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Possible Phase Transition in Liquid He't
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A possible phase transition in liquid He3 has been investigated theoretically by generalizing the Bardeen,
Cooper, and Schrieffer equations for the transition temperature in the manner suggested by Cooper, Mills,
and Sessler. 'Ihe equations are transformed into a form suitable for numerical solution and an expression
is given for the transition temperature at which liquid He' will change to a highly correlated phase.

Following a suggestion of Mottelson, it is shown that the phase transition is a consequence of the inter-
action of particles in relative D states.

The predicted value of the transition temperature depends on the assumed form of the effective single-
particle potential and the interaction between He' atoms. The most important aspects of the single-particle
potential are related to the thermodynamic properties of the liquid just above the transition temperature.
Two choices of the two-particle interaction, consistent with experiments, yield a second-order transition at
a temperature between approximately 0.05'K and 0.1' K. The highly correlated phase should exhibit
enhanced fluidity.

I. INTRODUCTION

~~)UANTUM fluids have been the object of intense

4 experimental and theoretical investigation for
many years. At low temperatures, both the boson
liquid He4 and the fermion system of electrons in metals
exhibit a phase transition to a superQuid state but, for
the rare isotope of helium, He', which liquifies at 3.2' K,
on phase transition has been observed above 0.085' K—the lowest temperature at which experiments have
been performed.

Indeed, Landau and his school' described liquid He'
as a Quid which has a "Fermi type spectrum" which is
tantamount to assumieg that the system does not
exhibit a phase transition to a highly correlated state.

Recently, an extension' of the successful theory of
superQuidity of electrons'4 indicated that liquid He'
was unlikely to exhibit a phase transition, although
this possibility was not demonstrated conclusively
within the scope of the theory. In the present paper, the
BCS theory at nonzero temperature is generalized in
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the manner suggested by CMS and it is shown that
this theory does in fact predict a phase transition for
liquid He' at a temperature which should be attainable
experimentally. The essential point is that the equa-
tions which arise in the theory possess D-state solutions
but not the S-state solutions which had been sought
previously, without success.

A brief description of the theory and the associated
thermodynamics is given in Sec. II and, in Sec. III,
the problem is expressed in a form suitable for numerical
calculation. The results are presented in Sec. IV and
discussed in Sec. V.
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where ct(k,o) and c(k,o.) are, respectively, the creation
and annihilation operators for a particle of momentum
Ak and spin direction a. The thermodynamic properties
of the system are to be calculated from the entropy S
and the free energy F of the system.

In the method of BCS, F is evaluated in an ensemble
of wave functions of the type

Here

X II cia") tC'vacuum. (2)
krr (g)
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II. BASIC EQUATIONS AND THERMODYNAMICS

In the second quantization notation, the Hamiltonian
H for a system of fermions may be written as
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g, (P, and g specify states occupied by ground pairs,
excited pairs, and single particles, respectively, and
(k") indicates either k"f or k"g. The wave function @
is normalized by requiring

ng ——(1—hg)&, Pg=hg&e'+", (4)

and hk which is real positive and less than unity, is to
be determined by minimizing F. The wave functions
of Eq. (2) allow a quite detailed treatment of the inter-
actions between particles of equal and opposite mo-
menta which are thought to be responsible for the phase
transition.

Introducing the distribution function, f»„ for the
system, it can be shown, in the manner of BCS, that

S= 2k+ (—fp lnfk+(1 —f&) ln(1 —f», ))» (5)

A2

F=2 Q k' —p [fi,+(1—2f», )h»,j
2m

+ P &~,~ [f~+(1—2f~)4j[f~+(1—2f~)hv]
k, k'

+ P V, , , [h, (1—h, )h, (1—h, .)j&
k, k'

&&[(1—2f»,)(1—2fk )]e'«j & 'i —TS, (6)

1 tanh-,'8E(k)
x(k) = —— 2 I'. , ~ x(k'),

2 ktE(k)

with P=1/kT.
There is a phase transition if there is a value P, of P

for which Eqs. (9), (11), and (14) have a nontrivial
solutions x(k) whenever P)P„and no solution other-
wise. T.= 1/kP, is the transition temperature.

