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a volume of dimensions about j. in. )&~ in. &(20 in. The
mean angular spread from this source combined with
the original beam spread is shown by the resolution
lines in Fig. 3.

APPENDIX III

Several minor effects in the experiment were esti-
mated and found to be small. Nuclear absorption in

the helium reduced the beam by only 0.1%, but for
the large scattering angles (44' and 90' c.m.) where
the protons traversed air rather than He the value was
0i.7% to 0.9%. The root mean square scattering angle
for the He in the bag was 0.02', for air in the case of
the larger angles 0.1', for the 0.006 in. of aluminum in
the container 0.043' and for styrofoam 0.024' for a
1-cm thick layer.
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An approximate method is developed for treating a generalized hydrogen-molecule ion in which two
heavy particles have positive unit charges and one light particle has a negative unit charge. The expansion
parameter of this approximation is the ratio of the light to the heavy mass. In first order, the method re-
quires finding a solution to a pair of ordinary, second-order differential equations, which are coupled unless
the masses of the heavy particles are equal. Explicit expressions for the coeHRcients in these equations are
derived. The asymptotic forms of these coe%cients for large nuclear separations give to first order the
reduced-mas corrections to the binding energy of the light particle on either of the two heavy particles.
The usual scattering theory is extended to obtain formulas for the various possible cross sections associated
with this system. An iterative, variational technique for obtaining eigenvalues and eigenfunctions for bound
states of the system is presented;

I. INTRODUCTION

HE experimental observation of p. -meson-induced
fusion in a hydrogen bubble chamber' has led to

an increased interest in the three-body system con-
sisting of a light negatively charged particle in the
presence of two heavier positively charged nuclei. This
system, the generalized hydrogen molecular ion, has
been treated in the past by the approximation of Born
and Oppenheimer. ' In this approximation the expansion
parameter is the fourth root of the ratio of the mass of
the light particle to that of the heavier particles. For
electronic molecules this quantity is small ( 1)7) and
the approximation is su%ciently accurate to be useful
in many calculations. For p,-mesonic molecules, how-
ever, the corresponding value is nearly one ( -', ), and
the approximation is open to question.

In this paper we develop a method based on a vari-
ational approximation to the wave function of this
three-body system. Although this method has the same
starting point as the Born-Oppenheimer approximation
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—namely, the solution for the motion of the light
particle with the heavy ones held 6xed—it leads to an
expansion parameter that is the ratio of the masses
themselves. In the present approximate treatment
erst-order terms in this parameter have been included,
while second-order ones are ignored. When the masses
of the two nuclei are not equal, it is essential that the
first-order terms be included, because they lead to the
distinctive features of the unequal-mass case. Thus,
for example, the difference in binding energy of the
light particle on one or the other of the two nuclei is
contained in these terms; clearly, if the positions of the
nuclei are axed, their mass differences can play no role.
In this unequal-mass case, it will be shown that the
wave function of the system is obtained from the
solution of a pair of coupled, ordinary, second-order
differential equations in which the coupling terms come
from the 6rst-order corrections. On the other hand, if
the masses of the two nuclei are equal, the pair of
equations is uncoupled and the erst-order terms serve
only to improve the accuracy of the calculation. The
development of the equations for the wave functions
is given in Sec. II.

In Sec. III, the scattering states for these systems
are treated. By use of the asymptotic behavior of the
system of equations, explicit expressions for the elastic
and exchange cross sections are derived. For unequal
nuclear masses one obtains different expressions de-

pending on whether the total energy is less than or
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greater than the binding energy of the light particle on
the lighter nucleus. Finally, in Sec. IV a variational
procedure for the determination of the eigenvalues and
eigenfunctions of the bound states of the system is
given. This method involves an iteration scheme that
converges rapidly to the desired eigensolutions.

In a subsequent paper, ' the techniques that have
been developed in this paper will be applied to the
problem of muon-catalyzed fusion. It will be seen that
close agreement with the experimental results is
obtained.

where
R„=r„—fzrz —fzrz,

p, =m;/M, m ;/(m=&+m. z+m„) (for i = 1, 2, p,),

II. THREE-BODY WAVE FUNCTION

A. General Equations

In this section we treat the Schrodinger equation for
the generalized hydrogen molecular ion consisting of
two positively charged nuclei and a light negatively
charged particle referred to as a meson. All particles
are assumed to have unit electronic charge.

In the development which follows, a convenient
choice for a coordinate system is one in which the
center-of-mass motion, the relative motion of the two
nuclei, and the motion of the meson relative to the
center of mass of the two nuclei are separated. If r~, r~,
and r„are the position vectors of nucleus j., nucleus 2,
and the meson, respectively, and m&, m2, and m„ their
masses, then the position of the center of mass, r„ the
internuclear separation, r„, and the position of the
meson relative to the center of mass of the two nuclei,
R„, are

r.=pzrz+pzrz+p r,
= ri —f2,

V(rz, rz, r„)—
~p, $ +pQ

e'- e'-

r.
f
R„—f.r„ f f R„yf,r„ f

'

where r„~ and r„2 are the distances between the meson
and nuclei 1 and 2 respectively; r„ is the magnitude of
r„.

The dependence of the wave function on the center-
of-mass motion is removed by the usual substitution

e(r&,rz, r„)=exp(iP, r„/A)y(R„, r.),
where I', is the momentum associated with the motion
of the center of mass. The resultant wave function
P(R„,r„) can then be expanded in terms of a complete
set of functions, P;, which are functions of the variable
R„and may contain the variable r„as an independent
parameter. Thus we may write

P(R„,r„)=P, p, (R„,r„)x,(r„).
Here the functions x, (r„) are to be determined and are
dependent on the choice for the P, (R„,r„).

It is convenient to choose for the f, the complete
set of solutions for the wave functions of the meson in
the Coulomb potential of the fixed nuclei of unit charge. '
With such a choice the adiabatic effects of the presence
of the meson on the motion of the two nuclei can be
replaced by an eGective potential. In this case the
x;(r„) represent to lowest order the wave functions
describing the motion of the two nuclei.

The P, are 'therefore the solutions to t.he equations

K„f;(R„,r„)=W, (r„)P;(R„,r„),
where

f,= m;/(m, +m, ) (for i = 1, 2).

The wave function, 4', for the three-body system
satisfies the Schrodinger equation,

k'p1 1 1
V'+ |7'+ V'' f+V +=W+,

2 &M, M„M„

and W, (r„) is the energy associated with this system
as a function of the parameter r„.

