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angles. In the formulas (7, 8 of the preceding paper)
for D and P2', Palmieri's values of P2 were used for
these angles while those of this experiment were used
at 20', 25', and 30'. The uncertainty in D and P2'
arising from the choice of P2 is negligible compared to
the error from counting statistics.

The angular resolution of the second scattering is 3'
rms full width at 0~=10' and 15', and 4' at 02=20'
25', and 30'. The multiple scattering in the energy
degrader contributed the bulk of this, namely 3'.

The errors quoted include errors in e3 and P&P'3 due
to counting statistics and misalignment. The only
significant error is counting statistics of the e3, meas-
urement. The largest correction to D for misalignment
is 0.04, at 82=30'. The largest change in D from
adjustment of background for correct energy conditions
(see section on Backgrounds) is 0.02, at Hs

——10'. The
correction to D from the energy variation across the
incident beam (see section on The Beam) is between
8% and 14'Po of the quoted error.

The values of D reported here lie below those meas-

ured at 140 Mev' by an amount consistent with the
Gammel and Thaler potential, ~ which potential cor-
rectly predicts values of D at 140 Mev and 315 Mev. '

The values of P2' agree with the P2 measurements
of Palmieri et al ,

s a. s they should if P-P scattering is
invariant under time reversal. The values of P2 also
agree, within statistics, with the measurements of
Palmieri et al. '

The values of P'3, when plotted as a function~of
scattering energy, fall on the smooth curve suggested
by the polarization measurements of Dickson and
Salter' and of Hwang et al. '
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For p, mesons bound in the Z shell of light nuclei of atomic number Z, we calculate the decay electron
spectrum accurately up to the erst power in Z, both for point and extended nuclei. The decay rate is evalu-
ated accurately up to the second power for point nuclei. Our results for the spectrum show the Doppler
smearing of its upper end as obtained previously, and demonstrate the small effect of the nuclear extension.
The decay rate is obtained as a monotonically decreasing function of Z, and we cannot explain recent ex-
periments which show a maximum of the decay rate around Z~26. We also Gnd that the decay rate in
second order decreases much more slowly with Z than what would be obtained from a phase space con-
sideration alone.

I. INTRODUCTION

' 'T has been known for a considerable time that the
~ ~ decay characteristics of a p meson should be dif-
ferent from those of a p+ meson. This is due to the fact
that p, mesons brought to rest in matter end up in a
bound state of a mesonic atom, believed to be the ground
state, ' and decay from there. Decay electron spectra
have been obtained theoretically, ' ' essentially for the
case of muons bound by light point nuclei only, and
show predominantly a Doppler smearing of the upper
end of a free muon decay spectrum caused by the

'E. H. S. Burhop, The Auger Egect awd Other Rodsatsontess
Tralsstsous (Cambridge University Press, New York, 1952),
Chap. VII.

2 C. E. Porter and H. Primakoff, Phys. Rev. 83, 849 (1951}.
T. Muto, M. Tanifuji, K. Inoue, and T. Inoue, Prog. Theoret.

Phys. (Kyoto) 8, 13 {1952).
4 L. Tenaglia, Nuovo cimento 13, 284 (1959).
s H. Uberall, Nuovo cimento 15, 163 (1960).

orbital motion of the muon ("Primakoff effect") Re-.
cent experiments, ~" however, have until now meas-
ured only the decay rate ) of bound p, mesons. Their
results show signiicant deviations from the free p+
decay rate Q, such that X )X+ for Z 26, X (X+ for
Z&30. A simple phase space argument' gives X /X+
as a monotonically decreasing function of Z (the

6 J. C. Sens, R. A. Lundy, R. A. Swanson, V. L. Telegdi, and
D. D. Yovanovitch, Bull, Am. Phys. Soc. Ser. II, 3, 198 (1958).
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D. D. Yovanovitch, Phys. Rev. Letters 1, 102 (1958).' D. D. Yovanovitch, R, A. Lundy, R. A. Swanson, and V. L.
Telegdi, post-deadline paper, 1959 Washington meeting of the
American Physical Society (unpublished); D. D. Yovanovitch,
Phys. Rev. 117, 1580'(1960).

'W. A. Barrett, F. E. Holmstrom, and J. W. Keu&el, Phys.
Rev. 113, 661 (1959).

0A. Astbury, M. Hussain, M. A. R. Kemp, N. H. Lipman,
H. Muirhead, R. G. P. Voss, and A. Kirk, Proc. Phys. Soc.
(London) 73, 314 {1959)."F.E. Holmstrom and J. W. Keutfel (to be published).
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atomic number of the stopping material), and one is
tempted to attribute the rise of X beyond A+ at low Z
to the attractive Coulomb interaction between the
nucleus and the decay electron' "; one might for ex-
ample speculate that X /lt+ have an expansion of the
form 1+hZ+hZ', where a)0 comes from the Coulomb
effect on the electron wave function and b(0 from the
phase space reduction and from Doppler smearing and
relativistic time dilatation eGects on the muon wave
function, with the third term outweighing the second
for Z&30. It will be shown in Sec. IV that this is not
so, i.e., that a=0 in the customary theory of muon
decay, at least if the muon is assumed to decay from the
lowest Bohr orbit of a mesonic atom. This is true
whether the binding nucleus has a point charge or an
extended one. Moreover, b diGers considerably from its
value given by the simple phase space argument. We
have to conclude, therefore, that the experimental re-
sults for Z&30 cannot be explained at present. within
the assumptions underlying this paper.

In the following sections, we shall set up the calcula-
tion as follows: Sec. II states the wave functions for a
point nucleus in a form suitable for an expansion of the
matrix element in powers of Z; Sec. III gives expres-
sions for the muon decay probability, and in Sec. IV,
the decay electron spectrum for a point nucleus is ob-
tained, accurate up to the first power in Z. In Sec. V,
the same is done for an extended nucleus, and in Sec.
VI, the decay rate for a point nucleus up to the second
power of Z is worked out; the results are discussed in
Sec. VII. Three appendices deal with the evaluation of
Born approximation integrals and the derivation of the
ground-state wave function of a muon bound by an
extended nucleus.

