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Most reactions yield cross sections whose values are
fairly independent of the mass of the target. However,

the values of the (p,pn)-reaction cross sections vary
quite a bit as the target mass is changed. Much of this

variation appears to be due to differences in the number

of available neutrons in the various target nuclei

(Table II). In another paper an attempt will be made to
describe the magnitude and variation of the (p,pn)-
reaction cross sections.
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Recently it has become increasingly evident that some assump-
tions in the nuclear model used for the Monte Carlo calculations
yield cross section values which are not in accord with experiment.
In particular, calculations of (p,pg)-reaction cross sections in
the Bev energy range give values which are low by factors of
two to nine when compared to experimental values. The calculated
cross sections also show a smooth variation with the target
atomic weight whereas the experimental values show quite an
erratic variation. Reasons which have been advanced to account
for this lack of agreement are the lack of a nuclear surface and
failure to account for shell effects in the nuclear model used.

In this work a theory is developed to take account of surface
and shell effects and thereby describe the observed magnitude
and variation of the cross sections for simple nuclear reactions
as exempliied by the (p,ptt) reaction. At multi-Bev energies to
which this treatment is restricted, the main contribution to the

(P,PN)-reaction cross section comes from inelastic collisions
between the incident protons and target neutrons, with all the
p-n collision products escaping without further interaction.
Approximations and assumptions used include the impulse
approximation, 0' lab scattering angle for the inelastic p-n
collision products, classical trajectories for the incident and
scattered particles, and a quantum-mechanical treatment for
the target nucleons. The multi-Bev, n-p, cloud-chamber data
was used to determine the average total exit cross section for the

inelastically scattered particles. The only neutron shells in the
target nucleus contributing to the (P,pe) reaction are those for
which the instantaneous knocking out of a neutron creates a
product-neutron hole state stable to particle emission. The
combination of these assumptions gives integral expressions
which, when evaluated on the IBM-701 computer for the in-
deperJdent particle harmonic-oscillator shell model, give the
(p,pa) reaction cross sections as a function of the nuclear density
distribution and the number of available shells.

For the low Z nuclei where the available shells can be un-
ambiguously determined, the results give a half-central-density
radius parameter, re, (re ——Rt/A&), of about 1.2 fermis compared
to 1.03 fermis for the charge half radius from the electron-
scattering work. Use of reasonable limits on the value of ro
allows one to set the minimum number of shells available for
some targets. For example, the Zn", Cu", and Cu't3 (p, pm) cross
sections require that a large part or all the tf7t& neutrons be
available, or, equivalently, that a 1f7ts neutron hole state (across
a major shell) in the product nucleus have less than 8- to 9-Mev
excitation energy. The results also show that the energy associated
with nuclear rearrangement to particle-stable product states
must be less than 8 to 9 Mev. In several cases, the upper limit
can be lowered considerably (to 1.5 Mev and 0 Mev in the cases
of O'6 and N', respectively).

I. INTRODUCTION
" 'N recent years a large number of cross sections
~ - for various types of spallation reactions has
accumulated. ' ' The Monte Carlo method'' coupled
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high bombarding energies (hundreds of Mev and up)
and for products whose mass is more than a very few
atomic mass units less than that of the target, the
existing calculations are in fair agreement with the
experimental results. ' ' However, for (p,pe) and (p, 2p)
reaction products whose mass is one unit less than
that of the target, the calculated cross sections, when
compared to experimental values, are low by a factor
of two to nine. '''" Also the calculations predict a
smooth dependence of the cross section with the
atomic mass of the target, whereas the experimental
p,pe and p, 2p cross sections show quite an erratic
variation. It has been suggested that adding a diGuse
nuclear boundary to the existing Monte-Carlo calcula-
tions would correct this discrepancy. ' Possible shell-
structure eGects have been advanced as an explanation
for the apparent irregularity in the experimental
values, "4

Because of the existing discrepancy it was thought
worthwhile to try a method of calculating cross sections
based on the optical and shell models with a dift'use
nuclear surface. In this work simple nuclear reactions
include the (p,pm); (p,2p); (p,ps. ) Lincluding (p,e)$;
(p,ps+), and (p,p') reactions. This work will be re-
stricted mainly to (p,pN) reactions because of the
relative preponderance of (p,pe) reaction cross section
data in the literature. However, with minor changes
the results apply just as well to the other reactions
mentioned.

The reaction mechanism that will be treated here in
detail is that in which an incident nucleon makes a
single collision with a target nucleon in a nucleus and
all the fast collision particles leave the nucleus without
further interaction. In order that this be the main
mechanism contributing to the cross sections of the
simple nuclear reactions, this work must be restricted
to high incident energies (hundreds of Mev and up)
so that nucleon evaporation by the nucleus will make
a negligible contribution to the reaction cross sections.
This reaction mechanism is applied to the reactions
given above by requiring that the struck nucleon be
in a shell whose distance below the topmost occupied
level is less than the binding energy of the least bound
particle in the product nucleus.

In order to make actual calculations the incident
and exit particles will be assumed to have classical
trajectories throughout the nucleus. Also, the fast
particles produced by the inelastic fraction of the
nucleon-nucleon collisions will be assumed to be
moving in the same direction as the incident nucleon
(zero degree lab scattering angles). Since this latter
assumption is definitely invalid for elastic nucleon-
nucleon collisions, the theory will be restricted further
to the multi-Bev bombarding energy region where the
fraction of the total nucleon collision cross section
which is elastic is small. The restriction to the multi-Bev

"A. Caretto and G. Friedlander, Phys. Rev. 110, 1169 (1958).

energy region also improves the zero degree lab scatter-
ing angle and classical trajectory approximations and
the validity of the neglect of nuclear evaporation as a
contributing reaction mechanism.

For the same reaction mechanism as that given
above, Maris et al." derived an expression for the
diGerential (p,2p) reaction cross section based on the
theory of direct interactions. They made a rough
estimate of the eGect of multiple collisions in the
nucleus on the reduction of the differential p-p scatter-
ing cross section. They showed that this eGect reduced
the cross sections by a large factor which increased
with increasing target atomic weight and decreasing
bombarding energy. Since they were considering
proton energies within a small energy region and the
reduction by multiple collisions is spread out over the
whole energy region, the large reduction factors did
not destroy the peaks in the proton energy spectra.

In the present work, the multiple collision reduction
factor would also be expected to be large due to the
dominance of multiple pion production in nucleon-
nucleon collisions. However, only total reaction cross
sections are considered so that the integrated energy
spectrum of the scattered particles over the whole
region is used. Consequently, the large reduction
factors apply directly to the reaction cross sections and
must be determined more accurately.

In Secs. II A—D the various approximations on
which this work is based are given. The impulse
approximation and use of classical trajectories are
discussed in Sec. A. In B the validity of the zero
degree lab scattering angle approximation is investi-
gated by looking at the angular intensity spectrum of
inelastic and elastic Bev nucleon-nucleon collisions. It
is shown that this approximation is pretty good for
high-energy inelastic nucleon-nucleon collisions and is
invalid for elastic collisions.