If we insert the expansion for P(R„,r„) into the
Schrodinger equation, multiply by f;, and integr'a, te
over all values of R„, we obtain a set of equations

A2

A(R.r-) ~-' 2 x'(r.)0'(R.,r-)d'&.

where 8' is the energy and 3E„and M„are the appro-
priate reduced masses, i.e.,

M =mlm2/(m1+m2) and M =m (ml+m2)/Mt.

The subscripts on the Laplacians refer to derivatives
with respect to the appropriate coordinates.

If all particles have unit charge, e, the potential V can
be written as

' S. Cohen, D. L. Judd, and R. J. Riddell, Phys. Rev. 117, 384
(1960).

e2

+ W;(r„)+ x, (r„)= JVx, (r„), —

where W is now the energy of the three-body system
in its center of mass. When the indicated differentiations

4 The ground state and some of the exrited states for this system
have been studied, e.g. , by E. A. Hylleraas, Z. Physik 71, 739
(1931); Edward Teller, Z. Physik 61, 458 (1930); and Bates,
Ledsham, and Stewart, Phil. Trans. Roy. Soc. I'London) A246,
215 (1953-4).
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are carried out, the first term in this equation may be
rewritten as

where
6;;=2f,; v.+(v. f,;)—g;, .

p, (R„,r„)Q V„px.;(r„)tA, (R„,r.)doR„

=&.'X;+2 p V.X; lt;(R„,r„)V„y,(R„,r„)d R„

+P X," y, (R„,r„)V„y,(R„,r„)doR„.

Here the last term can be made more symmetric by an
integration by parts:

Ivy V'd'R. = v- NivA' d"R.

(vA~) (v-4')d'R'

Finally, if we define

f;,—=- p, v „p,d'R„= —f...

g —=
,

(v-4') (v-4)d'R. =g',

the set of SchrOdinger equations becomes

k
(V,,oX,(r„)+g L2f;;.V„X;+(V„f;;)X,—g;;X;])

For convenience, we introduce the dimensionless

parameters

where a„ is the Bohr radius for the mesonic atom having
a reduced mesonic mass M„, La„=h'/(M„e')], and W„
is the corresponding mesonic Rydberg, t W„=e'M„/
(2A')]. All distances are measured in units of a„and
all energies in units of 8'„. The dimensionless

Schrodinger equations are then

3f„
f'7-'x (')+2 t 2f,. v-x+(v- f )x.—g, x'])

2
+ lV;(r.)+—X,(r„)=O'X, (r„),

where the definitions of the symbols have been altered

to refer to the dimensionless variables. W'e may write

these equations as

= —P 8,.;X,(r„), (1)

while for the equal-mass case it is

either P =Po+Xo+ (symmetric case),

P=rPo
—X,— (antisymmetric case).

The errors introduced by the omission of the higher

excited mesonic states cannot be accurately determined.

Ke may, however, estimate these errors to some extent

by use of a simple perturbation expansion. If we

consider the states of lowest 8; to be the dominant ones

and treat M„/M = o as an expansion parameter, then

for the equal-mass case we may write

Xo=xo "+&Xo"~

X,=oX ~'~+ooX ~o~ for iWD,

where Xf) is the state corresponding to the lowest W;.
Inserting these expressions in the coupled equations
and considering only those terms of the lowest power

In the lowest Born-Oppenheimer approximation to
the solution to these equations the dynamic correction
terms 8,; are assumed to be zero and only the X; corre-

sponding to the lowest 8', is retained. Furthermore, the
effective potential W; (r„)+2/r„ is expanded about its
minimum value in a power series in the displacement of

r„ from its value at this minimum. %hile such approxi-
mations are reasonable for the treatment of the elec-

tronic molecular ions, the larger mass of the meson

present in the mesonic molecular ions makes these

approximations less reliable.
An alternative approach developed here includes

the lowest-order dynamic corrections and makes use

of exact solutions to a simplified set of Schrodinger

equations. In this treatment it is necessary to separate
the cases for identical and distinguishable nuclei. If
the nuclei are identical, the wave functions must be
either symmetric, +, or antisymmetric, —,with

respect to an interchange of the two nuclei, and the
two types are not coupled in the set of equations; i.e.,
f;; and g,; are zero if i and j correspond to states of

opposite symmetries. If the nuclei are not identical

these terms do not vanish, and furthermore, since there
is a degeneracy between the unperturbed symmetric

and antisymmetric energies for large nuclear separation
(corresponding to the equality of binding energy of thc
meson on either of the two fixed charge centers), it is

necessary to include states of both symmetries in the
wave function.

In our treatment we restrict ourselves to treating
only the states corresponding to the lowest values of

W;(r„), designated by a zero subscript, for either of

the two possible symmetries. Therefore for distin-

guishable (unequal-mass) nuclei our wave function is

of the form
P=Po+Xo++go Xo,
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in e, we obtain

X "=(W—W;—2r~) 'B,pXp").

hence, to lowest order in ~,

X,= (W—W,—2r„)—'p8;pxp.
f

If we consider the sects of the ith excited state on
the equation for Xo, we note that they enter the equa-
tion only in second order in e. Thus the omission of the
excited states introduces errors of order e in the
calculation of the energy of bound states. Similarly,
for free states at energies such that mesonic excitations
are energetically impossible even for large nuclear
separations, only xo is necessary to determine cross
sections. The errors in these cross sections are also of
order e'. In addition, for the treatment of bound states
and scattering states of low energy, the denominator
in the above expression is in general large due to the
large separation of the excited states of the meson in
the molecular ions which we shall treat.

In the unequal-mass case, a small perturbation can
cause large changes in the wave function. It is therefore
necessary to treat the two states of lowest 5, corre-
sponding to opposite symmetries, +0+ and xo, together.
The eGects of the remaining higher states will, as be-
fore, introduce second-order corrections to the binding
energies and cross sections.

B. Solution for 2t);

Although it is possible in principle to obtain exact
numerical solutions to the mesonic problem with two
fixed, centers, ' the ultimate accuracy of our approxi-
mations has been shown to be limited. tA"e therefore
felt justified in using approximate variational solutions
for this part of the problem.

For the symmetric solution Pp+, we assumed a vari-
ational solution of the form'

()tp+=A+ cosh(q+r„2)/2)e "+'"P(2,

where A+ is the normalization constant and p+ and

q+ are variational parameters which minimize the
expectation value of K„ for a given value of r . The
v'ariables g and rt are the usual confocal elliptic coordi-
nates (= (r„i+r„2)/r„and rl= (r„i r„2)/r„. —

A similar function was chosen for the antisymmetric
solutions, i.e.,

Pp ——A ($}sinh(q r„)t/2)e "-""t".

