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A measurement was made of the number of neutron-proton
coincidences observed when 320-Mev bremsstrahlung bombarded
D, Li, Be, C, O, Al, Ti, Cu, Sn, and Pb. If one normalizes the data
for the number of neutron-proton pairs in a nucleus (i.e., by
dividing by NZ/A) it is found that the observed coincidences
decrease as 4 increases.

It is possible to quantitatively account for this A dependence by
correcting for the probability that two nucleons will escape from
inside a nucleus without either having a collision. The probability
of escape is a function of the nuclear radius, R, and the mean free
path, A, in nuclear matter. For medium weight elements the ob-
served neutron-proton pairs are produced with a cross section

given by
oz, 4(coincidences)=3.0(NZ/A)apP (2R/)),

where op is the cross section for the photodisintegration of the
deuteron and where P(2R/X) is the probability-of-escape factor.
For two nucleons emitted at 180°, the form of P(x) is

P(x)= /2" [2—e=(a2+2x+2)]

The formula for the cross sections is shown to be what one would
expect if the fundamental mechanism in complex nuclei is the
same as that suggested by Wilson for the photodisintegration of
the deuteron. The constant, 3.0, depends on the cube of a neutron-
proton pair interaction distance. A less naive treatment also
involves a nucleon pair correlation function.

INTRODUCTION

HEN nuclei are bombarded by high-energy
X rays, neutrons and protons are observed to be
emitted in coincidence,’* which is in qualitative agree-
ment with the quasi-deuteron model proposed by
Levinger.® The model is one in which high-energy x rays
interact with a pair of nucleons in a complex nucleus
rather than with the entire nucleus.
The measurements described in this paper are part of
a series. The other experiments previously reported?s:
by us, and similar work reported by Barton and Smith?
have shown that the mechanisms responsible for the
simultaneous photoejection of a neutron and proton are
the same mechanisms which result in the photodis-
integration of the deuteron. Also, it has been found that
the angular correlation of the neutron and proton are
those kinematically required for the deuteron modified
by the initial motion of the two nucleons in the nucleus.
This paper deals with the dependence of the number of
neutron-proton coincidences on the atomic weight, 4,
(or charge Z) of the nucleus.

Apparatus

The equipment used in studying the Z dependence
was identical with that previously reported®* and is
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outlined in Fig. 1. The proton counter was set at an
angle of 76° relative to the x-ray beam and detected
protons with energies 130410 Mev, corresponding to
photons with a mean energy of 262 Mev for the photo-
disintegration of the deuteron; the MIT synchrotron
was operating at 320 Mev. The “large neutron detector”
and the associated electronic circuitry are discussed in
detail in an article by Christie e/ al.” The neutron
detector subtended a solid angle of 0.357r steradian in
order to include the entire angular spread which arises
from the internal momentum of the nucleons.?*

In the case of Li, Cu, and Sn, a series of different
target thicknesses were run in order to determine a
correction for target thickness. The targets of all the
other elements were about 3 g/cm? thick except for Ti
which was 5.7 g/cm? thick.

Results

The results of the measurements, corrected for target
thickness, are given in Table I. The deuterium data
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Fic. 1. Experimental arrangement. The angles are 76° in the
laboratory. The maximum energy in the beam is 320 Mev. For
details on the detectors, see reference 7.

7 E. R. Christie, B. T. I'eld, A. C. Odian, P. C. Stein, and A.
Wattenberg, Rev. Sci. Instr. 27, 127 (1956).
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was obtained from a D»0-H,0 subtraction. The neutron-
proton coincidence counting rates which are listed in the
second column of the table, are expressed in counts per
x-ray monitor unit per (g/cm?) of target.

The next column of the table lists the coincidence
results in the form of relative cross sections. They are
expressed as a ratio of the cross section for the element
relative to the cross section for deuterium. Such a ratio
is directly obtained from the experimental data and does
not require a knowledge of the absolute photon flux or
the efficiencies and solid angles of the counters. The
last column of the table gives the relative cross sections
normalized for the number of neutron-proton pairs in
each nucleus, namely, the values of the previous column
are divided by NZ/A. The dependence of NZ/A is
expected also on Levinger’s® model.