In Sec. III the various p,pe reaction mechanisms
are discussed. Again the multi-Bev e-p and p-p cloud
chamber data is used to show that single p-e collisions
followed by escape of the collision particles are the
main contributors to that part of the p,pe reaction
cross section coming from inelastic p-e collisions.
Grazing inelastic p-e or p-p collisions followed by
evaporation of a neutron contribute (5% of the con-
tribution of the above mechanism.

The equations giving the (p,pe) Land (p, 2p)]
reaction cross sections are derived in Secs. IV A-E and
the results of machine integration of the final equations
are given. Section A develops the theory for inelastic
single collision processes. The final result, Eq. (10), is
an expression for 3f„&;, the probability per target
neutron in the elj shell for single collision processes of
the type already discussed. The harmonic oscillator
nuclear model was put into Eq. (10) to give Eq. (13).

~ H. Tyrdn, P. Hillman, and Th. A. J.Maris, Nuclear Phys. 7,
1 (1958); 7, 10 (1958); Th. A. J. Maris, Nuclear Phys. 9, 577
(1958).
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Section B outlines the IBM-701 integration of Eq. (13).
Section C describes contour plots of the r,s integrand
of Eq. (13) obtained from the machine. It is shown
there that most of the single collision processes tend to
occur in the nuclear surface and on the downbeam
side of the nucleus. The final results of the machine
integration of Eq. (13) are described in Sec. D and
plots of M ~ for diferent values of e and 1, the target
atomic weight, and the spring constant are given.
Useful relations, Eqs. (18a—c), for interpolating to
values of M„~ for diferent values of the three input
parameters than those used are given. In Sec. E the
contribution to the p, pe reaction cross section for
elastic p ecollision-s is estimated in terms of a factor,
Ii, which gives the probability of escape from the
nucleus of the struck neutron. Eq. (21) is the final
result of these calculations and gives the p, ptr cross
section in terms of the various parameters discussed
above.

Before Eq. (21) can be applied to nuclei, the various
parameters appearing have to be evaluated and some
general properties of the results discussed. This is
done in Secs. V A—E. The evaluation of cr from 3.4-8ev
n-p cloud chamber data is discussed in Sec. A. The
Pauli Principle and meson absorption are included in
the final value of o.=168 mb. The elastic-collision
neutron-escape factor, Ii, is roughly estimated in
Sec. 3 to be 0.5, Upper and lower limits of 0.1(J (0.9
corresponding to a perfectly black and transparent
nucleus, respectively, are set. It is shown in the next
section that the errors contributed to Eqs. (22) and

(23) by requiring F to lie within the reasonable arbitrary
limits, 0.25 and 0.75, are smaller in most cases than the
experimental error limit on the (p,pe) reaction cross
section. The remaining factors in Eq. (21) are given
in Sec. C and combined into Eqs. (22) and (23) which
are the final results of all the previous discussion and
are to be applied to 5.7- and 3.0-Bev (p,pe) reaction
cross-section data, respectively. Equation (22) is

allowed
shells

where o„~„equals the ppts reaction cross section in mb.
The constant in the brackets represents the evaluation
of the factors appearing before the summation sign in
Eq. (21) and is roughly equal to the total p-n collision
cross section. The summation is over the e,l,j shells
for which the sudden removal of a neutron leaves the
product nucleus in an excited state stable to particle
emission. The number of neutrons in the e, l,j shell is
given by E &, The probability per neutron that the
incident nucleon collides with an e,/ neutron and all
the collision products escape without further inter-
action is given by 3f„&. The j quantum number does
not appear on M„& because of the j degeneracy of the
wave functions for the independent-particle harmonic-
oscillator model which was used in Eq. (13) ff. It

should be stressed though, that Eq. (10) is more
general and holds for any potential well shape. Eqs.
(16), (18a) and Figs. 3 and 4 are used. with Eq. (22)
to give o-„,„as a function of allowed shells and the
nuclear half density radius parameter, ro.

Section V D discusses the reasons why this theory
satis6es the important requirement that 0-„„be
independent of the bombarding energy in the Bev
energy region. Section E cautions against taking Eqs.
(21) to (23) too literally. They were derived on the
basis of an independent. particle model of the nucleus
whereas real nuclei consist of interacting nucleons.
Several errors introduced by neglect of nucleon-nucleon
coupling are discussed.

The results of comparison of theory with experiment
are discussed in Secs. VI A—E. Equations (22) or (23),
(16) and (18a) and Figs. 3 and 4 give o„„„asa function
of the allowed shells and the half density radius
parameter. In Sec. A the shell spacings are taken from
the calculations of Ross, Mark, and Lawson" and
combined with binding energies to determine the
allowed shells. Values of ro are then computed from all
the experimental values of o-„,„„available and are
compared mainly with values of the half-charge
density ro's given by electron scattering. The agreement
on the whole is quite satisfactory. The value of o-„,„„
for C", N", and 0" provide a more critical test of the
theory as several approximations made, are exact for
these nuclei. Both the allowed shells and ro are taken
as unknowns in Sec. B and, using the experimental
values of 0-„„„,ro is given as a function of the allowed
shells. It is shown that for some cases a minimum
number of available shells can be set using the require-
ment that ro be within a reasonable range of values.
When combined with neutron binding energies this
allows one to set upper limits on the spacing of the
upper shells. For example it is shown that for Cu" and
Zn" the 1fr~s 1fs~s neutr-on shell spacing must be less
than 8 Mev. Section C discusses the large disagreement
between the ro values given for the Ce" nucleus and
the electron scattering rp s. An interesting consequence
of the initial approximations made (Sec. II) is discussed
in Sec. D. It is shown that the rearrangement energy
associated with the nuclear rearrangement coming from
the snatching out of a target neutron must be less than
8 Mev most of the time. The lowering of this upper
limit to 0 Mev, 0.68 Mev and «8 Mev for N", 0",
and Zn", respectively, is discussed. In Sec. E other
possible uses of the p,per cross sections are discussed.

Section VII discusses some possible error sources
implicit in the approximations made which are difficult
to evaluate at present. Section VIII concludes the
main body of the work.

The three appendices give mathematical derivations

'2 A. A. Ross, H. Mark, and R. D. Larson, Phys. Rev. 102,
1613 (1956); the legends on Figs. 1 and 4 are interchanged in
this reference. R. Lawson, Enrico Fermi Institute of Nuclear
Studies, Chicago, Illinois (private communication).
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the results of which were needed in the text at various
points. Appendix I gives several equations describing
relativistic p e-elastic scattering. Appendix II gives
the derivation of Eq. (16) on the basis of the Thomas-
Fermi model of the nucleus. The accuracy of Eq. (16)
is found by comparing the values of ro obtained from
the actual sum-over-squared wave functions to those
obtained from Eq. (16). In Appendix III Eq. (10) is
integrated analytically for the uniform density model,
the one used in all the Monte Carlo calculations made
to date. The values of O„„calculated for Cu" and
Ce"' at 3 Bev are slightly lower than the actual Monte
Carlo values obtained at 1.8 Bev but are within the
error limits given on the Monte Carlo results.