IL ELECTRON AND MUON WAVE FUNCTIONS IN
THE FIELD OF A POINT NUCLEUS

We shall measure lengths in units of the electron
Compton wavelength, and energies and momenta (the
latter ones considered to be multiplied by c) in units
of the electron rest mass. The ground-state Dirac wave
function of a p, meson bound by a point nucleus can
be written as

left out."For the same reason, we can in (1) take for ti
not the muon rest energy po, but the total energy of a
muon in the ground state, accurate up to second order
ln p:

t =t o(1—v'/2). (2)

The electron wave function cannot be taken as a
plane wave, 4 as has been done frequently and incor-
rectly' '; but since it is needed accurately only up to
the second power in Z, it may be obtained" by an
iteration of the Dirac equation

(0 e)
l:in &+p—V(r)34. (r) =0,

Ee 0)
(3)

t'1l
0 ( )=—{"'+( &—p)l:&( )+A( )j)l

v2 (e.pi
d3s e tS ir t )—

II(r) = V(r')e'~ "d8r'
& (2z)'s' —p'+itt

(5)

(Sa)

d3s eis (r—r')

A(r) = V(r')(in ~' —p)
(2z.)' s'—p'+itt

=in A. (r)—pQ(r);
X&(r')d'r' (5b)

We use a Yukawa potential

V(r) = —(1/r)v. e '
which will later be made to coincide with the Coulomb
potential which binds the muon, by letting P ~ 0; the
introduction of P is useful to circumvent certain well-
known divergences'4 "which would occur in individual
second-order terms if a pure Coulomb potential were
used, but which cancel out when all these terms are
combined, as it must be physically. Again y, =Z/137;
the index e serves just for identifying the origin of the
terms later. Note that the approximation p))1 has been
made in (3), which is permissible as the electrons from
muon decay appear predominantly with extreme rela-
tivistic momenta p. The solution satisfying (3) up to
second order in y, is

with

(1/r)f(r)
4.(r) =&l

&(1/ir)g(r)e r)
(1a)

~2 +3+3/~ (1c)

(1/r) f(r) =e»', (1/r)g(r) = —ave "~", (1b)

here rt ~ +0 ensures (5) to represent incoming scattered
waves appropriate for the use of iP, (r) as a final state, 'a

although we will 6nd that outgoing waves might just
as well have been used. (This is a property of transition
probabilities integrated over angles. ") Again, p, is a
Pauli spinor, and p= p/p.

with e being the Pauli spin vector, y„ the corresponding
Pauli spinor, r = r/r, and y= Ze'/Ac=Z/137. This wave
function is accurate irt the seroth and fr, rst power of Z,
or y; (we shall show later that this is sufhcient for ob-
taining the muon decay rate up to second order irl, Z—
the spectrum only up to first order, though), and there-
fore, the usual factor r to the power L(1—y')' —1j was

~ A. Sommerfeld, Atombag NrId Spetgttrultieien II (F. Vieweg
und Sohn, Braunschweig, 1939), p. 482.

» See, e. g. , H. Olsen, Kgl. Norske Videnskab. Selskabs, Forh.
31, No. 11 (1958)."R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951),
case of Mott scattering.

'~ M. Gavrila, Phys. Rev. 113, 514 (1959), case of photoeffect.
'6 H. A. Bethe, L. Maximon, and F. Low, Phys. Rev. 91, 417

(1953); G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).
'7 H. Olsen, Phys. Rev. 99, 1335 (1955).
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III. DERIVATION OF THE TRANSITION PROBABILIT'7

The interaction Hamiltonian responsible for the
muon decay is taken as

H= Q f,(P. Oyg„)(f. 0,$.),

Ov=p4p&, Og=iy4ysy„, with left-handed two-compo-
nent plane-wave neutrinos. For the decay probability,
we then obtain (neglecting all radiative corrections,
which are of order 1/137):

electron with the nucleus:

M;=2 ~N(q„tET;+U, +V4jq,);
here, T;, U;, and V, correspond to the three Feynman
diagrams (a), (b), and (c) of Fig. 1, respectively, and
are thus of relative order 1, p, and p2. They read as
follows:

1
T,= (F)4r qG)0;l

Ecr.
containing the integrals

~-= (2~) ' l~l'~(i p p—p—)d'p—d'p d'p (&)

containing the matrix element —or rather, for the sake
of convenience, its conjugate complex —,

kr p"
F(q) = f(r—)e'4'd'r= —f(r) sinqrdr,

q 00

f1
4r qG(q)=i i g(r)e re-'&'d'r

(11a)

OR*=+ f;*(N2tO,Ni)M, , (&a)
4m l" (sinqr= —4r q— g(r) l

—cosqr ldr. (11b)
q~o ( qr i

M; = e'"'(f„t0;f,)d'r,
~i

(7b) Furthermore,

U; ={(1&0)0;l —n (kI+iypK)+pI) (1i—-'4yK. (0, )0,(—n k+p)}l l, (12)
(n p]

k=41 P=yx+P2.

containing the integrals

2+s 8
I(k,n) = — rI(r)e'"' ~"d'r = —II(k—,n), (12a)

J Q

2' S

p'gII(k, n), (12b)(g) K(k n) — 11(r)re4lr f ardar. —
~i

SS,SP

Here, we introduced the vector 41=P+yi+p2 which
represents the momentum of the muon in the Bohr
orbit. The NI, are the neutrino spinors, and yi, p2 the
neutrino momenta. Assuming unpolarized muons and
thus averaging over muon spins and also summing over
electron spins, we get

with the neutrino trace

Z, g ——TrP;,' (1+F4)0,tPg04-,' (1+F4),

using neutrino positive energy projection operators

I'„=p„.&.74/2p. 4, n=1 ~ 4, p 4=4p .