P, is that value of P for which the equation

1 tanh-,'P,e(k)
x(k) = —— 2 I'., 'x(k')

2 k'e(k)
(15)

has a solution. This equation may be obtained from
Eqs. (11) and (14) by putting J» (k) =0 in E(k).
Equation (15) may then have a nontrivial solution
x (k) which is made identically zero by the normalization
required by Eq. (9).

It will be seen that Eq. (15), when transformed to
coordinate space, can possess solutions if Vk, k is the
(formal) Fourier transform of a singular potential. If,
however, Vq ~ is the (formal) Fourier transform of a
singular potential, then e(k) defined in Eq. (10) will
be infinite in general. A more elaborate theory is neces-
sary to circumvent this de.culty and, in the manner of
CMS, we anticipate the result of such a theory by
introducing the single-particle energies e(k) and writing

where T is the temperature, k is Boltzmann's constant,
p the chemical potential, and

e(k) = e(k) —p, (16)

Introducing the definitions

x(k) =[h», (1—hg) j'(1—2')e'»'~,

I"(k) = —2 I'~, 'x(k'),
kl

».*(k)= (h'/2m)k' —'p+Q Ug, j,

and
X[fx + (1—2f~ )h~ j,

8{k)= [e'(k)+
l
F(k) l']'*,

v, ,, = (kg, k't
I i'I kg, k'g)

—(kl, k'glwlk'1, kg)

+(ky, —k'glnlkg, —k'g)
—(ki, —k'pl~i —k'g, kg);

v»» j»~ = (kg» —kg
l

i»
l
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and then p=e(kp) follows from the requirement that
the number of particles correspond to a Fermi mo-
mentum Akp.

(7) The form of e(k) is not to be calculated here but is
to be determined from other considerations. However,
it is clear from Eq. (15) that the value of P, is strongly
dependent on the properties of e(k), and, indeed, it will
be shown in the next section that the derivative of e(k)
at the Fermi surface is of dominant importance in this
connection but that the result is insensitive to the other
detailed properties of e(k).

We shall now show that the value of de(k)/dkl a=a~
is determined by the specific heat of the liquid Just
above the transition so that, since Vk, k is the only
other assumed quantity in Eq. (15), the value of P, will
be made to depend on two empirically determinable
factors.

Using Eqs. (5) and (13),the specific heat C is given by

C= TdS/dT,

it is easy to show that on minimizing F with respect to so tha, t
p»„h~,and f~, we find that, except for the normal state, C= 2kB' f», (1—fg.

y& is arbitrary, (12)
X[E'{k')+PE(k')dZ(k')/dP).

k
ps&i»»)+1

(13) Above the transition temperature, E(k)=e(k), and
the right-hand side of Eq. (17) may be evaluated in the



POSSIBLE PHASE TRANSITION IN LIQUID He'

usual way (see, e.g. , Mayer and Mayers), and it is
found that

O'T
C„= kg'

3

de(k')
+0(T').

k'=kg
(18)

then it is clear from Eq. (18) that, for small T,

C./Cr = rrl,*/rN, (21)

which implies that we must use a single-particle
spectrum with effective mass of 2m at the Fermi surface.

Finally, Eq. (11)may be used to obtain an expression
for the discontinuity of the specific heat which is the
difference between the specific heat (Cx) of the highly
correlated state (for p) p,) and that (C„) of the
normal state (for p(p, ).

Neglecting terms of order T', we And, at the transition
temperature,

C~—C„3—=—p, 'h,C„x' (22)

)C„is the specific heat for P(P,—i.e., for the normal
fiuid. j Thus, for sufficiently low temperatures, C„is a
linear function of T, and this relationship holds down
to the transition temperature. Now, the properties of
the normal Ruid do not undergo any discontinuous
change at p„sothat

lim e(k)= lim e(k) for all k.
P ~Pc+ P ~Pc

Consequently we may use the value of de(k)/dkia=ar
obtained for P (P, in the solution of Eq. (15) for P =P,.