II. APPROXIMATIONS

A. Imyulse Ayyroximation

At high incident energies the impulse approximation
should be valid"; i.e., the wavelength of the incident
proton is sufFiciently short that the proton may be
considered to interact with only one nucleon at a time
in the nucleus. The effect of the rest of the nucleons is
to provide a potential well and a resultant momentum
distribution for the particular target nucleon considered.
Also the time it takes for the incident nucleon to enter
the nucleus and collide with a target nucleon and for
the elementary collision products to leave is so short
that the nucleus would not have time to rearrange
itself or affect the course of the elementary collision.
The exclusion principle has a small effect on the
elementary nucleon-nucleon collision, as the amount
of momentum space forbidden is small compared to
the volume available. The incident proton can then
be considered to have "snatched" a nucleon from the
nucleus so fast that the only effect is to leave the
target nucleus in any one of several excited nucleon-hole
states. ' If the products of the elementary collision get
out. of the nucleus without further interaction, and the
particular resultant excited state of the nucleus is not
a particle-emitting state, the product nucleus con-
tributes to the (p,pe) or (p, 2p) cross section.

B. Zero-Degree Scattering-Angle Ayyroximation

Another approximation which greatly simplifies the
calculations is that, for inelastic e-p and p-p collisions,
the particles are scattered at zero degrees in the
laboratory system. The validity of this approximation
can be seen from an examination of the free n pcollision-
data. Cloud-chamber data taken for 1.72-Bev average-
energy neutrons on hydrogen'5 show that all the doubly
produced mesons have a median laboratory scattering
angle of 41 degrees (deg). The nucleons associated with

r3 GeoGrey Chew, Phys. Rev. 80, 196 (1950).
"W. Selove, Phys. Rev. 101, 231 (1956).
"W. B. Fowler, R. P. Shutt, A. M. Thorndike, and W. L.

Whittenmre, Phys. Rev. 95, 1026 (1954).

these mesons have a median laboratory scattering angle
of 17 deg. Singly produced mesons and the associated
nucleons have median laboratory scattering angles of 34
deg and 20 deg, respectively. Inelastic events produced
by 3.8-Bev average-energy neutrons on hydrogen" show
that one half the particles are emitted within 20 deg
(lab) of the primary beam, and two thirds within 30 deg
of the primary beam. Roughly one-half of the inelastic
events emit all particles within 35 deg of the forward
direction, and there are only a few events which emit
two or more particles at an angle greater than 35 deg.
Three-fourths of the charged particles produced by 5.3-
Bev p-p collisions emerge within 20 deg of the incident
beam. " Other work indicates a median laboratory
scattering angle of 32 deg for neutral pions produced
by 6.2-Bev proton-nucleon collisions. " Cosmic-ray
work indicates that for higher incident energies, the
median laboratory scattering angle is as small as, or
smaller than, the values given above. ""

Contrary to the case for inelastic collisions, the
approximation of a zero-degree scattering angle for the
products is definitely invalid for rr pand -p-p elastic
collisions. The cos"8 angular dependence /taken to be
the same in the forward center-of-mass (c.m. ) hemi-

sphere for p-m as for p-p collisions, (Appendix I)jensures
that at high energies (e))1) either one or the other of
the nucleons has a very high probability of being
scattered at large angles (close to 90 deg) and having a
low energy in the laboratory system. ""At 5.7 Bev,
the energy and scattering angle of the target particle in
the laboratory system corresponding to the angle in
the c.m. system at which most nucleons are emitted
(the maximum of cos"8 sin8 where m=36) is 39 Mev
and 80 deg (Appendix I). The same cosine dependence
of the scattering angle ensures that the other nucleon
is scattered at almost zero degrees in the laboratory
system.

The invalidity of the zero-degree laboratory
scattering-angle approximation for elastic p land p-p-
collisions is one of the reasons the ensuing treatment
is restricted to multi-Bev bombarding energies where

the elastic fraction of the total colhsion cross section is
low. Because the contribution to the p,pcs cross section
from elastic p-e collisions can be only crudely estimated,
restriction of the bombarding energy to the multi-Bev

region minimizes the error in this estimation.

"Fred Holmquist, thesis, University of California Radiation
Laboratory Report UCRL-8559, December, 1958 (unpublished).
The author also wishes to thank Dr. Holmquist for providing
unpublished data."Wilson Powell, Lawrence Radiation Laboratory (private
communication}.
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Rev. SS, 826 (1952}.
~' B. Cork, W. A. Wenzel, and C. W. Causey, , Phys. Rev. 107,

859 (195'?).
sm Lester Winsberg, Lawrence Radiation Laboratory (private

communication).
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C. Use of Classical Trajectories

Another helpful approximation depends on the fact
that at 8ev energies the wavelength of the incident
nucleon is small compared to nuclear dimensions

(K is 0.03 fermi for a 6-Bev nucleon). Consequently,
the incident nucleon may be considered to have a
classical trajectory in the nucleus. The particles
scattered in the inelastic p-e or p-p collision in the
nucleus will also be assumed to have classical trajec-
tories (K is 1.1 and 0.4 fermis for 100-Mev pions and
nucleons, respectively). ' On the other hand, all the
target nucleons have insufficient momentum, especially
in the surface region, to be treated classically and will

be treated quantum mechanically.

D. Other Approximations

The use in this work of the high-energy cloud-chamber
scatter-diagram data depends on the assumption that
the energy and angular distributions of the scattered
particles for free e-p collisions can be "inverted" to
describe p-e collisions and then lifted into the nucleus

with, at most, small resultant changes. The inversion
can be accomplished by exchanging the forward c.m.
hemisphere for the backward c.m. hemisphere. The
angular and energy distributions of the scattered
particles in the nucleus will be affected by a number of
factors such as the Pauli exclusion principle, motion of
the target nucleon, etc. It will be shown later that
most of the contributions to the (p, pn) reaction come

from the nuclear surface where the eGect of these factors
is small.

III. (P,Pn) REACTION PATHS

A consideration of (p,pe) reactions indicates that
there are several possible paths by which a product
containing one neutron less than the target nucleus

can be produced. If the proton-neutron collision is

inelastic, the p,pe product can be formed as follows:

(a) All the collision products can escape without

further interaction in the nucleus. The neutron must

have been knocked out of a shell, which leaves the nucleus

in an excited "hole" state stable to particle emission.

(b) A neutron can be left behind with an energy
increase (about 8 to 16 Mev) such that the primary
collision is followed by nuclear emission of only one

neutron. The Coulomb barrier suppresses proton
emission for all but the low-Z elements.

A p-p inelastic collision can also form the (p,pn)
product by:

(c) Leaving a proton behind with an energy increase

(also about 8 to 16 Mev) such that the primary collision

is followed by nuclear emission of a neutron.

Elastic p-n and p-p collisions form the (p, pre) product
by the same pathways as for the inelastic p-n collisions.
Similar pathways also hold for the p, 2P reaction cross
section.

An estimate of the relative contribution of processes
(a) and (b) can be made by reference to the experi-
mental cloud-chamber data on p-e and p-p collisions.
Out of 134 inelastic events caused by 1.72-8ev neutrons
on hydrogen gas, "86 events produced neutrons by the
reaction (np~ np~+n. ). The rest of the events con-
sisted of the reactions (np ~ ppw ) and (np —+ pp~

—~').
Only two out of the 86 events, which are the only ones
that can contribute to the (p,pn) cross section by
process (b) produced protons with an energy as low as
40 Mev. The lowest energy neutron had a kinetic
energy of 74 Mev. A study of inelastic events caused
by 3.8~2.4 8ev neutrons on protons showed that
there were 35 pp~ events, 97 pn7r+7r events, 34
pn~+7r n' events (the dots refer to other possible
neutral pions), and 35 events of other types that
produce between two and Ave pions. "The 131 pnm+m

and pnm+~ n' events provided only one proton
with a kinetic energy less than 20 Mev.