The muon-electron matrix element can be decomposed
according to the number of interactions of the final

$$ 1
II(k,n)= " (12c)" s' —p'+4q (s—p)'+P' (s+k)'+n'

with n= py. In obtaining (12), a partial integration was
performed, and terms of order higher than y' were dis-
carded. Finally,

) 1
v'= (1,0)0'(—n k+p)(4n R—pQ) l I, (»)

(4r j
e- v e- containing the integrals

y,' 8
Q(k,n) = — Q(r)e'~' ~"d'r =——III(k,n),

aJ 7l BG
(13a)

{a)

FIG. 1. Feynman diagrams for the decay of bound muons. The
double line indicates a bound state, U the final electron-nucleus
interaction,

ZPS
R(k,n) = — A. (r)e'"' "d'r = —III(k,n), (13b)

4 7l Btx

and
(P$ 1 d't

rIII(k,n)=
,

r
~ s' —p'+4g (s+k)'+n'" P p'+4g—

X (13c)
(t—y)'+P' (t—s)'+P'
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ds 1 p d9
III(k,rr) =

J ~2 ps+i~ (a+It)2+~2J P

can express the vector quantities as follows:

—-'2y Re(iK) =S&q+Ssy,
—Re(iR) =IIrq+II2y. (17)

X (13d)
(t—p)'+P' (t—s)'+P'

To obtain this, we used the integral representation of
the potential,

V(r)= —7, ~ e—&"dP.'J,

The matrix element (8) now becomes

IORI2=-', 1P P f,f *Z,

fC'I'}= '(2') -*(IV'7rlJ,') fF G}

O~ = ~
(22r)

—s (1Psps) 2 r
l21

(18a)

(18b)

(+ps, Z; hr2} =-2, (22r) l(1P2 p,')'*

X (2'p)2(Srs, ReQ; IIg2}. (18c)

Thus, we finally end up with the expression for the
decay probability:

For getting rid of some inconvenient factors, we now
replace the integrals F, G, I, Srs, Q, B~2 by the new
quantities (all functions of x, y, and w):

X(TrT;tTg+Tr(T, t UI,+U;tTp)

+T«'t&s+Tr(V 2's+&;tVI)7; (14)

inserting into (7) gives after laborious evaluation of
the traces:

w =1P(21r) (IfvI'y
I f/ I')

Xd'p d'qd'pr &(p —p —p~ —ps)

X((F'+G')(1—(pr+p2) p/2)

+FGLP~ PP'4+@2 ppr q (Pr+P2) 8—

+2FP" Re J—F(P",+P,) Re J+Pr xP2. ReP

+p2 xpr ReP —p x(pr+ps). ReP

w =w~e'(3 —2x)—' y'dydw

X ((C"+I')Wo —24'I'W +24 ReOW, +4C%',W„

+4C+2W2. ' —41' ReOW2, +4I OI'W2-

—4@(2+62)W2,.—4C'DrW2„'}, (19)

with the following notation:

w~= (po'/3. 2"7r )(Ify I + I f~I )(3—2x)x'dx (19a)

is the decay probability of the free muon; e=1—y„2/2
is the ratio of bound and free muon total energy Lsee
Eq. (2)], and e' represents the "phase space factor, "
expressing a reduction of decay rate, as the bound muon
has less Anal states available. For identification pur-
poses, we again used y„ instead of y. Further:

with the notation

J=xI—iyl2K, P=——,'iyFK+GI j,
~=2y —q, P'= y'/P'.

(15a)

+ I II'I:s'(1+(pi+Ps) P/2) —P ~(pr+p2) ~j

+F[—2x Re(yQ —iR)+(p&+p2)
.(xp ReQ —p Rei(r. R) —ReiR(p q)

+q Rei(p R))j}, (15)

We =3—2x—(1—x)yw —y'/4,

W, = (1—2x)w+ (1+xws)y,

W&.=2x(3—2x) —(3—2x')yw,

Ws, = (6—5x+2x') yw

Ws, '——(6—5x+2x') x,

W2."——(1—2x)xw,

W2„——W2„——(3—2x)x',

W2..' ——(3—2x)xyw.

(19b)

Next, we shaH perform the phase space integration over
d'P~. 's The 5 function eliminates the dP, integration,
expressing pr as a function of the polar angle, which we
choose to be measured with respect to k as the polar
axis. At this point, we shall also introduce a dimension-
less notation for the momenta:

P= 2px, q= 2lly, w=cos(p, q). (16)

Then, we us cnew expressions for the quantities (11)-
(13). First, since the only vectors left are p and q, we

' See the Appendix by R. R. Rau in J. Tiomno and J. A.
Wheeler, Revs. Modern Phys. 21, 144 (1949).

The indices of the 8"s are chosen to indicate the order
of magnitude of the various terms; index i means the
term will furnish a contribution of order y' to m=
unless there is a cancellation —plus possible higher order
contributions. It should be pointed out that we have
dropped from the S"s some terms containing higher
powers of y: it will be shown later that all the quan-
tities C, I', 0, etc. , are rapidly decreasing functions of y,
which are large only within a region y&y. Therefore,
each power of y means a corresponding power of y in
the result, and we can discard the higher powers. The
further subscripts e and ee of the 8"s indicate the origin
of the term: e means cross-term between diagrams (a)
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and (b) of Fig. 1, ee is the square-term (b) (6rst Born this is connected with the fact that the normalization
approximation of the electron wave function), and W is factor lV was obtained with sufhcient accuracy from
the cross-term (a) and (c) (second Born approximation).