The experiments of Brewer, Daunt, and Sreedhar, '
which extend down to 0.085' K, show that the specilc
heat has become a linear function of temperature which
extrapolates to zero at absolute zero. If Cp is the specific
heat of an ideal Fermi gas and Co is the observed
specific heat, then it is found that

Cp/Cr = 2.00&0.05. (19)

If we define the effective mass m* at the Fermi
surface to be given by

1 de(k)= lim-
no* ~ ~&k dk

a set of equations each referring to a definite angular
momentum l. (The formal manipulation is precisely the
same as that used to separate the Schrodinger equa-
tion. )

CMS sought /=0 solutions of Eq. (14) (with p-+ eo)
and showed that it was unlikely that such solutions of
that equation (and hence of Eq. (15) existed). Indeed
this conclusion is confirmed by the numerical work
described later.

However, it was suggested by Dr. B. Mottelson
(private communication) that there might be an /=2
solution. The plausibility of this suggestion may be seen
at once from the results of Emery~ who showed that a
sufBcient condition for the existence of a solution of
Eq. (15) is that the phase shift in the solution of the
corresponding Schrodinger equation Lwith angular
momentum / and with kinetic energy e(k)g should be
positive at the Fermi surface and that the energy gap
increases as the phase shift increases.

Now the free-space shifts' for the He' at kp are -6i'
for /=0, —2' for 1=1, +19' for 1=2, and +11' for
3=3. Higher angular momentum states show a steady
decrease in phase shift as/ increases. In e(k) the effective
mass is 2' at the Fermi surface and is everywhere
greater than or equal to m. This is equivalent to
strengthening the potential and suggests that there
should be a phase transition for 3=2 and l=3, possibly
for /=1 but probably not for /=0. The largest transi-
tion temperature should be obtained for k=2. These
qualitative conclusions are born out by our numerical
results and the predicted transition temperature cor-
responds to the calculated D-state value. (It should be
noted that, since the l=.2 and 1=3 phase shifts are so
nearly equal, changes in the conventional two particle
potential could result in the largest transition tem-
perature's arising for /=3. )

Consequently, we seek a D-state solution of Fq. (15)
although for p&p„the solution of the nonlinear equa-
tion (14) has a much more complicated angular de-
pendence, which becomes more nearly pure D state as
p~ p'

In Dirac's notation, the radial part, ~l/), of Eq. (15)
for /=2, satisfies

(23)

where h is the angular average of ~F(k)dl (k)/dp~
evaluated at

i
k

~

=kr and p= p, . e(k)o

1 p" tanh-,'P, e(k)
G=—, dk ik)(k ( (24)

III. EXPRESSIONS FOR THE TRANSITION
TEMPERATURE AND THE SPECIFIC

HEAT DISCONTINUITY

1. Rearrangement of the Equations

When e(k) has a given form, Eq. (15) becomes a
linear integral equation which may be separated into

' J. E. Mayer and M. G. Mayer, Statistical 3fechae~cs (John
%Riley 8z Sons, Inc. , New York, 1940).

6 D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev.
llS, 843 (1959).

and
(rlk)=kr j,(kr),

js(kr) being the sPherical Bessel function of order 2.
The most obvious method of solving Eq. (23) would

be to introduce an eigenvalue X (p) multiplying G and to
determine the value p, of p for which one eigenvalue
Xs(p,)=1.It turns out, however, that there are several

r V. J. Emery, Nuclear Physics (to be published).
8 J. de Boer, J. Van Kranendonk, and K. Compaand, Physica

16, 545 (1950).
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I v) = Ik~&-G»l ~&, (25)

negative eigenvalues of smaller magnitude than X(), and
this fact makes it dificult to determine A, p with sufficient
accuracy. Consequently we rewrite the criterion deter-
mining P, in a more convenient form which also displays
in a most striking way the sensitivity of P, to e{k) and
to the two-particle potential.

Define

so that

2m* (2.28k'kp'P )
L(P.) =

gfPkp L m*

A'kg' f'~ fi' kp
!kT, =2.28 expl—

m* (2 m* (plilkp&)

(33)

(34)

found that (the value of ii not appearing in the result)

Then from Eqs. (23) and (25)

(~l~l&&= —(~I~G~I&»

&~l ~ I&&= &k~l ~ Itt&- &~ I
~G»l&&.