Here the f(} indicates that a factor of $ was included
in the expression if this led to a lower expectation value.
Specifically, for values of r less than r, (r, 1.70) this
factor was included; for values of r„ larger than this it
was omitted. For small values of r„ this additional

5 E. A. Hylleraas, reference 4.
'This form was used in treating the hydrogen molecular ion

by V. Guillemin, Jr., and C. Zener, Proc. Natl. Acad. Sci. U. S,
15, si4 ()929).

factor is essential in order for the solution to approach
the hydrogenlike 2p function as r„approaches zero. ln
the neighborhood of r, the two sets of solutions were
smoothly joined.

The desired expectation values can be expressed as
the sum of two terms,

where

W;= P;BC„Q;dt„=(T„)+(V„),

and

( ))= 4" A'i u= &)4"'&A"

(V.)= 4"VA"d4= ' 4" —21 —+—
I &'d'

(r„i r„22

8
V =——

It

$2 ~2

The integrals that occur in these and other expressions
in this paper can be conveniently expressed in terms of
the de6nite integrals

=E„(p)= e zpg"dp

~1
C2 = C2„(Q)= 2p" cosh'(Q2t/2)de,

—1

'=C '(Q) =j q'" sinh'(Qg/2)dg,
-1

~1
C2 +i=C2 +i'= rt2" sinh(Q&/2) cosh(Qrl/2)drl,

where P=Pr„and Q=qr„.
For the symmetric solution the explicit results are

(V„)p=—2 r„A2r~ 2E C2p, i

(T„)+ ', r„A+'fP~'(E Ep)C-+——Q '(Co' —C ')—E j.
The normalization constant A+ is determined by the
relationship

-', 2rA+2r„PI E2Cp —EpC2$ =1.

For confocal elliptic coordinates the volume element is

dt„= ',r„P(P q-') der—t@,

where the limits on the variables are

1& $&(e, —1&2t&1, and 0&(t)&22r.

The integrand. s in the above expressions may also be
expressed in these coordinates, i.e.,
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approximations made in these calculations we felt that
this close agreement indicated a satisfactory solution
for the mesonic part of the wave function.

By making use of the analytic forms for the mesonic
wave function it was possible to analytically evaluate
the first-order dynamic correction terms, f;; and g...
discussed in the preceding section. The specific analytic
forms for these terms are given in the Appendix.

For the equal-mass case only "diagonal" correction
terms occur, because the states of different symmetries
are not coupled. As a consequence of the relationship
f;,=—f;, it follows that f;,—=0. Thus the only first-order
correction for the equal-mass case can be considered
as a correction to the potential. This term is of the form

« l.2—

I I I I I t I I I I I I

0 2 4 6 8
'

IO 12 I4

rn /ap,

FIG. 1. Static molecular-ion potentials for the lowest symmetric
(W+) and antisymmetric (W ) mesonic states. Here ~ indicates
values obtained by Teller, ' and ~ the exact values of Hylleraas. 4

0.80

0.70

g,;=)' &„p,"& „p;dt„,

Similar expressions can be obtained for the anti-
symInetric solutions.

The minimization of the expectation values of K„
for values of r„between 0 and 20 in intervals of 0.05
was carried out with the aid of an IBM 650 digital
computer. The expression for 8'; was minimized to an
accuracy of eight figures; however, because of the
extremal properties of 8';, errors due to rounding made
the determination of 8 and Q less accurate. The results
of these calculations are given graphically in Figs. 1

and 2. For comparison the results of some previous
calculations of the values of 8', are included in Fig. 1.
For the symmetric case with our approximate solutions
we obtain 8';.= —1.20489 for a value of r„of 2.00. This
is to be compared to the exact value of —1.20527
obtained by Hylleraas. ' Similar agreement is found for
the other values calculated by him. In view of the other
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F&G. 3. First-order dynamic corrections to the molecular-ion
potentials for the equal-mass case.
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where i denotes either + or —.This correction has been
computed numerically by using the parameters obtained
from the variational calculation. The results for both
the symmetric and antisymmetric states in the equal-
mass case are shown in Fig. 3. There has been a certain
amount of controversy concerning these corrections;
our results for the symmetric case are in general agree-
ment with those of Dalgarno and McCarroll. ~

For the unequal-mass case in which the ratio of the
two masses is 1:2, similar diagonal correction terms
were computed. In addition, the oG-diagonal terms were

obtained for this case. The results for these calculations
are shown in Figs. 4 and 5.

Pro. 2. Mesonic wave-function parameters, p~(r) =P~(r)/r and
g~{r)=Q+(r)/r, which minimize the static Hamiltonian. For the
antisymmetric states, different curves are presented for r(r„
r&r, (see text).

~A. Dalgarno and R. McCarroll, Proc. Roy. Soc. (London)
A237, 383 (1956). The results of T. Y. Wu, J. Chem. Phys. 24,
444 {1956),and T. Y. Ku and A. B. Bhatia, J. Chem. Phys. 24,
48 (1956) are in disagreement with ours.
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C. Behavior for Small r„

The study of the behavior of the mesonic solutions
for smalI values of r„ is of considerable interest, both
for the general understanding of the three-body problem
and for the development of solutions to the differential
equations for X,(r„).

The behavior of the parameters p and q in this limit
can be obtained by expressing the energy 8'; in powers
of the parameters r„, P, and Q. For the symmetric case
to'lowest order in P~ and Q+ we have

P+'Q+'—['V+r„,'= P+'+ 4P—~r—
240

P+'Q+'—(P~' 4P+r.)—
90

0.5—

0.4—

CO

E oa-

~ o.z-
C

CL

- O. I

Minimizing this expression for 8'+ with respect to the

~n Op

IO

0.70

FiG. 5. First-order dynamic coupling terms behveen the lovrest
symmetric and antisymmetric molecular-ion states for the un-
equal-mass case (m1/m7= 2).

from which it follows, for the limit as r„—+ 0,

0.50

040
and

0.20

0.10—

1 I
I

0 2 4 6 8 10 12 14

rn /a~

FIG. 4. First-order dynamic correction terms to the molecular-
ion potentials for the unequal-mass case (m~/F2=2).

parameters P+ and Q~, we find for the limit as r„~0,

P~ -+ 2r„, p+ —+ 2,

Q~ ~ (4/v3) r„, q~ ~ 4/V3,

8'+ —+ —4.