The limits of integration in (19) have to be found
from the conservation laws:

~=p+p, +p2, q=p+pi+p2. (20)

In our dimensionless notation, they are found as follows:
alone, and the consequent normalization of the trans-
forms (11a), (11b) is

(1) for 0&~@&~1:

(a) 0&y&211—x1,

(b) 211—x1 &y& 2,

(2) for 1&~@&~2:

(a) 0&y&211-*1,
(b) 211—$1&y&2,

where

—1~&m~&1,

'Ro~&'N ~&1 j
(20a)

no contribution,
(20b)

mp~&m~&1,

(22d)

only (22c) satis6es this condition together with the
normalization factor (1c).

For obtaining ReO~, the integral II has to be evalu-
ated. This is done in Appendix I, with the result:

p2v~ 'vv.
Re0=1 —

1

1y 1—x2
ZVp =———

x2 x
(20c)

Note that the electron spectrum for bound muons
reaches in principle up to @=2, whereas for free muons,
the conservation laws permit only x~& 1.

Thus, the integral in (19) has to be understood to
mean with

Z =y'w'+4v'. (22f)

yw 4v (yw~
X —2 —+—tan '1 —

1

Z F (2v)
I' (1 2y2w2)+—

1

—— 11, (22e)
x&Z Z' i

r ~2 (1—x) ~1

j y'dydw =8(1—x) y'dy dw

+
~2 ~1

y'dy
J

dw, (21)
2~1 a1 wo

with the step function 8(s) =1(s)0), 0(s&0).
We also observe that (19) contains only real parts

and one squared imaginary part of the integrals II,
III, and III. This means that the result is independent
of the sign of q, and thus the same whether we used in-
or outgoing scattered waves, as has been stated before.

with

(2v) *2v f2 )v'2vy
I'2 E J I"2

P' —y2+ 4v2

(22a)

(22b)

Note, however, that according to the accuracy stated,
we need only use

IU. ELECTRON SPECTRUM'. CASE OF
POINT NUCLEUS

We wish to calculate the spectrum accurately up to
the first power in p. For this, only the terms with 5'0,
Wi, and Wi, of (19) are needed. We can then use the
muon wave functions (1), and obtain from (11a),
(11b), and (19a):

In obtaining (22d) from (ASa) via (12a) and (18b),
we have again expanded and kept terms of lowest and
next lowest order in p only, treating y as being of order
v )see the remarks after Eq. (19b)]. This can now be
justified as follows: The coefEcients of the W's in (19),
as far as calculated, all contain 1/F' to at least third
power, times a smooth function of y. Therefore, at
y v=Z/137«1, they are by roughly a factor v '
larger than at y 1. Therefore, y can safely be taken as

p. This argument will be seen to apply to all the
terms in (19). It is also valid if the C, I', etc. are ob-
tained for an extended nucleus, as in the next section.

The spectrum to accuracy p is thus obtained from:

w &9i =w+2'(3 —2x)-'

2(1—~) ~1
X 8(1—x) I y'dy dw+ y'dy dw

~J, ai, ~, ,
~

eJ

XL(42+1'2)W9 —241'Wi+24 ReOWi. j. (23)

The property of the integrand containing at least a
factor V ' that makes it negligible at y 1, (and which
will hold even for an extended nucleus), permits us
already to read off several interesting facts. Let us
designate the region where x lies within an interval of
range v around 1, by (v), i.e., 11—@1=0(v), and the
remaining region by (1).We then 6nd:

(1) In (1),
g)2+ +2~@2—29V9/~ F4 ~ (22c) w i'& =w++O(v')
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k =Xp+O(y'). (24)

Proof: It is obvious for the contribution from (1); and
from (y), the —,'w+ to both sides ~f x=1 just adds up to
make X completely equal t& Q, whereas the odd terms

O(1) cancel out, and the correction terms O(y), by
integration over a regio dx (y) only, are degraded to
order p'. We see that actually the linear term in Z in
X /X+ is absent, as stated in the introduction.

Performing the integration in (23) and writing the
result accurately in order 1, p, we obtain':

1—x
w t"=w~—tan '—+tan '

7 7
2 y'l 7'-

(1—x)i 1+-—)+-
3 X)

Proof: The second integral in (23) is then negligible,
its lower limit not reaching down to the region where
the integrand is large. In the first integral, the m

integration cancels out all the terms which would be
O(y), as they are all odd in w: this is partly caused

by the TV factors, in the third term by the oddness of
the large part of ReO' (first bracket) itself. The term

O(1) comes from Ws and gives just w~ for x(1 (zero
for x&1), as we can use the normalization (22d), and
the factors (3—2x) cancel out. Therefore, a significant
deviation of the bound from the free spectrum can only
occur in the region (y) (this disagrees with assertions
of Tenaglia').

(2)» (7)

w &si=srw~+Lterms O(1) which are

odd around x= 1]+O(y).

Proof: For the terms of order 1, it is suKcient to con-
sider C'+P only. The first w integration gives a factor
2, the second one a factor 1—2(1—x)/xy, which is en-

tirely of order 1. The two y integrals can then be com-
bined (making use of the y parity) to give us a leading
term for x~&1:

21—x)
(3—2x) y'dy(4'+P)

~

1——
~2(z—ij yx&'

now the 1 in the bracket provides the rsw+, using (22d)
again, and the second term in the bracket is odd in
1—x, as claimed. The next higher terms are O(y).