Thus, de6ning

1 t
" tanh-,'Peg

L(P, ) = dk—
X'&p

(27)

(28)

we find from Eq. (27) that

tanh-,'P, e (k)
a,=, dkL! k&(kl —Ik,)(k, i j . {26)

p e(k)

in the effective mass approximation. A more careful
evaluation of L(J3,) shows that the effective mass at
the Fermi surface appears in the result just as in Eq.
(33), and that a more general form of e(k) away from
k~ merely alters the factor 2.28, to give a small change
in the transition temperature Lsince as will be seen in
Sec. IV (&I e!kp& scarcely depends on the finer details
of e(k)$.

Equation (34) shows the precise manner in which T,
is determined by m*

I
which is an experimentally deter-

mined property of e(k)] and by Q Inlk&&, which is
calculated for the experimentally determined interac-
tion and which is very insensitive to the value of P,
(see Appendix I).

L(P.) = —1/&v l~lk ), (29) 3. Specific-Heat Discontinuity

provided Ip& is not identically zero, i.e., a highly cor-
related state must exist. The evaluation of P, now rests
upon the determination of the integral in Eq. (28) and
the solution of the inhomogeneous integral equation

(25), which is not beset by the numerical difficulties
associated with the solution of the eigenvalue equation
(15). The numerical procedures used to obtain

(&p I
e

I kp& are described in Appendix I.
where

1 p" tanh-,'PE(k) 1
dk--

E(k) (q !elk~&
(35)

To calculate the specific-heat discontinuity given by
Eq. (22), we rearrange Eq. (14) by the method used in
this section to transform Eq. (15). To 6rst order in

I F(k) I' it is found that for real F (k)

2. Evaluation of L(g,) E(k)= Le( )k+7' {)k'*j (36)

F'(k) being the angular average of F'(k)F22. It is shown
in Appendix I that, for P very large, the right-hand side
of Eq. (35) is independent of P to a very good approxi-
mation. Thus the derivative of the left-hand side of
Eq. (35) with respect to P is approximately zero. For
F(k) small, it makes an appreciable change in E(k) for
k near to k& only. Consequently we replaced F(k) by
F'(k~) for all k. With these approximations, the ex-
pression for ( / dPd) 'F( pk) is independent of the form
of the interaction v and has been evaluated by SCS.
It is found that

In this section we describe the evaluation of L(P,)
in the effective mass approximation. This approxima-
tion is quite good, since the integral in Eq. (28) is most
sensitive to the values of e(k) for k near to k~. The modi-

fications of the result are quoted in Sec. IV for the
specific forms of e(k) which are used. Thus we take

(30)e(k) =A'k'/2m'.

Then for P, large there exists a ~ such that both

(itt'/2 )PmI"' ki
I
))1, and

I
~—k~

I
&&1 (31)

so that L(P,) may be approximated by d 10.2
lim —F'(k~) =
P~ec dP 8,&

2m* r'J' "
L(~.)=- dk

t

" dk
+

kp' k' "a +.k' —kp'—

C~
The third integral on the right-hand side of Eq. (32)
has been evaluated by BCS (for large P,), and it is at the transition temperature.

(38)

provided that F(k) is not identically zero for
I kl =k».

t'" «nhl (k'P./2m )k»3 LFor further discussion see Appendix II.]The left-hand
side of Eq. (37) is equal to (30/7) h in Eq. (22), so that

K 2kJ-x
=I
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TABLE I. Values of (p~s~ks') [Eq. (25), (26)] and the transition temperature, for various input functions.