These results can be used in the following manner.
The 1.72-8ev results show that in 134 events there are
no events which produce protons in the 8- to 16-Mev
kinetic-energy range and are the correct type for
process (b) after "inversion. " Similarly, out of 201
n-p events at 3.8 Bev, one event, which would con-
tribute to process (b) after "inversion, " produced a
proton in the 8- to 16-Mev kinetic-energy range.
("Inversion" of n pcolli-sion data to p-n data should
exchange neutrons for protons in the pn7r+~ ~' and
pn~+7r events only. ) Rather than use statistical
analysis for a rough determination of the relative
contribution of process (b), we will determine an
upper limit by assuming that if the next two events
had been measured, they would contribute to process
(b). Thus we have two out of 134 events and three out
of 201 events which contribute to process (b). Since
the rest of the events contribute to (a), the contribution
of process (b) is &2% of that of process (a).

The relative contribution of process (c) is more
difficult to estimate, as there are no laboratory-system
scatter diagrams for inelastic p-p collisions in the
literature. However, with an analysis similar to that
used above coupled with the p-p collision data, ""we

can estimate the relative contribution of process (c)
to be &3% of that at process (a)."Consequently, the
relative contribution of processes (b) and (c) is &5%
of process (a) and can be neglected.

23 M. M. Block, E. M. Harth, V. T. Cocconi, K. Hart, W. B.
Fowler, R. P. Shutt, A. M. Thorndike, and W. L. %'hittemore,
Phys. Rev. 103, 1484 (1955).

24 R. M. Kalbach, J. J. Lord, and C. H. Tsao, Phys. Rev. 113,
325, 330 (1959).

25Paul A. Benioff, thesis, University of California Radiation
Laboratory Report UCRL-8780, July, 1959 (unpublished).
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IV. THEORY

A. Develoyment

By the use of the previously discussed approxi-
mations, the contribution to the p, pe cross section
from inelastic p-n collisions [process (a)j can be found.
Consider a cylindrical coordinate system whose origin
coincides with the center of a nucleus and in which a
proton is coming in parallel to the s axis. Then, for a
given p-n inelastic interaction which produces 2
nucleons and t-2 mesons, the probability per unit path
length, Pt~, that the incident proton gets to a point
r,s, q without interacting and collides with the kth
nucleon, and all the collision products escape without
further interaction is

weighting the result by rdrdp and integrating over all
r and q. This gives

ao, = ~ dq rdr exp —o~ ' p(R)dyJ,

p'(R)dy o2Pg(rzq)dz. (2)

The constant 0-2 can be moved outside the integrals.
If one sets |7t~ equal to 0-2Mt~, then 0-2 can be ignored at
this stage. An average of Eq. (2) over the inelastic
collision types (different values of t) and energy
spectrum of the scattered particles (difkrent values of
each o,) gives the result

P~I,=exp —o q
" p(R)dy MI, ——Mti, —— dp ' re

J
exp —o& )" p(R)dy

z

t f8

Xexp —P o, p'(R)dy a2PI, (rzq). (1)J „
The first exponential factor gives the probability that
the proton gets to r,s, q without colliding with any
nucleons, and the second exponential gives the prob-
ability that all the collision products escape (with 0'
scattering angle) without further interaction. The
increment of path length, dy, is along the path of the
incident and emergent particles. Here o2PI, (r,z, y) is
the probability per unit path length that the incident
proton collides inelastically with the kth nucleon at
r,z, q The in. elastic p-nucleon interaction cross section
is o.2, and P&(r,z, p) is the normalized probability per
unit volume of finding the kth nucleon at r,s, y. The
term p(R) (R'=r'+y', where y is equivalent to z) gives
the total nuclear density distribution in the target
nucleus, p'(R) is the same as p(R) except that the kth
nucleon has been removed from the total nucleon
density distribution, because after the collision it is
one of the collision products. The total interaction
cross section for the incident proton with a target
nucleon is o-1. The 0-; are the nucleon-nucleon and
pion-nucleon total collision cross sections, and the sum
is over all t particles produced in the particular type of
p-nucleon interaction under consideration. The integrals
in the exponents give the total number of nucleons per
unit area along the path lengths of the incident and
emergent particles. The two exponential terms are the
equivalent of factors used in the optical model to give
the damping of the incident and emergent particle
waves"

If the target nucleus is in a uniform beam of bom-
barding protons, the cross-section contribution, crtj„ to
single-collision processes involving the kth nucleon is
obtained by integrating Pt& along the path length,

'6 S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75,
1352 I'1949}.

8

p'(R)dy PI, (rz p)dz, (3)J—00

where o. is an appropriate average of Po;, and Mq
may be regarded as the fractional availability of the
kth nucleon in the nucleus for single-collision processes
with subsequent escape of all collision products.

The factor PI, is given by

(4)

where Pz is the antisymmetric nuclear wave function.
Because the integrand in Eq. (3) depends only on the
space coordinates of the kth nucleon, the integration
in Eq. (4) is over the spin coordinates of all the
nucleons and the space coordinates of all nucleons except
the kth. If the nucleus is regarded as an assembly of
independent particles, fg is equal to the normalized
Slater determinant. Substitution of this determinant
into Eq. (4) and performance of the integrations over
the coordinates of all nucleons (kth excluded) gives

spin space

The g, (rI,) represents the single-particle spin-orbit-
coupled wave functions of the kth nucleon, and q
stands for a set of quantum numbers needed to specify
a nucleon completely. The sum is over all A sets of g,
where A is the number of nucleons in the nucleus.

The factor q in Eq. (5) stands for the single-nucleon
quantum numbers n, l,j,m;, m, and the sum is over all
occupied single nucleon states. There are (X+P) ~;

terms in the q sum which dier only by m; and nz,
(the isospin-projection quantum number), where
(1V+P)„&; is the number of nucleons in the e/j shell
(the subscript I is the principal quantum number).
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Because each nucleon in a given shell may assume any
one of the m; values, an average over the m; values
must be taken. The target nucleus is bombarded in an
essentially field-free region as far as its alignment is
concerned, so that each one of the m, states is equally
probable. If we separate the space and spin parts of
iP, (ri,) by use of Clebsch-Gordan coefficients, " and
average over the ns; values using the operator

stable to particle emission. This gives, for M„,„„,

M„,„„= Q N„i,M„(„
allowed

Nlj values

p 00 F00

Jjf/I„~, =- rdr exp —0 y p(R)dy

The fractional availability per neutron in the elj shell
for single-collision processes, M„~;, is given by

we get
2j+1 m&.=—i

p'(R)dy T„i'(r'+s')ds (10.)

1 (N+P) „o.
p& p——p— C'(lsj; m&, m, —m&)

A ni; xaam, 2j+1

XT„iP(Rg)Vimi*(Higgs)mimi(t4qi). (6)

The equal probability that m; assume any value
between —j and j allows m& to assume all 'of its values
between —l and l. The m, sum can be done by use of
standard procedures for manipulating Clebsch-Gordan
coefFicients. " Use of the spherical-harmonic addition
theorem to remove the I'im~ factors gives"

1
2 (N+P) i;T.i,'(Ra).