(3) This allows us to draw the significant conclusion
about the decay rate X+ (integral of w~ over dx):

with X= (1—x)'+y'. This is plotted as a broken curve
in Fig. 2 for Z=25 and Z=40 (although we cannot
expect it to represent the spectrum accurately for Z=40
any more). We see the smearing-out of the free-muon
spectrum in the region (y). For x&1.1, the spectrum is
slightly negative in this order. We plotted against xo

=ex, so that this scale be proportional to the absolute

(Mev) energy scale.
Integration over dx of (25) and of the terms O(y')

in (1), which come from (23) but have not been in-
cluded in (25), and also expanding e', gives the result

s'=X+L1—sy '—3y'+(10/3)yy, ]. (26)

For a calculation of the complete decay rate, the re-
maining terms in (19), all of order y', should be inte-
grated. This will be done in Sec. VI. We can, however,
prove here our assertion of Sec. II that the muon wave
function need to be known accurately to order p only.
It enters in C and F, and p' terms of the wave function
could give p' terms of m or X only through the zero
order term C'+Ps in (19). This term, however, gives
rise in region (1) to w+ exactly Lstatement (1)]without
correction terms, only due to the fact that the wave
function, whatever it is, is normalized and thus obeys
(22d); in region (y), there are correction terms of order
1 to srw+, though Lstatement (2)], and these could be
changed in second order if the wave function is. But if
we consider the rate only, this region contributes in
higher order only, as dx O(y). Thus, the decay rate can
be obtained in second order from a muon wave function
accurate in 6rst order.

l,o— Wp

0.8

0.0

V. ELECTRON SPECTRUM: CASE OF
EXTENDED NUCLEUS

The lowest Bohr orbit of the mesic atom has a radius
not much larger than the nuclear radius, especially for
heavy atoms. It seems necessary, therefore, to take the
nuclear extension into account in the present calcula-
tion. We shall do this only concerning the erst order
terms, and it will turn out that the ensuing change in
the spectrum is rather small. To evaluate the muon
wave function, we shall assume a uniform nuclear

1—x( 2y) 1—x
+y 2y

~

1+-—
~

tan-'
X ( 3X)
1—xq' m' y') 2y'y-

+] tan —'
/

——+—]1———
f

4 X( 3X)

t 1 I i t i I 1 I ~ I ~ t
OZ ' 0.$ 0$ 0.8 l.O L2 IA

Fio. 2. Decay electron spectrum of bound muons for Z=25
and Z=40. Broken line: point nucleus; solid line: extended
nucleus; @0=ex.
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charge distribution of radius R, which gives rise to a
potential

I'( )=- (v./~) (-:—:"/~')
=—(~./r)

(27)

The corresponding ground-state muon wave function
is worked out to some approximation in Appendix II
by a power series expansion of the Dirac equation.
Using these wave functions (A9) with o=0, new ex-
pressions for C and I' have been obtained:

)1 A By jr(k) t'A 2Bp j2(k)
c=lv 3l -+—+—

l

—2l —+—
(3 5 7) k (5 9) k

is the Fourier transform (form factor) of the nu-

clear charge distribution. Performing a Laplace
transformation

rp(r) =
q (t)e-"'dt,

we find the form factor relation

F(q) = —42r t
—2p(t)F, (q)dt,

where F~(q) is the Fourier transform of a Yukawa
charge distribution

8B j2(k) sink b —1 2P
+— +(1+~+B)

l +
63 k k &b2+k2 (b2+k2)2&

( ) = —(t'/4 ) '"/

(normalized to unity), and accordingly obtain

(32)

1 25
+cosk +

!,52+k2 (82+k2)2 )

j2(k) 1+A+ B
I'=2yXk )t +

k'

sink t' b(3 —5) 2b2

X 1+
)2+k2 ()2+k2)2

!r 2 —b 2b2

+cosk
b2+k2 (b2+k2)2)

~00

ReII(k,n) = —42r t 2q (t) ReII, (k,n)dt, (33)

with

ReII~(k, n) =ReII»,„t(k,n; P =0)
—ReII,.;.2(k,n; P = t), (33a)

using the point nucleus functions of Eq. (12c) on the
right-hand side, with special values of P as indicated.
If we take now a charge distribution of the afore-
mentioned form (normalized to unity):

(28)
$n+3yn

ReII(k,n)

F(l s—pl)d3$ 1
=Re

l
(29)

0 S2 p2+itt —(S—p)2 (S+k)'+n'
where

F(q) = — p(r)e" d'r (29a)

with j&(k) the spherical Bessel functions, k= (ate/2&)y,
and a new 2= 1—t y2 appropriate to an extended nu-
cleus. Numerical inspection of (28) shows these func-
tions to have a similar steeply decreasing behavior
with y as the point nucleus functions, (22a).

Using Eq. (23) for the spectrum again, also ReO has
to be worked out for the extended nucleus. It is now
dificult to do this analytically with the uniform nuclear
charge distribution used for calculating the muon wave
function; it is possible however if we assume that the
electron sees a somewhat diferent charge distribution,
which is of the form r" exp( —br); in this case then, a
method which was devised by Budini and Furlan" will
work. Using the expression on the extreme right of Eq.
(12a), the new integral II becomes for the extended
nucleus (we may set P=O if we consider the real part
only):

p(r) =- e '",
42r(n+2)!

(34)

The question is now how well (34) can describe the
actual charge distribution (which is, e.g. , given by
Hahn et al.22). A comparison shows that the physically
significant quantity r'p(r) seems to be approximated
fairly well by (34), especially for larger 22&2, although
its peak lies at smaller r than that of the actual charge
distribution. For the uniform charge distribution, by
contrast, the peak lies at larger r and is too high. For
these estimates, we determined R and b from the re-
quirement that each model charge distribution should
have the same mean square radius as the actual one.

the Laplace transform is simply a derivative of the
delta function,

bn+3 Q n+1

p(t) = o(t b), —
42r(22+2)! c)t~+r

and we obtain

ReII(k,n) =ReII»,„2(k,n', p =0)

bn+3 g n+1

+(—1)" —ReII»,„„(k,n; P=b) . (35)
(e+2)!c)b"+' b'

r2 P. Budini and G. Furlan, Nuovo cirnento 13, 790 (1939).
08. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev.

101, 1131 (1956).
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That gives:
8=1.3)&10 "A& cm,"

v=1, b I=0.225&(10 ISA& cm,

m=2, b '=0.184)&10 ISA& cm.