Two-body
potential

6—12 [Eq. (39)]

Y-S [Eq. (40)7

Single particle
potential

None [Eq. (42)7
Schrodinger equation

None [Eq. (42)]

B. and G. [Eq. (41)7

None [Eq. (42)7
Schrodinger equation

B.and G. [Eq. (41)]

—A'ky

mis ~saks)

3.14

5.46

3.18

5.56

I.(P,}evaluation

m*/m= 2.00 [Eq. (34)7

m*/m=2. 00 [Eq. (34)7

m*/m=2. 00 [Eq. (34)7
m~/m=1. 00 [Eq. (34)7
B. and G. [Eq. (43)7

m*/m=2. 00 [Eq. (34)7

m*/m= 1.00 [Eq. (34)7
B. and G. [Eq. (43)7

1.0

0.35

0.16
0.0045
0.077

0.14

0.0018
0.067

IV. RESULTS

1. One- and Two-Body Potentials

2.0 rather than 1.85, which was obtained. " A good
approximation to the curve was found to be given by
the following analytic function;

for 0&k&0.9,

for 1.913&k, (41)

s(r) = VsL(rs/r)" —2(rs/r) g (39)
where k is in units of A ' and kp has been taken as
0.8 A '

~ Calculations were also performed with no
single-particle potential, i.e.,

with U0=10.22'K, ro=2.869 A. This potential is pre-
sumably the best now available in that it has been
fitted to a wide range of experimental data in the low-

temperature region. "
As an alternative, the Yntema-Schneider potenti

e(k) =A'k'/2m. (42)

The value of L(P,) for e(k) given by Eq. (38) is
determined by putting m*=m in Eq. (33). For e(k)

(40) given by Eq. (37),
1.24 1.89

K
7s(r) =7250 1200e 4""—

&s

The transition temperature has been evaluated for
two choices of e(k) and of tt in order to determine the —0.632+0.50k'
sensitivity of the result to the assumptions.

The first form of s(r) is a Lennard-Jones 6—12 poten- s(k) =—k' —1.043+1.03(k—0.9) for 0.9&k&1.913,
2m

tial with parameters determined by de Boer,'

has been used (r is measured in A). This interaction has
not been studied in the quantum mechanical region,
although it is known to have too little attraction by at
least 10%%uq.

"
For a form of e(k), we have used the results of

Brueckner and Gammel. ""Their potential does not
include rearrangement energies which, on nuclear
matter, have an appreciable effect. Consequently, we
have taken their potential for a particle excited from
the Fermi surface (f=1.0; see reference 12) and kept
the same general shape while altering the scale so that
e(k&) is equal to the mean binding energy, and also
requiring the efI'ective mass at the Fermi surface to be

9 J. de Boer, Suppl. Physica 24, 90 (1958). We are indebted to
Dr. J. de Boer for a most illuminating communication concerning
the various two-body potentials.

' A detailed discussion of potentials will be found in reference 9."J.L. Yntema and W. G. Schneider, J. Chem. Phys. 18, 646
(1950).

'2 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958).

"The authors are indebted to Dr. K. A. Brueckner and Dr.
J. L. Gammel for the effective single-particle potential, as well
as for informative communications concerning them.

2m' (1 09k'kl. "p, )
lnj

~h'k E m*
(43)

with m*=2m. Thus the more complicated potential of
Eq. (41) simply causes a factor 1.09/2. 28=0.48 in the
expression (34) for T,.

2. The Transition Temperature

The results of the numerical calculations are sum-
marized in Table I.

The Schrodinger equation has also been used to
evaluate (p ~s ~k~) (see Appendix I). It can be seen in
Table I that (p ~

s
~
ks ) is not sensitive to (i) the influence

of the exclusion principle (see 6rst and second entries
for (q ~

saks)) or (ii) to the dispersive effect of e(k) (see
the second and third entries for (p~s~ks)). The dis-

persive eGect would be important, however if s(r) were

a hard core plus attraction. At the same time, since

kT, depends exponentially on (p ~
s

~
kp), there is an

order-of-magnitude difference between the correspond-

ing values of kT, .
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V. DISCUSSION

The values of T, for m~=m indicate the sensitivity
of T, to the slope of e(k) at the Fermi surface. A change
in the specific-heat curve at low temperatures could
change the experimental value of m* and thus have a
large effect on the calculated value of T,.