These results are consistent with the hydrogenlike 1s
solution which would be expected in this 1imiting case.
KVe note that the energy is relatively insensitive to the
parameter q+ in this region, occurring in terms of order
~n ~

In a similar manner we may obtain limiting values
for the parameters p and q for the antisymmetric
solution. In this case we have

P-'Q-'»-'Q-'—H~ r„;"=( P'+2r„P ) i
1+—

2100 ) 2520

which indicates that our solution P approaches a
hydrogenlike 2p solution with m, =0, where the s axis
is aligned in the direction of r„.

The asymptotic forms for g++ and g can be readily
obtained from the complete expressions given in the
Appendix. It is found that while g++ tends to zero in
the limit of vanishing r„, g is divergent, having a
leading term of the form 2/r„'. This asymptotic be-
havior is in fact necessary for a consistent set of
solutions to the three-body system for a state in which
the total angular momentum is zero. We have already
seen that P approaches a p state as r„ tends to zero,
hence for the total angular momentum of the system
to be preserved the two nucleons must be in a relative

p state. This angular dependence must be carried
entirely by x (r„), because P (or P+) is a function only
of the parameters r„,g „,and r„r„and hence is invariant
with respect to rotations of the entire system. For s
states the radial wave functions, X, associated with P
satisfy an equation which in the limit of small r„ is of
the form

]d(dx$2
~+—X +terms of order —=0,

r s dr ( dr ) r 77

where the singularity in g provides the term necessary
to correct the forra for the X equation to agree with
that of the usual p-state equation.
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For the case in which the total angular momentum
of the system is one, the situation is somewhat less clear.
In this case, if the meson is in a p state it is necessary
only that the nuclei be in relative s or d states. Kith our
choice of approximate wave functions we have in fact
chosen a linear combination of these states such that
the potential for small r is 4/r„. A similar situation
arises for states of higher total angular momentum,
so that for small values of r„ the wave functions for
antisymmetric meson states are not accurately de-
scribed. For symmetric states no such ambiguities
appear. This difhculty for small values of r„ is asso-
ciated with the degeneracy of the various 2p states that
occur for r„=o, and is therefore unimportant for larger
values of r„. To treat the inner region correctly would
require the introduction of the two other 2p states and
their associated X s. We expect that such a treatment
wouM, however, make small corrections to the wave
functions at large distances and would be signi6cant
only for small values of r„.For the scattering states the
energies of interest to us are such that the contributions
for other than s states are negligible. For the bound
states, only the unequal-mass cases involve P, and the
effect of this term is small. except for large values of r„.
YVe have therefore felt justified in omitting these
additional complications in our treatment.

The asymptotic behavior of f+ and g+ in this limit
is also of interest. From the expressions in the Ap-
pendix we obtain

+g'
lim f+ =4~A~A (fo fg) — e „
r&~0 4

16V2
(fo—f~)e -,

81

lim g+ = —2f+ /r„,
r ~~0

4+(r-) =Z ~~r-'+x,
t=p

In addition it is necessary to expand the various other
functions which appear in the equations in pov er series,
thus

f~ =Q F,r„',
t=o

a+—= ~ atr
t=—1

and

V+=el(1+1)r„'+ Q v,r'= & ~,r',
t=—1 t=—2

V =e[l(l+1)+2]r„'+P q,r-'= P pir'
2

Inserting these expressions into Eqs. (2a) and (2b) and
equating terms with equal powers of r„, we obtain the
recursion relationships

f(t+K) (t+K 1)—l(l+1)ja—,

where

U+(r„) = W++2r„'+ eg+++ el(l+1)r„-,
Rild

V (r„)=W +2r„'+eg +d(l+1)r
In order to obtain the behavior of the solutions to

these equations for small values of r„ it is convenient
to express the solutions in a power series in r„; i,e., we
assume

= g Igg &
—(2k+2K —t' —2)F, jbg g

t-1 5'
i+ b t o——

where f,=m;/(m&+mo), and e.„ is a unit; vector in the
t-1 lV

&t'—l~t—t'—1 ~t—2
direction of r„and f+ =f+ e~.„.The term g+ is there- e g o

fore seen to be divergent in this limit. As we shall show,
the particular form of this divergence is crucial for the
satisfactory solution of the di6erential equations. t =0

The radial equations for a state of total angular
momentum I can be obtained from Eqs. (1) by the
usual substitution of p;/r„ for x,. These equations are

and

dQ df+
2f+= — 0 —+g+ 4-

, (-2a-)--
dr dr„

= 2 Lg~-i+(2&+2K —&' —2)F~]b~ ~ i.
t/ 0

de ]
,+-LW —V-(r-)le-

dr„2
PK(K 1)—l(l+1)g~o =0, —

)K(K 1)—2 —l(l+1)gbo=0—.

d&+ df+
=2f+ +4++g+-4+, (2b)-

dr„ dr„

From these equations we obtain the pair of indicial
equations
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Thus if a&) is not zero E is either / o—r /+1, while if b()

is not zero E is equal to -'2+L9/4+/(/+1))&. In both
these cases the solutions with the minus sign do not
satisfy the conditions of integrability and may be
discarded. For /&0, these two cases constitute the two
possible solutions to the equations. For /=0, on the
other hand, these two values for E differ by an integer,
and therefore further investigation is necessary to
determine whether or not two regular and independent
solutions to the equations exist. It is clear that two such
solutions must exist, since we must be able to describe
states in which the meson is associated with either of
the two nuclei for large separations of the nuclei. If we
examine the recursion equation which determines the
values of bI in the case where K=1, i.e., for ao/0, we
6nd

L(1+E)E—/(l+ 1)—2]b(= (g &+2bo) ao,

If H/' is equal to H/' then the right-hand side of the
equation is zero and we find

~V'1(2~rw. =0,

where

(I)

r~'j» e&~= r~'jI9=X+")*
dr„

(g) ~
(&)

dr

—x ("V x "'"+2j+ (x+(2)*x &') —x (2)"'x+('))].

We shall call j(2 the "unitarity current. " (For X&"—=X&"

this reduces to the usual expression for the probability
current. ) If X&'& and X&" have the same angular de-
pendence, then we may write

or
0 b& (g (+2——b2)ao,

dx (') dx (')*
X (2)~ X (I)

this would lead to an inconsistency unless the multiplier
of ao were zero. This is, in fact, the condition which we
have shown to be true from the asymptotic behavior
of the functions f+ and g+ . This being true, the value
of bj is undetermined. Thus the constant b~, which is
arbitrary in the solution with E= 1, represents the fact
that one can add an arbitrary amount of the solution
with E= 2 to the solution and still retain a valid power-
series expansion for small values of r .