4vrA ~~~.
(7)

Substituting Eq. (7) into Eq. (3) and summing over
all nucleons gives for the fractional availability, M, of
all the nucleons in the nucleus for single collisions
(A'-= ra'+ so')

c4. f\2w /Q

M= P P (N+P)„i, dy rdr
4gg a=i nag'

'
o o

Xexp —a i p (R)dy op'(R) dy—
z —00

T„i,'(ri'+s„')ds. (8)

It is shown elsewhere that Eqs. (7) and (g) hold also

for j-j-coupled shell-model wave functions. "The k sum

may be done immediately, because each term is
identical, which removes the 1/A. Likewise, the q

integration may be done, because the integrand is
azimuthally symmetric.

The part of M which contributes to the p,pe reaction
by processes of type (a) is obtained by limiting (N+P) „i,
to neutrons only and limiting the sets elj to those for
which the sudden removal of a neutron with quantum
numbers elj leaves the nucleus in an excited state

The availability, M„&;, for target protons is also given
by Eq. (10) if the correct value of o and form of
T~i, (r'+z') are inserted.

Equation (10) holds for a variety of potential-well
shapes, such as the square, harmonic-oscillator,
exponential wells, etc. In this work the harmonic-
oscillator well will be used for two reasons. First, it
gives a finite gradient to the nuclear surface, something
that has been postulated to explain the diGerence
between the calculated and observed p,pe cross
sections."" Second, solutions to the Schrodinger
equation can be obtained in an analytic form.

An additional simplification is that for the harmonic-
oscillator well, inclusion of a spin-orbit coupling term
in the wave equation changes only the eigenvalues and
not the wave functions. For this reason, the j subscript
will be dropped from M and T in Eq. (10) ff.

The normalized radial harmonic-oscillator wave
functions for the first three radial shells are"

( Po2 i+2

~

p (po(ro+so))&lo
(m *'(2t+c)!!)

( p'(r'+s') )Xexp
~

—
~, (11)

where c and B„are a numerical constant and simple
polynomial, respectively, both depending on m. Equa-
tion (11) is normalized to give 2 upon integration over
the r and s coordinates. This is necessary to remove
the factor of 1/2 brought in from the removal of the
spherical harmonics. The validity of this can be shown

by removing the exponential factors from Eq. (10),
substituting Eq. (11) into Eq. (10), and integrating
over the r and s coordinates to get unity.

The density term p(r'+y') is obtained from Eq. (11)
by setting y= s and

27 M. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc. , New York, 1957), Chap. III.

28K. Condon and G. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, London, 1957), Chaps. III and IV,
pp. 53, 178.

The sum is over all occupied e, l, shells. For a given e
"M. Mayer and J. Jensen, Elementary Theory of Nuclear Shell

Structure (John Wiley R Sons, Inc. , New York, 1955), p. 236.
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and l, X„q+P„i is the number of nucleons in the two
shells obtained by setting j=l+2 and j=l——,'. The
1/(4s) is the normalizing factor. Equation (12) neglects
any effect of the Coulomb force on the total nuclear
density distribution. The error due to this neglect
should not be large unless the radial proton distribution
is markedly different from that given by Eq. (12). The
factor p'(r'+y') is obtained from Eq. (12) by sub-
tracting one from that value of g„l whose subscripts
are the same as those on M l.

For several reasons Eq. (12) was used for the nuclear-
density distribution, rather than the simpler equation

p(R) =p'(expL(R —d)/n7+1) '

g= 0.847/ro' (16)

and ro is the half central-density radius constant.
Equations (15) and (16) are derived in Appendix II.
As is discussed there, Eq. (16) is only approximately
correct and gives values of ro which are in error by
from +3% for F' to —9% for Ce"' when compared
to values of ro obtained in an exact manner.

For ease in interpreting the results, the harmonic-
oscillator spring constant p in the exponents of Eq. (13)
can be written as

(15)

where g is given by

obtained for most target nuclei from the electron-
scattering results. "One reason is that a single model
is used by which the complex dependence of Eqs. (10),
(11), and (12) on P can be removed. Another is that
there is only one adjustable parameter, P, rather than
three —P, d, and n. The use of Eq. (12) also ensures a
consistent nucleus whose total density distribution is
built up out of the distributions of the individual
nucleons.

The substitutions u=pr, o=ps, w=py, simplify the
complex p dependence remarkably. Making these
substitutions and putting Eqs. (12) and (11) into

Eq. (10) gives

2 l+1 ~00 00

cv„,= —, u~ ! a„'(I'+")&

rrl(2l+c)!! J o

p2 IIQO

Xexp —u' —o' — p (I'+w') dw
J

where

op'
p'(m'+w')dw do, (13)

7l Q0

2lg 2

p(N +w )=P (1V„(+P„t) (m'+w')i
(21+c)!!

Xexp (—n' —w') (14)

and p'(I'+w') bears the previously mentioned relation-

ship to p(u'+w'). Values of 8„' and c for the di{ferent
values of rI, are given below:

~ Robert Hofstadter, Anneal Review of NNc1ear Science (Annual
Reviews, Inc. , Palo Alto, California, 1957), Vol. 7, p. 231.

1 1
2 3 2{l+-,'—[I'+(oror H)]}'
3 5 2{(l+ ', )(l+-,') (2l+5-)[m'+(9—or w') j+[zP+(v' or re')g'}'.

The double factorial stands for the product of all the
odd integers less than or equal to 2l+c.

B. Integral Evaluation

Equation (13) cannot be integrated analytically, so
it was integrated by the use of Simpson's rule and the
IBM-701 electronic computer. The interval size used
and the upper limits of integration were chosen such
that the error made in the numerical integration of
M & was less than or equal to 1%.

The computer was also programmed to print out
the values of the integrand of the N, e integration
given in Eq. (13) and the corresponding values of I
and v. This was done in order to find out by means of
contour plots what part of the nucleus contributed
most to M~l.

The value of the total p-nucleon collision cross
section, 0.1, was set equal to 30 mb." The total exit
collision cross section, 0-, was estimated from the
3.8-8ev cloud chamber data to be 180 mb. The deriva-
tion of the value of 0 and corrections due to refinements
in the values of 0.1, and 0 are discussed later. Reasonable
values of g=0.50 and 1.00 were chosen for most
calculations.

The target isotopes chosen for the calculation of
values of 3f~l were C", N" 0", F", Na", A", Ni",
Cu65 As75 Nb93 Cd 1 Inl15 I1 7 Ce142 Os192 and U2 8

The neutron- and proton-shell occupation numbers for
all these target isotopes except U"' were taken from
Mayer and Jensen. " The U"8 occupation numbers
were obtained from a Nilsson diagram for a deformed
nucleus. " From the above data, values of 3f„l for
several shells for several values of g for different
isotopes were determined, and contour plots obtained
for some cases. For a few shells, values of M„l for
different values of 0- or 0-1 with g constant were obtained.