The values of the last column of the table are plotted
in Fig. 2. The decrease in the cross section (per neutron-
proton pair) with increasing 4 is readily understood

TaBLE I. Neutron-proton coincidences.

Coincidences ( a/op )b
Element monitor-g/cm? a/op® NZ/A
1D? 0.121 +0.012 1.000
3Li7 0.095 +0.006 2.8+0.3 1.6340.20
«Be? 0.063 +0.006 2.34+0.3 1.06£0.15
sC2 0.045 =0.003 22403 0.74-0.08
3016 0.047 . £-0.003 3.1404 0.784:0.11
13A127 0.039 +0.004 4.44-0.6 0.65+0.08
22Ti%8 0.028 +0.003 5.6+0.8 0.4740.06
20Cu® 0.026 +0.004 6.84+1.3 0.430.08
505N 0.0174+0.0021 8.6+14 0.30+0.06
s2Pb%7 0.0157+0.0022 13.4+2.1 0.2740.04

a Cross section per atom relative to the cross section for deuterium. To
convert these to absolute values, multiply the values in this third column
by 63 microbarns which is the value for op at this energy. See J. C. Keck and
A.V. Tollestrup, Phys. Rev. 101, 360 (1956) ; E. A. Whalin, B. D. Schriever,
and A. O. Hanson, Phys. Rev. 101, 377 (1956).

b Cross section per nucleon pair in the nucleus relative to the cross section
for deuterium.

with the aid of Serber’s® semiclassical model of high-
energy reactions. Namely, some of the particles scatter
before they escape from the nucleus; the probability
that both nucleons escape without interacting decreases
as the size of the nucleus increases.

Probability of Escape Factor

Keck? and Weil and McDaniel? in analyzing their
data on photoprotons from carbon went to some effort
to estimate the effect of the scatterings inside the
nucleus. Barton and Smith* also estimated the proba-
bility of escape of a single nucleon in order to analyze
their neutron-proton data from lithium. Although it is
difficult to calculate the effect of the scattering on the
emission of a single particle, it is possible to obtain
readily an analytic expression for the probability of

8 R. Serber, Phys. Rev. 72, 1144 (1947).
9 J. C. Keck, Cornell University thesis, 1951 (unpublished).
107, W. Weil and B. D. McDaniel, Phys. Rev. 92, 391 (1953).
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FiG. 2. Relative cross sections per neutron-proton pair in the
nucleus versus atomic number. The cross section of the element
of interest is divided by the cross section for deuterium and by the
factor NZ/A.

escape of two nucleons (back to back) from a nucleus.
An outline of the derivation is given in the Appendix. It
is assumed that the mean free path inside nuclear
matter is the same for both neutrons and protons; it is
also assumed that the density of nuclear matter is
uniform. At the energies employed in our measurements
it is considered that the two nucleons being emitted
back to back is sufficiently close to the real physical
situation.

With these assumptions the probability that both
nucleons escape without either one undergoing an
interaction is

P(x)= (3/a")[2—e=(x*+2x+2) ], 1
where x=2R/)\, the ratio of the nuclear diameter to the
mean free path. For the case where R=7,43% we get
x=(2ro/\)A}. Various values of 27,/\ were tried in order
to study which values provided the best correction
for the data.

Figure 3 shows the data of Fig. 2 corrected for the
probability of escape. The value of P(x) and the values
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Fi1c. 3. The relative cross sections per neutron-proton pair
corrected for the probability of escape is plotted against atomic
number. The probability of escape factor is calculated using
70=1.30X107% cm and AN=3.6X10"# cm. The probability of
escape factor is given in expression (1). The data shown are those
of Fig. 2 divided by P(2R/N\).
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TasirE II. Relative cross sections and the probability of escape.