D. Unitarity Current

It is of interest that one can obtain an invariant
relationship between the various solutions for the
system of equations describing the motion of the nuclei.
If we consider two sets of solutions X+") and X+") to
these equations, with eigenvalues 8" and 8", respec-
tively, then the following equation can be constructed:

x,(»*
i

v. —-V+ )x+()+e, x (»

e

+X &»*
~

V„2—-V ~X (»+8 X (n
1

1—x~(')
~

&7„2——V~ ~x~(2)+0~ x &'&

j
—x (')

~
q 2—-V ~x (»yg x &2&

1

1= —— W' (x+('&*x+('&+x &'&*x ('))dr„
4

r
W2 (X (I)x (2)4+X (1)X (2)4)dr

B such a conRict exists, the second solution @rill be of a
logarithmic type.

dr dr„

+2f+ (X+&'&*X "&—X+")X ('&*)=constant.

Furthermore, if these solutions are regular solutions to
the differential equations, their contribution to this
quantity is zero because r j» vanishes at the origin.
Irregular solutions, on the other hand, contribute a
finite amount to this expression. It follows that if
r„'j» is not zero when evaluated for any value of r„,
some irregular solutions must be present.

The values of P and Q which minimize this expression
for the energies are 8=Q= r„, for which W+ ——W = —1.
This expresses qualitatively the fact that the symmetric
and antisymmetric solutions for fixed nuclei can be
formed from the solutions in which the meson is
centered on either of the two nuclei. These eigenvalues,
however, are not exactly the binding energies for such
a separated system, because the units in which the
eigenvalues are measured use the reduced mass for the
meson with respect to the sum of the nuclear masses.
The necessary corrections to the energies in this l.imit
are contained in the asymptotic behavior of coupling
terms g;;. In addition, for the unequal-mass case it is
necessary to obtain the splitting in the energies corre-
sponding to the fact that the meson is more tightly
bound on the heavier of the nuclei. The removal of this
degeneracy in energy for this limit is contained in the
o6-diagonal term g+ . As will be shown, both these

III. SCATTERING WAVE FUNCTIONS

A. Asymptotic Behavior for Large Values of r„
In the limit of large values of r the parameters I'

and Q which describe the mesonic wave functions also
become large. In this limit the binding energies may be
expressed approximately by

W r„'=W .r„'= (I'+Q 4r„)I'Q/(P+Q—)
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corrections lead to expressions accurate to first order
in the parameter ~.

The asymptotic values of g+.+ and g come entirely
trom the terms Ir~ and I» (see Appendix) because the
derivatives which occur in the remaining terms vanish
in this limit. %e find

For the equal-mass case we have f~= f2= 2,' hence

the corresponding case for nucleon 2. The binding
energy of the meson is that value of W for which the
kinetic energy of the relative nuclear motion is zero
(d'p/dr„'=0). Thus we find, for the binding energies,

and
W~= —1+4&/9,

Wg= —1+a/9.

These expressions are the correct binding energies to
first order in the parameter e.9

lim g++= lim g

and the effective potentials are corrected to give

inn V+= hm V = —1+-,'e= —1+m„/2m&.

To first order in e this is identical to M„ /M„, where
M„~ is the reduced mass of the meson with respect to
one of the nuclei. For the unequal-mass case let us
consider a system which consists of a proton (nucleon

1), a deuteron (nucleon 2), and a meson. In this case
we have f~=3 and f2=-„and hence

lim g++
——lim g =5/18.

The only term for g+ which does not vanish in this
limit is the term g~„, and this leads to the result

To interpret these results let us consider the asymp-
totic form for the radial differential equations,

d'p 1 ) 5
-+-I W+1——~ 14-= —64+.

dr.' e E 18 )

From these equations we obtain a new set of
equations,

d'@„1- ) 5 1q-
+- «+1-

I
—+-

I ~.=0,
dr„-' e 418 6)'

and

(3b)

3. Scattering Cross Sections

In the treatment which follows, we restrict ourselves
to the consideration of the scattering states of zero
total angular momentum; the extension to states of
higher angular momentum, however, is straightforward.
For the investigation of scattering phenomena, as in
the usual treatments, we need study only the asymptotic
behavior of the wave functions for the separated system.

For the unequal-mass case there are four asymptotic
functions to consider, i.e., x+ and x for each of the
two solutions regular at the origin. In addition, as we
have shown in the preceding section, the degeneracy
of the binding energies of the meson on the two sepa-
rated nuclei has been removed by the dynamic cor-
rection terms. It is therefore necessary to distinguish
between the case in which the energy of the system lies
between these two binding energies and the case in
which it is larger than either of them. These two energy
ranges correspond to di8erent physical situations. In
the former the only scattering states allowed are those
in which the meson is bound to the heavier nucleus for
large separations. In the latter the meson may be bound
to either of the nuclei; exchange processes are also
possible in this case.

It is once again convenient to use wave functions
that asymptotically describe the meson centered on
one of the two nuclei. We therefore define

~,'= 8+ -~-')/~2,

~'= (~+'+e ')/~2.

Here p„ is the radial wave function whose form corre-
sponds to the Ineson bound on nucleus 1, the lighter
nucleus, with an energy W„; pz and W& are defined in
a similar manner for the heavier nucleus. (If we consider
the system of a proton, a deuteron, and a meson, the
expressions of the preceding section define W~ and W~.)
The superscripts i (i=1, 2) refer to either of the two
regular solutions to the radial differential equations.

where

y„=(y+—y )/v2 and y.=(y++y )/v2.