(36)

facilitated by the work of Kacser, 22 and we have made
use of the methods developed by him. The integrals are
obtained in Appendix III. The remaining terms ~O(y')
are just

The second integral ReII~„„, in (35) has been partly
evaluated along the lines of Appendix I, but with P
set equal to b; in view of the values (36), it has then
been found to give a contribution of at least one order
of y smaller than the first term of (35), and can thus be
dropped. Therefore, the expression (22e) can be used
for Reo even for the extended nucleus. This and (28)
have been inserted in (23), and the electron spectrum
was calculated with the aid of an IBM-650 electronic
computer. The results are shown as a solid curve in
Fig. 2 for Z=25 and Z=40. We see that the inQuence
of the nuclear extension is rather small, and increases
with larger Z. The main diGerences as compared to the
point charge results, namely those occurring in the
region xo&1.1, are probably physically not significant,
as terms of order y' are not negligible here. '

VI. DECAY RATE: CASE OP POINT NUCLEUS

To obtain the muon decay rate, all the second power
terms of (19) have to be evaluated and integrated over
dx and the result added to (26). Note that everything
is already of order p'; therefore only the first integra-
tion in (21) needs to be taken —the second one gives
results O(p') only in the region (7), therefore dx

O(y), and the contribution to the rate is O(y')
which is negligible. The functions 0 I2 were worked out
from (12b), (17) and (18c), using the first Appendix,
with the result (to lowest order):

w &'& =w+e'(3 —2x)-' y'dydwL4(ImO')'W2„

—44 (2+62)W2„—446iW2. .'], (39)

and the last parts of the integrand still needed are,
from (A5b):

]2y~ l2'y'7, ] Xx Y)
I

ln—Z'+1 ——
I, (40)

(vr) xY' L Y 2Z)

with X=//P —+ 0, and from (A17), (A20) and (A22)'.

~2Vy -*2m'v, '- Xx ~'
p ywq

'
Z=

I
—

I
ln —Z:-+—

I

tan-i —
I( gp) x'Y' Y 6 ( 2yl

Y ) ).x Yyw yw-
+2I 1——

I
ln—Z:————tan-i —,(41)

2Z) Y Z 2y 2y.

D2= Z) DI—0.

Inserting all this in (39), we see that all the terms con-
taining the logarithmic divergence as A —& 0 cancel out,
as it must be. Performing the integrations, we obtain

X &'& = —X~(vr'/12)y, ', (43)

and our final result for the total rate X =X "'+X &'&

+X &2i is from (26), (38a), and (43), accurate to the
second order in y:

f2yl ~ 27'y. (ywl

xY' 42~3

I'2&l i 2y'y,

4 vr i x'YZ

(37)

~-=~+(1—kvu' —3v'+5vv. ),
or if we now disregard the origin of the terms:

X =X+(1—-', y'),

(44a)

(44b)

the decay rate of a muon bound by a point nucleus.

VII. DISCUSSION

t

w ' =w+c'(3 —2x) ' y'dydwI 44%&W2,+4C'4'2W2. '

—4r ReOW2, "+4(ReO)'W2„], (38)

then we obtain after performing the integrations:

&-"'=~+I:(5/3)vv. + (~'/12) v.'j. (38a)

For obtaining the remaining terms, the second Born
approximation integrals III(k,n) and III(k,n), Eq.
(13c), (13d), have to be worked out. The evaluation of
such seemingly complicated integrals has recently been

"D. G. Ravenhall, Revs. Modern Phys. 30, 430 (1958).

If, so far, we collect all terms O(y') in (19) which con-
tain no divergence and no second Born approximation, The experimental results for the decay rate, given by

the various authors, ~" are shown in Fig. 3, and (44b)
is entered also. We may then make three main remarks
concerning our results:

(1) As already predicted in (24), there is no term
linear in y in the theoretical rate. Indeed, it would be
hard to fit all the lowest points of Fig. 3, up to Z=26,
by a straight line. In particular, such a line fitting Fe
would already give an excess of X of 3%%u~ for carbon
(Z=6)." However, X (C) may be shown to equal X+
more accurately. The total muon disappearance rate

'2 C. Kacser, Nuovo cimento 13, 303 (1959); Proc. Roy. Soc.
(London) A253, 103 (1959).

"At such a small Z, 'A should still deviate very little from )+,
and some results of the measurements, e.g. , of references 6, 7,
and 10, were actually obtained by comparing with carbon under
the assumption X (C)=3+,
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Fro. 3. Experimental points and
tlteoretical curve of muon decay
rate as a function of stopping ma-
terial. The points were obtained by
Yovanovitch et al. (reference 8),
Holmstrom and Keuffel, (reference
11).L. Lederman and M. Weinrich
PProoeedirlgs of the CERE Syra
Posium oe High-Errergy Accelera-
tors md I'iorI, I'hysics, Gerleva, 1956
(CERN, Geneva, 1956), Vol. 2, p.
427j, Lundy et at. (reference 7),
Sens et ot. (reference 6), and
Astbury et al. (reference 10).Note.
Yovanovich should read "Yovano-
vlt'ch. "
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Xt.t=)t +)t„, contains also the nuclear capture rate,
and we have

)tt.g/)t+
(45)

1+()I,„o/)t )

The ratio X&,&/)t+ is measured" for carbon as 1.10+0.02,
and the ratio )t„o/)t is 0.10&0.01 from a propane
bubble chamber measurement, 's which gives )t /X+
= 1.00~0.025.

(2) Our results do not fit the points around Z~26.
The experiments are therefore not understood in this
region within the assumptions of this paper, if one
believes that an expansion in powers of Z should still
be valid here. This assumes also that nuclear extension
should cause no drastic change in the second order terms,
just as it did not in the first order terms in the spec-
trum, Sec. V. The experimental points around Fe seem
however to indicate a certain singularity, and thus an
expansion in powers of Z is perhaps not permissible,
or slowly convergent.