/oD e 2R\?
P(2R/N)» (NZ/A)/ ( A )

Element
Li 0.36 4.5+£0.6
Be 0.33 3.24+0.5
C 0.30 2.540.3
0 0.27 29404
Al 0.215 3.0+£0.4
Ti 0.161 29404
Cu 0.136 3.24+0.6
Sn 0.091 3.340.7
Pb 0.061 4.34-0.7

& Probability of escape factor calculated with R =1.30 X1071341/8 cm and
with A =3.6 X10718 cm.,

b Relative cross sections per nucleon pair in the nucleus (last column of
Table I) divided by the probability of escape factor.

of (¢/op)/[P(x)NZ/AT] are tabulated in Table II for
the case where 27¢/A=0.58; if one takes 7p=1.3X10"13
cm, A is then 3.6X 1071 cm, which is slightly longer than
used in interpreting other experiments.!! However, one
should note that for our geometry not all neutron events
which are scattered will miss the neutron counter as it
subtends a solid angle of 0.357 steradian. This increases
the “effective’” mean free path inside the nucleus. The
fact that some scattering will be recorded and that with
increasing nuclear size, multiple scattering will become
more important are believed to be the reason why in
Fig. 3 the points for the heavy elements lie above those
for the medium weight elements.

From Fig. 3 we get (¢/op)/[P(x)(NZ/A)]=3.0%2;
therefore

0==3.0(NZ/A)P(2R/\)op. (2)

In medium weight elements the cross section for
producing correlated neutron-proton pairs is just a
constant times the number of neutron-proton pairs
multiplied by the cross section for the photodisintegra-
tion of the deuteron.

In Fig. 3 it should be noted that the value for Li lies
above the straight line. This is not too surprising for a
residual nucleus of five nucleons. One can interpret the
larger value of Li as due to the breakdown of the proba-
bility of escape calculation for such a small nucleus or
as lithium being a special nucleus requiring a higher
value for the constant. Using escape probabilities
estimated in an entirely different way, Barton and
Smith* obtained from their data on lithium a value of
the constant which is in agreement with the value we
would obtain from our Li data.

1L A. Wattenberg, in Encyclopedia of Physics, edited by S.
Fliigge/Marburg (Springer-Verlag, Berlin, 1957), Vol. XL.

2 J. H. Smith (private communication) has pointed out that
this constant is affected by corrections of the order of 109, which
tend to compensate each other. For example, the binding energy
of the neutron-proton pair in the complex nucleus leads to the
effective energy being higher in complex nuclei than in deuterium.
The bremsstrahlung has decreased; however, the cross section has
increased. If more precise measurements and interpretations are
made such corrections should be included.
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Discussion

Experiments? reported previously showed that the
interactions involved in the high-energy photoeffect in
deuterium and in complex nuclei were predominantly
the same. The fact that the data agrees with the above
formula, (2), is further confirmation of this.

It is interesting to note that if one employs Wilson’s®
model for the photodisintegration of the deuteron and
applies it to complex nuclei one obtains our empirical
formula (2) but with a different value for the constant.

Wilson assumes that in ‘the energy region 200 to
300 Mev the photodisintegration of the deuteron is a
process mainly associated with meson production. If
the meson production occurs when two nucleons are
within a meson Compton wavelength of each other, then
instead of the meson escaping, phase space favors two
nucleons carrying off the momentum and energy. On
this picture one can readily calculate the ratio

Number of ) (density of

) X (4n/3)a?
T protons neutrons 3)

i j; ’ [WH (r) | **dr

The numerator comes from asking for the probability
of finding a neutron within a sphere of one meson comp-
ton wavelength a¢= (%/uc) radius (for every proton).
This numerator assumes completely uncorrelated nu-
cleons. The denominator is just the integral over the
density given by the Hulthen wave function and has the
numerical valué % for e=1.41X10"" cm. The numerator
is readily evaluated for the simple picture of a spherical
nucleus with uniform density. The number of protons is
Z, the density of neutrons is