C. Contour Plots

Figures 1 and 2 are contour plots of the integrand of
Eq. (13) for two cases—the Cu" 1f shell and the Ce'"

"Reference 29, pp. 74—81.
"The author thanks Dr. Frank Stephens for supplying the

occupation numbers of the upper shells of U2».
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for the 2f Ce'4' shell the main contribution is quite far
out from the half-density circle. Because the p, pn
reaction is limited to the topmost few shells, these
contour plots clearly indicate that the P,P7s reaction
is mainly a surface reaction. This is why the errors
introduced by "lifting" the free fs-P scattering data
into the nucleus should be small. The secondary peak
in Fig. 2 for the Ce'4' 2f shell is not visible, as it is too
far inside the nucleus and is suppressed by the exponent
integrals in Eq. (17). The contours also show that
most of the contribution to M„~ comes from the
downb earn side of the nucleus. This asymmetric
distribution about the s=0 plane comes from the fact
that o. is much bigger than t7~, the distribution becomes
symmetric about the s=0 plane as o approaches a&.

&ig
~exp + u p(~'+ 7)c~tc

gf &J„
a. 0.20-

p'(I'+tc')dm, (17)
D

~ ~
O O.I5-

ts

for various values of r=g/p and s=v/p. The contour
lines connect points r,s which give equal values of
Q„~. The dashed circle is the locus of points for which
the value of the total nuclear density, p(m'+us) from
Eq. (14), is one half that at the center of the nucleus.
The three-dimensional "picture" is obtained by rotating
the contour maps about the s axis.

It is immediately apparent from Figs. 1. and 2~&that

the main contribution to M„& is strongly weighted
towards the surface region of the nucleus. In fact
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Fro. 2. Contour plot of the 2f shell of CeII~;
o.1=30 mb, «r =180 mb, g=1.00.

Figures 3 and 4 show the dependence of M„~ on the
atomic weight A, of the target nucleus for two values
of g, 0.50 and 1.00. These curves may be used for
interpolating to target isotopes other than those for
which M „~ values were computed. The diRerence
between the values of M ~ due to diRerent neutron
and proton occupation numbers for isobaric target
elements for any given shell would be expected to be
small. This was shown by computing values of 3f~f and
MU, for Ga" and Nd"' (Irr ——30mb, o.=180mb, g=1.00).
The value of Mtr for Ga" (two less 1fs7s neutrons and
two more 2ps~s protons than Cu") was found to be
less than M&f for Cu" by 0.3%. For Nd'" (no 2f7/s
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neutrons and two 2ds~s protons), the value of Mrs was
higher than for Ce'4' by 1.2%. The effect of changing
the configuration of the top three nucleons of F" from
(1ds/Q)' (2sr~s)' to (2st~&)' was found by computing Ms,
for both forms. ""The value of M~, for the (1ds~s)'
(2st~s)' conftguration was lower than that for (2st~s)'
by 1 4% (0 t =30 mb, 0 = 180 mb, g=0.50).

The shell structure in Figs. 3 and 4 is quite evident
in that for a given A there appears to be a close cor-
relation between the values of 3f ~ and the total
energy of the e,l shell in the potential well. The cor-
relation is due to the fact that for a potential well
with sloping sides, the mean square radius of a shell is
larger the higher the shell is in the potential well.
Here M g would be expected to be larger for bigger
values of the mean square radius, because the exponent
integrals in Eq. (13) are smaller. In Figs. 3 and 4 the
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curves of M„~ as a function of target atomic weight
were not extended beyond the point at which the shells
are so far down in the well that their availability to
the p,pe cross sections is highly improbable. This is
the reason why all the curves appear to have a cutoff
at the low M ~ end.

A comparison of the M„~ values for the same target
shells for the two values of g, the spring-constant
parameter, shows that the g dependence of M„~ can
be approximated by

gM ~=constant.

This equation was checked over an extended g range
for several F", Cu", and Ce'" shells. Figure 5 gives the
Ce'~ results. The curves for F" and Cu", which are
similar to those for Ce'", are given elsewhere. " The
curves in Fig. 5 show that Eq. (18a) is a good approxi-
mation if the amount of g extrapolation is not too
great. Equation (18a) is very useful for interpolating

"S.Unna and I. Talmi, Phys. Rev. 112, 452 (1958)."G.Rakavy, Nuclear Phys. 4, 375 (1957).
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FIG. 4. The dependence of M„& on A, the target atomic weight
for di8erent shells; a1=30 mb, o =180 mb, and g=1.00.
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Similarly, for these three shells as well as a few others,
3f„~ was determined for several values of 0~, the total
p ncollision cross-section. The results show that,
similarly, we have

(O.t)'*M ~= constant. (18c)

It would be expected, from an examination of Eqs.
(13) and (15) that the g dependence would be greater
than the o-~ or o. dependence because g occurs as a
factor of both exponent integrals, whereas a~ and 0
each occur as a factor of only one of the integrals.
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FIG. 6. Plot of M ~ as a function of 0 the average total exit
cross section. Q refers to the F" id shell, 0.1=30 mb, g=0.80;
~refers to the Cu" 1f shell, 0&=30 mb, g=0.50; 6 refers to the
Ce142 j.h shell, a1=30 mb, g = 1.00.

the 3f„~ results given in Figs. 3 and 4 to other g values.
If desired, Fig. 5 (or Figs. 3 and 4 for A(142) can be
used to roughly correct Eq. (18a).

Figure 6 gives curves of M„~ versus o-, the average
total exit cross section, for the F' 1d shell, the Cu's lf
shell, and the Ce'4' 1h shell. It is seen that this de-
pendence can be represented by

(o)&M„~=constant.
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Also the points of maximum contribution to M„~
obtained from the contour plots are points at which
the two exponent integrals, each with their associated
factors, would appear to be similar in value.

gv, vn 2 (Mniginel++vlgal@nijq
allowed

shells

(19)

where the second term on the right gives the contribu-
tion from the elastic fraction of the p rc col-lision. A
computation of S ~ by the same methods as used for
M„~ represents a formidable undertaking. One difficulty
is that the zero scattering angle approximation is
invalid. A much better approximation for the elastic
collisions is to take the scattering angle to be 90' lab.
Also the Pauli principle would have to be taken into
account specifically as the scattered nucleon has a
high probability of gaining a relatively small amount
of energy. For 5.7-Bev protons on free neutrons one-half
the elastically scattered neutrons have kinetic energies
of &60 Mev and lab scattering angles between 78'
and 90'. To evaluate an expression like Eq. (13) but
containing the exclusion principle and the 90' scattering
angle approximation would be prohibitively long in
terms of machine time as there would be five successive
integrations and a more complex integrand. Con-
sequently the following approximate method to
determine S„~will be used.

One can approximate S & by writing

Snl—~~nl p

where Il, the amount by which M ~' should be reduced
to account for the escape of the struck neutron, is
independent of the shell quantum numbers and target
atomic weight. The term M„i' is given by Eq. (13)
with 0. set equal to 0-~ and accounts for the entrance,
elastic collision, and exit of the incident proton which
suffers negligible energy loss and angular deviation.
Use of Eq. (18b) gives the result

M i'= (g/g. i)~M„i. (20)

It can be seen from Fig. 6 that for 0=30 mb this
equation is correct to within 10% when summation
over the allowed shells in Eq. (19) is allowed for.
Combining the above three equations and recalling
that g'i= ginel+gel gives

Ega'
g, „=err 1+f( P( —

)

—1
) Q X„i;M„i,

I, g, i ) Do ea
shells

E. Elastic (p,pn) Collision Contribution

The total (p,pri) reaction cross section is obtained
by adding to Eq. (9) a term giving the contribution
from the elastic p-iv collisions. The total cross section
is equal to

where f is the fraction of the total (p,e) cross section
which is elastic. It should be recalled that the j sub-
script is lacking on M„& because of the j degeneracy in
the harmonic oscillator model.