(3) Equation (44b) is a monotonically decreasing
function of Z, and a result of this kind has also recently
and independently been obtained by Mathews. " For
30&Z&48, the experiments are fitted rather incon-
clusively by our formula, which cannot pretend to be
very accurate for these large Z. More important, how-
ever, is that (44b) represents a quite flat curve, very
diferent from the expression

)t+ (1—5y'/2)

(in second order), which the phase space alone would

give, ' or from the expression

X+ (1—5.15'')
'4 J. C. Sens, Phys. Rev. 113, 679 (1959)."T.H. Fields, R. L. McIlwain, and J. G. Fetkovich, Bull. Am.

Phys. Soc. Ser. II, 4, 81 (1959)."J.Mathews, Bull. Am. Phys. Soc. Ser. II, 4, 446 (1959).

obtained by Khuri" (presumably without electron-
nucleus interaction). The nuclear extension would
cause (44b) to become even flatter due to a reduction of
p (the muon, moving partly within the nucleus for
larger Z, sees less of its charge). It is therefore indicated
that the drop of experimental points for large values of
Z, which was thought to be well understood from the
phase space argument, becomes much less so after all
the terms of order y' were obtained.

APPENDIX I. EVALUATION OF II(kn)" ms

The integral

tps 1
zz(1,~) = (A1)

s —ps+tst (s—p)s+p& (s+ Q)s+tr

is first transformed by combining the last two de-
nominators, using the Feynman identity

1

(ab)-'= "dz$az+b(1 —z)g-'. (A2)

At the same time, the angular integrations may be

N. D. Khuri and A. S. Wightman, often quoted "as "private
communication. "

' Dr. Haakon Olsen contributed helpful suggestions concerning
this calculation.

29 See the work of Dalitz, reference 14.
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performed. This gives For s=—r/R & 1, (A6) will be solved by an expansion

SdSf ds 1
77—~ (A3)

&p A& „s' p—'+it/s' —2$A/Bz+p'+ p'
a ssk+1 g

—P g ssk+2

Ie 0 k=o
(ASa)

with A=qz —p, B=k' p'—jn' p'—Th. e second inte-
grand has two poles in the lower and two in the upper
half plane, and if we close the contour (to either side),
Cauchy's theorem gives

For s) 1, the asymptotic behavior of the wave function
for large r is determined by the binding energy: neglect-
ing 1/r in (A6), we find that f, g have to go like
exp L

—ppp (2f') '*r$, and accordingly we try a semi-
convergent series

p'ds 1
77=x'

~ p C Bs+p'+2ipC
(A4)

with

f e
——pzge ss—k

k=o
g
—e

—pep g ss—k

k=o
(ASb)

with C=Lq's(1 —s)+n's+P'(1 —z)$l; positive root is
understood. This can now be decomposed into a real
and an imaginary part, and the remaining integrals
can be found in tables. The result is:

ReII (k,o.) =
P(~'+~')

ImII(k, n) =
P(c'+~')

k2 p2+~2
tan '

2p(r

p((k2 p2+~2)2+4P2~2jy
In ; (Asb)

2P(v'+~')

in both expressions, P has been set equal to zero wher-
ever possible. We see that ImII diverges for P~0.
Also, the fact that k=q —p has been used from the
beginning.

APPENDIX II. GROUND-STATE WAVE FUNCTION OF
THE MUON IN THE FIELD OF AN EXTENDED

NUCLEUS WITH UNIFORM CHARGE
DISTRIBUTION

We shall use the potential (27). Taking the expression
(1a) for the wave function as an ansatz, the Dirac
equation splits up in a well known way into two coupled
equations for f(r), g(r):

(d 1 l
~

—— If=(i p+I &)g, —
i~r r&

pd 1q
~

—+- la=(I o I+V)f, —
r)

(A6)

with po the muon rest mass, p the muon total energy;
they are already written down for a 'S; state. The bind-
ing energy is diminished as compared to the point
nucleus case, and we write instead of (2):

~=w(1 —i v') (A7a)

Here, f is a function of Z which was calculated by
Fitch and Rainwater, "essentially by fitting calculated
wave functions at the nuclear boundary, and checked
against experiments involving mesonic x rays. Their
values can be 6tted by an expression of the form

i =0.5—1.659''+1.6SSy'. (A7b)
~ V. L. Fitch and J. Rainwater, Phys. Rev. 92, 782 (1953); see

also Z. M. Henley, Revs. Modern Phys. 30, 438 (1958).

8=vr(2t')', sr=(l pR)v, (ASc)

and $ to be determined from the characteristic equa-
tion of the system (A6). We obtain recurrence relations
for the coe%cients al, dj„and according to our ac-
curacy requirements, we discard those containing p' or
higher powers. Ke have to note, however, that the
parameter y~ is of order 1 rather than order y, and has
to be kept throughout. The results are:

with

f=s+Az'+Bz',

g = —~yhs',

( o 1+a)
f=Cs'+

(
1—— "

~e ",28s)
g1+o e—sz

0

s&1, (A9a)

s) 1 (A9b)

-1 2A A'+2B 2A B B' C'
E= (4n.R) —+ + + +—+—e "

3 5 7 9 11 4P

X (1+2&+28s+2o.L1—e"Ei(—28)j
1

—o'L1+28+4e ' Ei(-23)$) (A9e)

~ =—l~v, B= (1/20)~ (1+l&'~ )
(A9c)

l =1—:iv., -=(2i)-:-1;
actually, in the interior g, two terms have been dropped
which are found to be numerically small (below S%%uo

for Z=50, and less for smaller Z). The C is determined
from matching the large components f at the boundary,
a=1, to be

C=e'
1 0 So (1+—)/.o3

Now, in principle, matching of the small components
would determine the eigenvalues of the binding energy;
we prefer however to adopt the values (A7a), (A7b)
which are experimentally con6rmed, and find that then
the small components g match at s= 1 with an accuracy
of 6%%uo of their value, or less than 1%%u~ of the value of
the large components at Z=50, and even better for
smaller Z. The normalization factor is found to be
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with

Ei(—s)= — I t 'e 'dt.

nominator, we obtain for the d't integral:

8
$ f d T

BA 2~ ~ (T2+Ji)2
(A12)

Everything is accurate in powers of 1 and -p. The wave
functions are plotted in Fig. 4 for Z=50, together with
the nonrelativistic, point nucleus muon wave function
E~a exp( —stir), E~ii= (t222y2/2r)'*. For the purposes of
our calculation, we will still set 0=0 in comparison
with the other terms, because when using the empirical
relation (A7b), 0 can be thought of being of order y2

only.

