= even, (7)

which implies vanishing magnetic moments"" (first
order electromagnetic effect) for the A. and Z'. The same

'~The authors thank Professor K. M. Watson for a helpful
dIscussron."If 2 =B„y*B„y+~'q*y were an adequate Lagrangian for the
E0 meson, then f(Q')=const would be required for gauge in-
variance; in particular, f(Q')—=f(0)=0. Because of strong inter-
actions with baryons, however, 8 is inadequate to give the correct
X0 propagator, and considerations of gauge invariance are less
immediate: see for example N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields (Interscience
Publishers, New York, j.959), Chap. 7. The perturbation expansion
of the IP change-current vector on the basis of a gauge invariant
baryon-photon interaction yields a form like Eq. (6)."H. Katsumori, Progr. Theoret. Phys. (Kyoto) 18, 375 (1937).

I
u

I
=4fs(Ze'/Mc') (Es/Mc')

=5X10 'fsZEs (Bev),

(A4)

where a is in fermis (10 " cm). For a Pb target and
Es=1 Bev, this is IuI =0.4 fs, but the amplitude for
nuclear conversion is presumably on the order of the
nuclear radius, Iu(nuclear) I

R=S fermi. Thus Cou-
lomb conversion seems scarcely feasible to observe if

If I&10. (A5)

Although nothing is known about the value of fs, one
could hardly call it anomalous offhand if

I f& I
0.1 to 1.

"One-photon conversion can involve only scalar photons
because the 8 has spin zero.