The results indicate a considerable sensitivity to the
assumed form of v(r), the agreement between T,
obtained from the 6—12 potential and the Yntema-
Schneider potential being entirely consistent with the
D-state scattering which they predict. " It should be
noted that these potentials are primarily obtained from
the second virial coefficient which depends on the scat-
tering for all angular momentum states and does not
determine the potential accurately for any one angular
momentum state. Certainly a small change in the
potential could have a large effect on T, without
causing an appreciable change in the calculated value
of the second virial coefFicient.

Probably the best value of T, which we can quote at
present is 0.08'K which is obtained using the (adjusted)
Brueckner and Gammel potential LEqs. (41) and (43)]
and the 6—12 potential of de Boer [Eq. (39)].

This value for the transition temperature lies in the
region just below the lowest temperature at which He'
has been observed experimentally. It should be born
in mind however that a small change in the two-body
potential or in the low-temperature specific heat (in the
normal state) can have a rather large effect on the
predicted value of the transition temperature.

Also, it is true that the validity of the theory depends
on the assumption that the normal Quid can be de-
scribed as a system of weakly interacting quasiparticles.
It is possible that the temperature at which this de-
scription becomes good is somewhat lower than our best
predicted value of T,. In this connection it is important
to note the linear behavior of the specific heat' and the
rapid increase of the self-diffusion coefEcient'~ at low
temperatures. These experiments lend strong support
to the increasing validity of the quasiparticle description
of the normal Quid, at decreasing temperatures.

We have not investigated, in this paper, the proper-
ties of the highly correlated phase other than to cal-
culate the discontinuity in the specific heat. There are,
however, many properties of the state which should
be subject to experimental investigation. In particular,
there should be interesting spatially dependent proper-
ties associated with orientation of the liquid, as well
as striking effects in the magnetic susceptibility.

The excitation energy near the Fermi surface is
given by 2

~
F(k) (

for
~

k
~

= k&. Since F(k) is a function
of the direction of k, it will be zero for some directions
unless, when F(k) is expanded in spherical harmonics,
the spherically symmetric part is dominant. (The

'4 Note that at ks (=O.g A '), the 6—12 potential gives a phase
shift of 17.7', while the Y-S potential gives a phase shift of 17.5'.

"H. R. Hart, Jr., and J. C. Wheatley, Phys. Rev. Letters 4, 3
{1960).

angular average of the nonspherically-symmetric part
is zero. ) This is certainly not the case near to p„where
the D-state solution dominates, and seems to be unlikely
for p) p, although the essential nonlinear character of
Eq. (14) makes it difficult to make a precise statement.

In these circumstances the highly correlated phase
is expected to exhibit a strongly enhanced Quidity with
a viscosity which decreases with Quid velocity.

VI. ACKNOWLEDGMENTS

The authors wish to thank the Computing Center of
the University of California in Berkeley for making
available some of the computer time.

The authors are indebted to Dr. A. E. Glassgold, Dr.
K. A. Brueckner, and Dr. R. L. Mills for stimulating
discussion and one of us (V.J.E.) wishes to acknowledge
a Harkness Fellowship from the Commonwealth Fund
of New York.

APPENDIX I. NUMERICAL PROCEDURES

To evaluate Q ~v~ks), the coordinate space repre-
sentative of Eq. (25) was solved numerically using the
IBM 704 at the Computer Center of the University of
California in Berkeley, and a program written by means
of the FORTRAN II system.

For very small transition temperatures, P, is large
and the hyperbolic tangent in Eq. (26) differs from
unity only for k very near to kp. Thus, since the rest
of the integrand in Eq. (26) is nonsingular near kp, the
exact value of p, is unimportant in the evaluation of
(r

~
Go~ r') (provided P, is large) and tanh(1/2)Pe(k)

may be replaced by unity for this purpose.
In coordinate space, Eq. (25) becomes

p(r) = kprj

s(kyar)

dr'(r
~
Gs

~

r—')v(r') p(r'). (A1)

This equation was solved by replacing the integral by
a Gaussian quadrature approximation, the ensuing set
of linear inhomogeneous equations being solved by
means of a library subrouting. "