APPENDIX III. EVALUATION OF III(k,n), III(k,n)"

In the integral

ds 1
111(k,n) = I

~ s2 p'+—i2t (s+k)2+ n2

1x~ (A10)" t' —p'+in (t—p)'+p' (t s)'+—p'

the third and fourth denominator are combined by
the Feynman identity (A2) to give

8 1 A ijP B— —

BA.2 B A, iP+—B

~' dx 1
(A13)

A, (A,—iP)' —B'

where all the logarithms will be understood to be
principal value, i.e., —x&arg~&a. The erst two de-
nominators of (A10) are combined to

dy
& 2 BA „' (s—b)' —A „'

(A14)

with b= —ky,

with J'=s(1—s)B'—sA '+(1—s)P' B=a—s. The d'T
integral now gives m'/1&", where we define all square
roots to have positive real parts. Performing further
the ds integration, we have for (A12):

8 1
ds

BA,2 (t—a)'—A.'
A.'= &2(1—y)'+ (p' —&') (1—y) —n'y —in(1 —y)(A11)

and finally combining (A13) and (A14) and using steps
a= pz A,2=P2(1 z)2 P2 —i2t(1 —z) and by an similar to those leading from (A12) to the right-hand

other application of (A2) to this and the fifth de- »de of (A13) we ob«in

I.O

p' dh r 'dy 1
III(k,n) = —2r4 ~ , (A15)

A "2 A D' (A,+A2 —ip)'—

0.8

0.6

O.O

with D= pm+ ky. The integral

d2t t p d's
III(k,n) =

t2 p2+2~ (t p)2+p2g g2 p2+ at

X (A16)
(s+k)'+n' (s—&)'+p'

is treated in a similar manner to give the result

0.2
III(k,n) = pIII(k, n)+IV(k, n), (A17)

0

-O.I "
t

0.5
I

I.O l.5

N
9"Na '

I

2.0 2.5
I

5.0

~' (1—x)dx ~'dy 1
IV(k,n)=2r4i p

J2 A ~2 A D' (A,+A„—ijP)2—
t' dy t' dx A,+Ay iP D)——

ln — —
~

(A17a)
~2 A„~P 2D A +Ay iP D)——

FIG. 4. Large and small components of the ground state wave
function of a muon bound by a nucleus with uniform extended
charge distribution, for Z=50. For comparison, nonrelativistic
ground-state wave function with point nucleus.

(for a definition of p, see (A19) below). Separate regions
of integration will now be introduced, and A„A„
evaluated in each region (A to lowest order in p only)
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and a transformation of variables made:

A.=p[(1—x)'—X'j',
1—@=Xcoshu,

A = —ip[V—(1—x)']'*,
1—x=X sinu,

(A18)
(1) 0~ y~ 1—@+v, A„=k[(1—y+v)' —P)',

1—y+v= $ coshv,

(2) 1—~+ &y&» A.= —~&[P—(1—y+ )'j*'

1—y+v=(sinv

(1') 0~&x&~1—X,

(2') 1—X&x&1,

p' —k'+n' 1
[(p2 $2+~2)2+4 2/2]~

2k2 2k2
(A18a)

The vector D can then be written

(the transition g ~ +0 has been made after evaluation
of the A' s), with

(or also with upper limit cosh '(M/$); principal value
logarithm as usual). Here,

gg= a+b+ $c& (a' —b'+c') '*jT

T=tanh(2 cosh '1/X).
(A21a)

(2)' ~' ~t~ ywq
Re111, ,= —

(
—

I
-( —tan- —

I

(pl x'Y 2 I 2 2y)

1 (E ( yWJ
+-I —1«n '—

I I,
27&)

'

Invariably, g will vanish in lowest order, and expan-
sions in powers of A. or order y have to be made. In
region (1), higher powers of X must be kept due to the
vanishing of the quantity p'+O'P —2y k$ coshv at the

upper limit a=cosh '(&o/$). Eventually, we obtain in

lowest order in y:

(2) 4 7r4 Xx 17m'
ReIIIq q

———
~

—
I

—', ln' —Z'*—
Ep, ) x'Y Y 48~4 fm/2 ~m/2 t&

III22 =— du
pk~ 0 ~;„'(,)~& D (A +Av —ip)— For the last integral, we were obliged to use

D= g
—p(1—x) —k(1—y+ v), 2y4 m4 5~'

y= p+uk, co= 1+v. (A19) ReIII2.,=
(p, i x'Y 16

Using an obvious notation, the part of III coming from
the regions (2), (2') is

(A22)

(2) ' m' (m yw)
(A20)

2x'Y E2 2j)
f dx (b

ln(x —b) =-', ln'(x —a)+2~~
~ x—a Ex-aJ '

f Z

Z, (s) = — ~-~ ln(1 —t)dh, Rex, (—i) = —x'/48.
Cosh-1(1/X)

here we were able to set X=O immediately, and we

introduced our notation (16) and kept the lowest order ' h "h Eu r ' ga

in p only. In the other three parts of III, we encounter
integrals of the form

a+b coshu+c sinhe If we evaluate IV(k,n) by the same method, we observe

that the result turns out to be by one power of p smaller
C+= (a' —b'+c') 'I ln —In

~
(A21) th »a11(kn),an,d is therefore not needed for our

a+b a+b) purposes.