V. APPLICATION TO NUCLEI

Before Eq. (21) can be applied to experimental

(p,pe) cross sections, the factors appearing before the
summation sign have to be evaluated; in particular
both g and F must be determined. The 3.8-Bev e-p
cloud chamber data will be used to obtain a value of
g. The value of g for 1.72-Bev n pcollisio-ns will just
be presented when needed even though it was obtained
in the same manner. It should be recalled that M ~

also depends on o-~ and fJ.

A. Determination of o

The average total exit cross section, 0., was determined
by first finding the distribution of the values of go;
from the experimental laboratory scatter diagrams of
the high-energy rc-p inelastic collisions in the following
manner: The analysis of inelastic events caused by
3.8+2.4-Bev neutrons on protons" shows that 83%
of the events consist of the reactions pre —r ppx (18%),
pn ~ prie.+7r (48%), and pn —+ pnm+7r 7r'. . . (17%).
The rest of the events (17%) consist of small amounts
of several types of two-, three-, and four-meson
producing events. Because there are so many different
types of these events, the 17% will be neglected and
the inelastic events will be assumed to consist only of
the three main types given above (with their percentage
occurrence increased by 100/83). The analysis further
shows that in the c.m. system the intensity distribution
of the emitted protons from the pp7r reaction is
strongly peaked forward and backward, and that of
the pions is peaked forward. The neutron and negative-
pion intensity is peaked forward for the pn7r+m

reaction, while the intensity for the protons and
positive pions is peaked in the backward direction.
For the pe~+a w' reactions, the proton distribution is
peaked in the forward direction, and the charged pion
distributions are isotropic.

These c.m. intensity distributions have to be
"inverted" because they are for n-p collisions, not p-rc
collisions. This inversion merely exchanges forward
c.m. intensity peaks for backward c.m. peaks and
vice versa. In the succeeding discussion this "inversion"
is included. The momentum distribution in the labor-
atory system for each of the various particles emitted
for each type of inelastic event" was divided into
several sections, and the number and midpoint kinetic
energy of the particles in each section was tabulated.
From the published pion-nucleon and nucleon-nucleon
excitation functions, "'" a cross section, 0;, was

ev S. Lindenbaum, Amrvual Review of 1Vuclear Scvegce (Annual
Reviews, Inc. , Palo Alto, California, 1957 Vol. 7, p. 317.

'6%ilmot Hess, Revs. Modern Phys. 30, 368 (1958).
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associated with the midpoint energy for the given
type of particle passing through nuclear matter that
was assumed to be half neutrons and half protons.
From the fact that forward and backward c.m. distribu-
tions correspond to low (inverted) and high (inverted)
kinetic-energy laboratory distributions, respectively,
"events" were reconstructed. For the (p,p7r ) reaction,
a proton and m out of the lowest energy range were
combined with a proton in the highest energy range,
the three values of a-; were found, and the three particles
were removed from the distribution. This process was
repeated until all the particles were used up. Similarly
for the pm. +x. events, a neutron and ~ each from
their respective lowest kinetic-energy section were
combined with a proton and x+ each from their
respective highest kinetic-energy section, and the four
values of a; were found, etc. Scatter diagrams were
not, available for the neutrons and x 's from the
pn~+s rr' reaction. Somewhat arbitrarily the x+'s and
w"s were considered to have the same backward
peaking in the c.m. system, and the neutron and
distributions were taken to be peaked in the forward
c.m. direction. The x' and neutron momentum distribu-
tions were taken to be the same as those for positive
pions and protons, respectively. A proton and m+ and m'

from their respective lowest kinetic-energy sections were
then combined with a m and neutron in their respective
highest kinetic-energy sections, and the five values of
o.; were found, etc. Finally the appropriate values of
o., were then combined to give values of P r'o;, where
t equals 3, 4, and 5 for the pprr, pn7r+rr, and perr+rr rr'

events, respectively.
These Po-; must still be weighted by the associated

values of M„~. This was done by computing values of
M ~ for three representative shells (the shells are
given in Table I) for possible values of o ranging from
30 mb to 275 to 400 mb. Plots of 3f ~ versus 0- were
used to weight the Po, distribution accordingly.
Finally the M ~ weighted distribution was averaged
over inelastic-event types to give a value of o. equal to
180 mb. It was found that this value of 0. was quite
insensitive to changes in shell quantum numbers or
target atomic weights.

This value of o. must still be corrected for exclusion-
principle eGects on the o-; and meson absorption in the
nucleus. The correction on 0-, due to the exclusion
principle can be roughly estimated by determining the
maximum target-nucleon kinetic energy, II, at the
point E„=( '+I)s-'*/P at which the contour plot of
M„g shows a maximum. For this purpose, we can
assume the nucleus to be a degenerate Fermi gas of
depth T . Use of the kinetic energy and particle type
associated with each cross section, r, , and T in the pub-
lished equations' " gives the cross-section reduction

"E. Clementel and C. Villi, Nuovo cimento 2, 176 (1955).
's I. Ivanter and L. Okum, J. Exptl. Theoret. Phys. {U.S.S.R.)

32, 402 (1957) Ltranslation: Soviet. -JETP 5, 340 (1957)7.
3' R. Sternheimer, Phys. Rev. 106, 1027 (1957).

TABLE I. The Fermi energy, T, at the M„&
contour plot maximum.

1d shell of F» 1f shell of Cu" 1h shell of Ce'42

g 0.5 0.8 0.5 0.8 1.0 1.5
2 (Mev) 13 15 10 11 12 16

factor. We can determine T from Eq. (B2) of
Appendix II; To is the central kinetic energy of the
highest occupied shell. ' " The substitution of Eqs.
(15) and (B6) of Appendix II into Eq. (B2) and
replacement of r by E gives II' as a function of g.
Table I gives T for two values of g for three repre-
sentative shells. The value of II was taken to be 12
Mev. With this value, the cr; were now corrected for
the exclusion-principle eBect. For o-, associated with
mesons, the meson absorption cross section was
included. ' The correct a; values were then combined
and weighted by the method just discussed to give a
final average value of cr equal to 168 mb . This final 0.

was found to be quite insensitive to changes in g and
to be the same for each of the three shells for which it
was derived.

8. Determination of E

The slow neutron escape factor, F, can be estimated
by dividing the spectrum of the energy gain of the
struck neutron into three parts. If the struck nucleon
gains less than 8 Mev, it cannot escape from the
nucleus, so that the collision does not contribute to
the p,pe reaction. If the struck neutron gains between
8 and 18 Mev, the collision will always contribute to
the p, pcs reaction because if it does not escape,
[process (b)$, the resultant excited nucleus will
usually evaporate only one neutron. Finally, if the
target neutron gains 18 Mev or more it must escape.
This division into three parts with boundaries of 8 and
18 Mev is not meant to be accurate. It does, however,
allow P to be easily estimated.