For the quadrature, the range of integration was
broken into three parts bounded by a &b &c&d in each
of which an e&-point Gaussian quadrature formula was
used. The best locations of a, b, c, and d were determined
by trial. The values used were a= 1.0 A Lsince @(r) was
essentially zero at this point], b= 1.997 A /since v(r)p(r)
had its maximum at this point so that the greatest
number of Gauss points fell into the region in which
v(r)p(r) was rapidly varying), c=3.5 A (results were
insensitive to this value) and d=7.0 A Dncreasing d
beyond this value caused no change in Q ~

v
~
kr) owing

to the short range of v(r)].
The difference in (P~v~4) for I& 10 and N——t=16 was

' B. Garbow, Matrix Inversion with Accompanying Solution
of Linear Equations, Share program P1 AN I'" 402 (unpublished).
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To evaluate («~GO~«') write

(r I
G

I
«') =Gi(r, r')+G2(r, r'), (A2)

—m (kpr)(kpr') j&(kpr)n2(kpr'), r&r'
Gi(r, r') = (A3)

A'kp (kpr)(kpr') j,(kpr')n, /kpr), r) r'

xi (A4)
(

~
e(k) e(k p)

~

—(A'/2m) (k' —kp') )
In this form, the integral over k could be terminated

at k=a=4.5 A ' with good accuracy and the integral
evaluated by an n2-point Gaussian quadrature in each
of the ranges 0&k&kp and kp&k&~. (kp=0.8A ').
Changing n2 from 6 to 10 caused a 1/2%%uo change in

(P)n~ kp). The integral (P)n~ kp) was performed by a
3e&-point Gauss quadrature formula.

The time required to solve the problem with e&=16
and F2= 10 was approximately 30 minutes. Of course
this time could have been reduced considerably by
decreasing the number of Gauss points in the regions in
which the integrand was varying slowly. However, since
so few different values of Q ~

e~ kp) were required, the
total computer time was less than would have been
used by economizing trials.

The calculations were expected to be sensitive to the
singular regions of v(r) which becomes sharply repulsive
near r= 2.56 A. If v(r) had been a hard core plus outside
attraction n(r)p(r) would have had a 8-function be-
havior at the core. In fact p(r)p(r) did not vary too
sharply in the core region and the accuracy of the
solution in this region was checked (i) by changing ni
from 10 to 16 and (ii) by putting G2(r, r') =0 so that the

Lwhere j2(kpr) and n~(kpr) are spherical Bessel func-
tions of order 2j, and

F00

G2(r, r') =— dk k'rr'(j2(kr) j2(kr') —j2(kpr) j2(kp«')]
x ~p

problem reduced to the Schrodinger equation for which
an approximate analytic solution could be obtained in
the region in which m(r) was repulsive. The programming
accuracy and, to some extent, the numerical accuracy
were checked by evaluating the Schrodinger equation
phase shifts (tanRp= —

(p~ v~ kp)m/h'kp) and com-
paring them with the known values.

APPENDIX II. SOLUTIONS BELOW THE
TRANSITION TEMPERATURE

In this paper we have not solved the nonlinear
equation (14) which describes the correlated state, but
have only examined the linear equation (15) for the
transition temperature, which is thus independent of
the nature of the nonlinear solution. However, the
predicted properties of the correlated state, such as the
specific heat discontinuity at the transition tem-
perature and the Qow properties, depend explicitly
upon the solution of the nonlinear equation.

There exists a solution F(k) to the nonlinear equation
which is nonzero for ~k~ =kp, for at least some direc-
tions. For this solution the coefficients Pi in the trial
function + are discontinuous functions of angle for

~
k~ = kp. We know of no reason to impose the require-

ment that 0' be continuous, but observe that 4' would
be continuous if F(k) were identically zero for

~
k~ =kp.

There appears to be a solution of the nonlinear equation
of this nature, which would imply a zero energy gap,
a consequent reduction in the specific-heat discontinuity
at the transition temperature, and an increase in vis-
cosity in the correlated state. Ke reject this solution,
however, in favor of the solution with F(k) nonzero for

~k~ =kp, since the latter gives a lower value for the
free energy at any temperature.

It should also be observed that we have assumed

F(k) real in the computation of the specific heat dis-

continuity in Sec. III. 3. This result (and only this
result) depends upon this assumed property of the
solution below the transition temperature.