This particular choice for P„and Pz is such that asyrnp-
totically @„corresponds to a total wave function in
which the meson is centered on nucleon 1, while g~ is

By generalizing the functions P+ and f to the form P=o&+
+Pf and including in the Hamiltonian those terms in g+~, g
and g+ that are independent of derivatives of p, q, etc. , one
could obtain the exact binding energy as r„.~ ~, without. changing
the form of the differential equation for the p.'s. Because physical
processes would still involve unknown terms of order ~', it was
felt that the additional labor involved in such a treatment was
not justified.
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If the energy, 8', is such that 8'& ~&t/t/'~& IW„, then we
can write the asymptotic behavior for g„and gd in the
form

—a Le(RT'~+ b ie A7tl
p u y

pd = ad' sin(kdr„+8d'),

where rr=L(Wt, —W)/e5' and ki=L(W —lVd)/e5'*. The
parameters a„', b„', a&', and 6&' are determined by the
value of P„'t dier'/dr „, i'', .and iEPd" /dr„'evaluated for
some large value of r„. In order to completely specify
the wave function, it is necessary to determine that
linear combination of the two solutions i = 1 and z =2
for which no increasing exponential remains in' the
asymptotic expression for p„. YVe may also normalize
these solutions to the incident part of the plane wave.
If this is done we And, for the corresponding wave
functions X„and Xd in this asymptotic limit, the forms'0

X~ ~ e
—'-/r„,

yilII I ) eikdra

& =~"d'+I
t 2ikd ) r„

where the 2' axis is in the direction of the incident-
particle beam. The quantity M is de6ned as

c~'cd' exp(i8d') ap cd' exp(i&d )

a„'ad' exp( ibd') —a„'ad' e—xp( —i&d')

If we replace M by the quantity e'"", then 8& may be
considered the phase shift for this scattering, and the
scattering cross section can be written in the usual form,

o = (4tr/kd') sin'8d.

If the energy is larger than 8'„, then both solutions
have asymptotic sinusoidal behavior, i.e.,

rk~'= a„' sin(k„r +6„'),

qbd'= ad' sin(kdr„+5d'),

where k„=I (W—W~)/e5'. There are now two possible
physical states corresponding to incident states in
which the meson is centered on either of the two nuclei.
In this case, however, we may separately choose those
linear combinations 05 the two sets of solutions that
correspond to no incident part for either the &„or the

' It might be pointed out that this asymptotic form has a defect
in that the meson current is zero. This is consistent with the
assumption that the meson velocity about the nuclei is large
compared with the nuclear velocities, and therefore, in the region
where the particles interact strongly, such additional velocities
represent a small correction. A correct asymptotic form for the
plane-wave part would be

exp{iLkZ~+k'Zi —(k+k')Z, ))f(r„—r, ),
ivhere kjm~=k'/m„and f is the ~ave function tor the meson
about nucleus 1. Our wave function thus neglects k'= (m„/mI)k.

X~. In either case we may normalize the solutions to the
incident wave.

For the scattering of the p-mesonic system from a
d nucleus, we obtain the asymptotic forms

eikyz+/g eiks n/p.

X =k„e'k "d"/r„,

~vhere

«n. =(Lan'«" exp(i(~.'—~"))
a„'—ad' exp(i(8„' —hd'))5D ' —I}/2ik„,

h~d = ad'ad' sin (bd' —bd')/Dk„,

and

D =a.'ad"xp( —i(h.'+~d') 5
—a„'ad' expL i (b—„'+bd') 5

Here h» gives the amplitude for normal scattering and.
fz„~ the corresponding aroplitude for exchange scattering
in which the meson is captured by the heavier nucleus.
The cross sections for these cases are

po„= 4rtI h~„Is)

and for the exchange process,

o.~d=4trI k„dI'kd/k„,

where the factor kd/k„ is necessary to correct for the
change in velocity of the incident and outgoing particles
in this inelastic collision.

In a similar fashion the scattering of the d-mesonic
system from a p nucleus can be obtained. In this case
we find

k« (L~'«' exp(—t (~"—~.') )
—a„'ads exp(i(6d' —8„'))5D ' —I)/2ikd,

hd„= a~'a, ' sin(b„' —8„')/Dkd.

The corresponding cross sections are

Mld

From the conservation of unitarity current one can
show h„d =)z~„and that the two exchange cross sections
are simply related.

For the equal-mass case the phase shifts for the
symmetric and antisymmetric scattering states may be
independently evaluated by use of the asymptotic forms

x,=a; sin(kr„+6;)/r„, (for i=+, —)

where k=I (W—1+de)/e5'. In this case, however, a
further coniplication is introduced because the nuclei
are generally identical particles. In such cases the total
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with a corresponding nucleonic wave function

X,= (X+—X )/W2.

The wave functions for the other case are

and
6= (0++0-)/~2,

X,= (X++X )/v2.

The total wave function is then of the form

wave functions for the system must be properly sym-
metrized. As before, it is convenient to introduce
combinations of wave functions which describe the
states corresponding to the meson centered on each of
the two nuclei for large separations. For the case in
which the meson is centered on nucleus 1, the mesonic
wave function is

6= (0+—0-)/~2,

The total cross section is

0.»=4grk '[-,' sin'5++-,' sin'8 J.

Similarly we find, for the case in which the two nuclei
are deuterons,

irdq=4grk 'L3 sin'5++ —, singb j
IV. BOUND STATES

This section is devoted to a discussion of an iterative
scheme by which it is possible to obtain the bound-state
eigenvalues and eigenfunctions for the system of
differential equations describing the nuclear motion.
In this development it is assumed that the integration
of the differential equations can be carried out by either
exact or numerical methods.

For the unequal-mass case, the Hamiltonian for the
nuclear system can be written as

O'= Xlfl+X2$2.

Before symmetrization, the solution which corre-
sponds to an incident system in which the meson is
associated with nucleus 1 or with nucleus 2 has the
asymptotic forms

—eikz+k r —ggikre
)

X2 h12rn
—l~ikr

r —
leigh, r

)

Xg
—e—il;z+k r 1eigrn—

respectively. Using the asymptotic forms for x+ and
X, we find

Iggi = kgg
——(4ik) '(e"'++e"'-—2$,

Jgig =kg, = (4gk) fy»g+ r»g j——

For a system consisting of a meson and two spin- —.,'
particles such as protons, the total wave function must
be symmetric for singlet states (s) and antisymmetric
for triplet states (t). Thus for states of zero total angular
momentum the total wave functions are"

From this wave function we obtain for the cross
sections"

o„„g„=4gr
~
kgi+Igig ~'=4grk ' sin'ig+. ,

4

irg„g, i=4gr
~
kii —big~'=4grk ' sin% .

"It is perhaps of interest that this result is the same as that
which wobld have been obtained for nonidentical particles. The
presence of the meson on one of the two particles provides some
basis for distinguishing between them. The result follows directly
from second quantization of the system.

rtL
2

d'it+ (V+ l (l+1)p
6(H+Evt)= ~ 2 — +I + )y+

drg E ~ r„'-) +

dp
g+ @ +2f+——+it'—-

df+
— 8P+dr.„

f fd$p
+X„2y+by~dr„+P by+(r, )a;~ —~.