N/ (57R%) =N/ (5mri’A),
substituting these values in (3) gives
o/op=4(NZ/A)(a*/rs). 4)

Obviously the value of the constant in expression (2)
depends on the choice of (a/70)?; a value of 7o=1.30
X107 cm leads to

0=49(NZ/A)op. (5)

If one includes in expression (5) a probability of escape
factor, then we have obtained a similar form to the
expression (2) which fits the experimental data. The
disagreement of the numerical constants is of interest.
There are really two parameters (7o/A) and (a/7). The
value of the numerical constant is comparatively insen-
sitive to (ro/\) ; specifically, for (ro/\) 209, different than
the value used, the constant factor changes by about
359%. For shorter mean free paths the formula no longer
fits the data. However, the constant varies as the cube

1B R. R. Wilson, Phys. Rev. 85, 125 (1952); 104, 218 (1956).
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power of (a/r9) so that a change of 259 in this ratio
changes the numerical constant by almost a factor of
two. In other words one could obtain numerical agree-
ment between (2) and (5) by making “a” 189, smaller
than the Compton wavelength of a pion. The parameter
“a” can be considered an interaction distance parame-
ter. This is close to the value Austern' used in fitting his
theory of the photodisintegration of the deuteron.

It is reassuring to find that with the aid of naive
models one can semiquantitatively understand many of
the aspects of the high-energy photoeffect in complex
nuclei.

A much more sophisticated treatment of the high-
energy photoeffect has recently been given by Gott-
fried.!s He points out that the type of data obtained in
this experiment bears on the dynamics while our earlier
experiments!:? dealt more with the kinematical effects.
One of the main points in Gottfried’s analysis is in the
possibility of obtaining information on the nucleon pair
correlation function. One finds a dependence on the
cube power of a pair correlation parameter. The experi-
mental data therefore sets comparatively narrow limits
on such a parameter.!¢
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APPENDIX. PROBABILITY OF ESCAPE FUNCTION

We are considering the situation where there are two
detectors (effectively on opposite sides of a target)
which determine an axis in space, and we are interested
only in those nucleons which are produced (back to
back) along this axis. We wish to know what is their

1 N. Austern, Phys. Rev. 100, 1522 (1955).

15 K. Gottfried, Nuclear Phys. 5, 557 (1958).

16 K. Gottfried (private communication) points out that one can
see the effect of the correlation function in the naive theory by
putting a correlation factor in the numerator of Eq. (3). If one
assumes the interaction distance is a meson Compton wavelength,
then the correlation factor is less than unity. A correlation factor
less than unity would arise from a hard core, in which case the
denominator has to be reevaluated. Such considerations are
treated in Gottfried’s article.1®
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Fic. 4. Convenient
coordinate system for
calculating the proba-
bility of escape factor.
The dot on the lower
chord through the sphere
indicates the point at
which the neutron and
proton were created by
the x ray.

Sn+Sp » 2(R2-r2)Y2

probability of escaping from a spherical nucleus without
suffering a collision. Cylindrical coordinates are most
convenient. It can be seen from Fig. 4 that, for a sphere
of radius R, the length of a cylinder at a distance 7 from
the central axis is 2(R?—7?)}; the differential volume
(between 7 and r+dr) is 4wr (R2—1r2)¥dr.

If the path length of the neutron inside the nucleus is
S»and that of the protonisS,, then S,+S,=2(R*—7?)%.
The probability that both of these particles escape
without either having an interaction is the product
e—Sn/hng—8p/\p,

We assume both particles have the same mean free
path in nuclear matter namely A,=MA,=X\. Then the
probability of escape becomes

e SntSnh=exp[ —2(R2—7r2)}/\].

The mean probability of escape is the integral of the
production times the escape probability divided by the
total production or

R

f exp[ —2(R2— %) /A Jdmr (R2— %) 3dr

2R 0
)-

A
The integration is readily performed and yields

()l 1G) =)+

or

R
f drr (R— 1)y
0

P(x)=(3/2%){2—e[x>42242]}.