0 dr

Here r; indicates the values of r„at the points of
discontinuity of d4+/dr„, and 6;(d&9+/dr„) are the
changes in dilg+/dr„between r,—

~

g
)

and r;+
~

g
~

in the
limit of vanishing g. If the parameter li is —lV/», then
the conditions for an extremum in 8 are that the radial
differential equation for p+ be satisfied and d@+/dr„be
continuous. In a similar manner the variations of II
with respect to variations of g lead to the radial
equations for p . The value of H obtained for this
extremum is in fact W/e.

If we now use trial wave functions p+~" and. p "'
that: (a) satisfy the differential equations for an energy
W', (b) are continuous for all values of r„, and (c) have
continuous first derivatives except at one point ro, then

( dQ d$+q
2&+ &+&

—+2f-+ I-&+-
dr. dr„)

If we consider variations of p+, where p+ is assumed to
be continuous with a piecewise continuous 6rst deriva-
tive, subject to the constraint that Jo"(it+'+p '-) dr„= 1,
then the variation of H+lI, Pr is
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the true eigenvalue 8' may be expressed as

IjUT (y (0)2Py (0)2)dy
Jo

d'y '" U 1(3+1)
(0) + y (0)+ @ (0)

dr' 0 r„'

df+-
ty (0)+2t' +y (0)

dr„ dr„

d2p (o) U f(i+1)
+ y (0),l + j)) (0)+ j)) (0)

(0) dj
g y (0) 2f —y (0) dy

dr.
'

dr.
(o) ) (dy (0) )

4+"'(ro)&0 I I+0-"'(ro)~01
l, dy„ ) ( dy„ )

As a result of condition (a) and the extremal nature of
II for this solution, this may be rewritten as

[0+("(«)~o(de+")Idy-)+0 ")(yo)~0-(d4 ")Idy.)3-

By using this new improved eigenvalue to obtain a new
trial solution and thus iterate the solution, we can
converge upon the correct eigenvalue and consequently
the correct eigenfunction.

This variational procedure is not restricted to the
ground state, but may be applied to the higher excited
states as well. The determination of a specific state
merely requires the specifi. cation of a boundary con-
dition on the number of nodes allowed in the solution.

For the equal-mass case the development given above
is equally applicable. In this case the sly+ and p equa-
tions are not coupled. Bound states, however, occur
only for the g+ solutions. It therefore suffices to impose
on the development given above the added constraint

=—0.

APPENDIX

In this Appendix we obtain explicit analytic ex-
pressions for the first-order dynamic corrections for the
case in which the mesonic wave functions are assumed
to be those used in the text, i.e.,

P~ =A ~ cosh (q+r„2)/2) e j'+'"&j2, —

and

P =A {$}sinh(q r„2)/2)e "-""&"

The dynamic correction terms are of the form

(y (0)2+y (0)2}dy

0

+&(8),
g,j=gj'=

J VA' VA jdrpj

where $ is a parameter of smallness that indicates the
deviation between the trial and true solutions.

The integration for the bound states can be divided
into two regions, with r as the common boundary. At
this point four independent quantities can be specified,
namely, P+(0), dP+(0)/dr„, j)Ij (0), and dP (0)/dr„By.
choosing appropriate linear combinations of the two
regular inner solutions and the two bounded outer
solutions, three of the four quantities can be made
continuous at r ."For the correct eigenvalue the fourth
quantity will also be continuous. For a trial eigenvalue
in general one of the four quantities will not be con-
tinuous, however. If, for example, we allow this dis-
continuity to occur in dp~(0)/dr, then a better approxi-
mation to the correct eigenvalue, lV", is expressed in
terms of the trial eigenvalue and the value of the
function at r as

0+"'L(d&+'" /dy. ). ll (d0+"'/-dy-—).+l.l 3
Wn IUo+—

f,,= —f, , = P;V „)P;dr„,

where, from the previous development, the indicated
differentiations, &„, must be carried out with the
mesonic variable R„ fixed.

For the symmetric case, we may write

1 dA~ r„r) dq+ q+r„r) r„P dP+=er„ tanh
A+ dr 2 dr„ 2 2 dr„

gy q+y jt'9 p++ V.(r„q) tanh ———V.(r„g),
2 2 2

where e~„ is a unit vector in the direction of r„. For
reference we designate these five terms by the subscripts
A, q, P, 2), and $, respectively. Similarly for the anti-
symmetric cases for r„&r„we have

(0 (0)2+y (0)2)dy 1 dA r 2)dq
Ct/\

A dr„ 2 dr„

q r 2) r~pdP
coth

2 dt'
'2 If, as was done for the bound states, the integration is divided

into two regions for free states with WD ~& W&Wg, three bounded
outer solutions exist (two sinusoidal ones associated with PD and
a decreasing-exponential one associated with P~). This gives the
necessary freedom to make all four quantities continuous at r„,.

g qrrl p+ V„(r„2))coth— V„(y„p), ——
2 2 2
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while for r„&r„we write

(1 dA 1p
=er

dr„ r„i

r~g dq
+

2 dr„

q r„g r„(dp
coth

(P+ ~ (r„g) coth —
I

— I~„(r„g).

In order to obtain the expressions for g;; and f;; the
following identities are useful:

f' 1 dA+~
I,,,+=IqI Iq,C, (E,—E,),

&A~ dr„)

It, t+ = 4p+.'{fP+ foo 2f—gfo»'[Eoco+Eocg 2Focoj))

Ir, 4+= —Xr„P4E(cg Co)/2—,

Ir, n'= &r-P+Eo(Co Co)/—2

where Iq= (Eoco—Eoco) '. The subscripts indicate the
pairs of terms involved.

A similar set of terms is obtained for g . For r„&rfl
these differ from the above not only in that p+ and q+
are replaced by p and q, but also by the interchange
of C2„and C2„'. For r„&rfl several additional changes
occUr:

(a)
dr„

(1 dA li
is replaced by I

EA dr„r„&

&-(r.$) &-(r.~) =fo f~, —
(b) E„ is replaced by E„+o.

(c) in the last two terms p+E„ is replaced by p E ~o

—(2/r-) E-+i

(d) It t has the form

I&,&
= 4P '{fi'+ f&' 2f&foiV[E—4co'+Eoco' 2E..co']}—

Using the above expressions, we may evaluate each of
the terms that occur.

For g++ we obtain the sum of the following terms:

( 1 dA+q'
I~,~+=

I

EA, dr„J
'

Ip, p+ = 4iVr, „'(dp+/dr, „)'(E4Co Eoco), —

I, ,+= 4!!Ur„'(dq+/dr„)'(Eoco' —-Eoc4'),

I- = 2~'r-'(dp+/«-—) (dq+/«-) (E4C~ E~Co), —

6 1 dA+) (dp+'tI,,
+= —-~

I
—-- Ir.

I
I(EoCo —EiCo),

dr. ) &dr. )

f 1 dA~) (de)
dr„ i 4 dr„)

+ fifo''[Eoco'+Eico' 2Eico'g-
zr

|.
fifo &U[I-'o—C—o'+E'oco" 2&oco'g-

rn.2

In the calculation for f+, only those terms con-
taining either v„(r„P) or V„(r q) give a result different:
from zero because the others lead to integrands od,d in
the variable q. Thus we 6nd

f+ =A ~r-'A+A -(fo f~) {P+(E~-E—o) [C&(~)+Cl(~)j
—q,E,[C,(r) —C, (a) —C, (Z)+C, (~)j),

where Z= (q++q )/2, and 6= (q+—
q )/2. The argu-

ment of the terms E„ is (p++p ). This expression
is valid for r&~r„ for r &r„E„becomes E~~.

Finally, we obtain the expression for g+ as
(fo fi)A+A ~r„'—/4 times the sum of the terms

gt, .= 'P+q {Eo[co(~)—+-Co(~-)j
—EoLC (~)+Co(~)3),I„,„+=4Ãq~'{ (fi'+ fo')[E-oCo' —EoCo'$

+2f'f'[ ' '+ ' ' ' '~& go, t= —4q+P-{Eo[Co(~)—Co(~)j
I( „+=0,

I„,„+= Ur q~cg(Eo Fg)/2, — —

I„,+= Ur „q+Co'(E2 Eo)/.2, —

t' 1 dA+q
Io,~+——UI I p+Ei(co —Co),

EA+ dr„)

gA, )
1 dA~p

(Eo—Eo)[C~(~)—Ci(~)3
A+ dr„2

1 dA p+
(Eo—Eo)[C~(~)—C~(~)3,

A dr„ 2
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" p dp-+

g, .k=+ (E.-E )Lc (~)—c (~)3,
4 d»„

«-p+ dp
gt,.= (E —E)fc (z) —c (a)j,

4 d»„

r„p dq+
(E -E.)kc.(~)-c.(t')3,

4 d»„

"P+dq
(E.-E.)IX.(~)+c (ll) j,

4 dr„

d.4+ q:E,~c,(z)+c,(~)-c,(z)-c,(~)j,
A+ d»„2

1 dA q+:—E,~c.(z)—c.(~)—c.(z)+c,(~)j,
d»„ 2

r„q dp+
EIÃo(&)+Co(~) —Cs(~) —C2(~)j

4 d

r„q+ dp
g„.„=— Es(Co(Z) —Co(d) —Cs(~)+Cs(~) ),

4 dr

r„q dq+
EIt:CI(Z)+CI(6)—C~(&)—C~(&)],gq, g=

4 d»„

»„q+ dq
E,Lc,(z)+c,(~)-c,(~)-c,(~)).

4 d»„

Again, for»(»„., modifications such as have already
been pointed out must be made: (1/A )(dA /dr„) is
replaced by (1/A )(dA /dr„) (1/r„),—E by E„+I,and
PM„by p E~I (2/r„)E„—in these expressions.
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q-Mesonic Molecules. II. Molecular-Ion FoIIIIation and Nuclear Catalysis
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The methods developed in the preceding paper are applied to the study of the behavior of p, mesons in
liquid hydrogen. Numerically evaluated energy eigenvalues for the bound states of the various molecular-ion
con6gurations are presented. Phase shifts and cross sections for the scattering of mesonic atoms from hydro-
gen and deuterium are given. It is shown that in the neighborhood of 0.2 ev the scattering of (dp} atoms
from protons exhibits a Ramsauer-Townsend effect with an anomalously small cross section occurring in
this region. The existence of this effect provides an explanation for the appearance of "gaps" in the experi-
mental observation of the catalytic process. The rate of exchange of mesons from protons to deuterons in
pure deuterium is calculated along with the rates of formation of the (pap)+, (peed)+, and (dad)+ molecular
ions. It is shown that the predominant mechanism for the formation of the molecular ions is dipole electron
ejection. These results are shown to be in agreement with available experimental data. A semiphenomeno-
logical treatment of the (pd) nuclear reaction is also given. A rough estimate of the y-emission process indi-
cates that the dominant mode of emission is from the singlet proton spin states.

I. INTRODUCTION

HE theoretical possibility that p mesons could
greatly enhance the nuclear fusion of hydrogen

and deuterium so that it might be observed experi-
mentally was hrst suggested by Frank' and later was
estimated by Zeldovich. Later, this fusion was in
fact observed by Alvarez et al. in a liquid-hydrogen
bubble chamber in a process in which the energy of
fusion was given to the p, meson. ' Still later, p rays from

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

f Present address: Argonne National Laboratory, Lemont,
Illinois.

f On leave of absence to U. S. Atomic Energy Commission,
Washington, D. C.

' F. C. Frank, Nature 160, 525 (1947).
~ Ya. B, Zeldovitch, Doklady Akad. Nauk. S.S.S.R. 95, 493

(1954).
3 L.W. Alvarez, H. Bradner, F. S. Crawford, Jr. , J.A. Crawford,

P. Falk-Vairant, M. L. Good, J. D. Gow, A. H. Rosenfeld, F.
Solmitz, L. Stevenson, H. K. Ticho, and R. D. Tripp, Phys. Rev.
105, 1127 (1957).

the reaction were detected by Ashmore et ul. with
counters, again in liquid hydrogen. 4 The process has
been further investigated theoretically by Jackson' and

by Skyrme, 6 who have also given phenomenological
descriptions in which the reaction is assumed to pro-
ceed through the following steps

(a) A fast p, meson is rapidly slowed down and cap-
tured to form a hydrogen (pt') or deuterium (dt')
mesonic atom. (Because the experiments have been
carried out with much more hydrogen than deuterium,
it is much more likely that hydrogen mesonic atoms
a,re formed. )

(b) The neutral mesonic hydrogen atom will then
move about with thermal energy, colliding wi th the
atoms of the liquid. It may then undergo elastic scatter-

' Ashmore, Nordhagen, Strauch, and Townes, Proc. Phys. Soc.
(London) 71, 161 (1958}.' J. D. Jackson, Phys. Rev. 106, 330 (1957).

6 T. H. 'R. Skyrme, Phil. Mag. 2y 910 (1957}.