The fraction of elastic 5.7-Bev p-rs collisions that
gives the struck neutron a gain of )~18 Mev [similar
to process (a) for inelastic p-m collisions] is calculated
from Eq. (A4) (rr, =36)""to be 0.79. For this fraction,
a reduction of M„&' by roughly one half will be assumed.
This is arrived at by assuming that, similar to the
inelastic collisions, most of the contribution to S
comes from collisions in the nuclear-surface region. For
an elastic surface collision, the struck nucleon has
roughly a probability of one half to be going away
from or towards a lot of nuclear matter. If it is moving
towards most of the nucleus it will probably interact,
because the interaction mean free path is small for
nucleons with more than 20 Mev kinetic energy. " If
it is moving away from most of the nucleus, it is likely

40 W. Prahn and R. Lemmer, Nnovo cimento 6, 1221 (1957).
4' Reference 29, pp. 40, 41.
42 L. Elton and C. Gomes, Phys. Rev. 105, 1027 (1957)
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to escape without interaction. Various other effects
such as the exclusion principle, refiection at the nuclear
surface, production of the ~&18-Mev energy-gain
neutron further inside the nucleus, etc. , are ignored
for this rough determination. Consequently, the
contribution to F from this part of the elastic p-n
collisions is —,

' (0.79)=0.4.
Elastic 5.7-Bev p-e collisions that give the struck

neutron an energy gain between 8 and 18 Mev have a
probability of occurrence of 0.1 PEq. (A4), Appendix I).
Since all of these collisions contribute to the p,pe case,
as far as the struck neutron is concerned, the contribu-
tion to F is 0.1. There is a smaller contribution from a
process similar to process (c) for the inelastic p-p case
where a p-p collision occurs leaving a proton with a
kinetic energy gain between 8 and 18 Mev. This contri-
bution will be neglected, as the 0.1 given above which
also holds for p-p collisions must be multiplied by factors
that take account of the fact that the slower proton
must not leave and the p-p collisions with resulting low
nuclear excitation are less likely than are p ncollision-s
for all but the low-Z elements. Consequently, F is
set equal to the sum of the erst two contributions,
which is 0.5.

It is easy to set upper and lower limits on F if one
neglects the contribution mentioned above from p-p
elastic collisions. If one assumes that the nucleus is
completely transparent to the struck neutron, then for
E„=5.7 Bev, F=0.9. The fact that collisions in which
the neutron energy gain is &8 Mev can never contribute
to the p,pl reaction sets this upper limit for F. Similarly
the lowest F can be is 0.1 since the region of energy
gain between 8 and 18 Mev is always available to the

p,pn reaction. This limit corresponds to a nucleus
which is completely black to the struck neutron. Thus
one has 0.1&F&0.9 and the chance of F=0.5 cor-
responds to the nucleus being "half black" to the
struck neutron when its energy gain is ~&18 Mev.

This method of determining F=0.5 is very rough
and would appear to render meaningless any informa-
tion obtained from an application of the results given
in the previous sections. However, it will be shown in
the next section that large errors in F contribute only
small errors to the 6nal results.

C. (p,pn) Reaction Cross-Section Equations

The fraction of 5.7-Bev p-e collisions that are elastic
is not known, so f will be taken from the 6.2-Bev p-p
scattering data as equal to 0.24&0.06." 'I'he factor,
0.~, will be set equal to the recent experimental value
of 33.6~1.6 mb for 4.5 Bev neutrons on protons. 4'

The value of 3f ~ can be corrected for this new value
of 0 & by the use of Eq. (18c).The previously mentioned
correction stemming from the fact that o- should be
168 mb instead of 180 mb can now be included by use

48 V. Perez-Mendez, J. H. Atkinson, W. X. HeSS, hand R, K.
Wallace, Bull. Am. Phys. Soc. 4, 253 (1959).

of Eq. (18b). The values of M„~ obtained from Figs.
3 and 4, when multiplied by (30/33.6)l(180/168)',
can consequently be used in Eq. (21). Substitution of
the values given above for f and F (o.=168 mb and
0~——33.6 mb) gives the result (in mb)

0~ „„=(34+2) Q N„t M„)
allowed
shells

(22)

0,, „„=(36&2) Q N„(,M„(.
allowed
shells

(23)

The error limits with the numerical constants in
Eqs. (22) and (23) are not meant to be absolute. They
include the error limits of 0~, f, and the 1% on M„~ and
do not include any contribution for F.

It can be seen now that the error contributed by the
rough method of determining F is small. It seems
reasonable to require that 0.25 &F&0.75, i.e., the
nucleus can't be either completely black or completely
transparent to the struck target neutron. With these
limits for F the corresponding limits for the numerical
constant in Eq. (22) become 29 and 38 mb, respectively.
Thus it is reasonable to expect that the value of the
numerical constant is in error by less than 15%. This
large reduction of the uncertainty in F comes from the
factor, f, in Eq. (21). This is one of the main reasons
for restricting this treatment to the multi Bev bom-
barding energy region where f is small.

It turns out that this error limit of 15% is smaller in
most cases than the error in the experimental value of
o-„,„„.Furthermore the actual comparison of experi-
mental p,pl cross section data through Eqs. (22) and
(23) will be made through the radius parameter, ro,
given in Eq. (16). Since ro enters in Eqs. (22) and (23)
through Eq. (18a) as ro2, the percentage error in ro
stemming from the uncertainty in Ii will be further
reduced to 7%. The error in ro for 3-Bev data will be
slightly larger than 7% as f is larger. An error limit of
7% is satisfactorily small in view of the errors in the

Use of other 6.2-Bev p-p scattering data to determine

f and o ~ gives the same numerical constant in Eq (2.2).'4
Similarly for a bombarding energy of 3 Bev, the

factors appearing in Eq. (21) can be evaluated. A
determination of 0. from the 1.72-Bev neutron-hydrogen
collision work" in the same manner as for the 3.8-Bev
neutron data including the exclusion principle for
T =12 Mev gives 0 =160 mb. The values of 0-~ will be
taken to be 38&2 mb. This value is a linear inter-
polation between the 1.4 Bev" and 4.5 Bev" n-p cross
sections for a bombarding energy of 3.0 Bev. The
fraction, f, of 0~ which is elastic is taken from the
2.75-Bev p-p collision data to be 0.37+0.04." As
before, F is approximately 0.5. Substituting these
values into Eq. (21) and correcting for the fact that
M ~ is calculated for 0.=180 mb and 0~=30 mb gives
for 3-Bev protons incident on nuclei
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experimental values of o„,„and the approximations
made is this work.

D. Energy Indeyendence of e„,„„in the
Bev Region

Equations (22) and (23) show that the theory
developed here satisfies the requirement that the

(p,pe) cross sections be independent of the bombarding
energy in the Bev region. The decrease with increasing
energy shown in these equations is less than 10% and
is within the experimental-error limits on the experi-
mental (p,pe) cross sections. At 6rst sight it seems
surprising that the cross sections do not decrease with
increasing energy, because the meson multiplicity,
which aGects 0., is dependent on the bombarding
energy. However, this dependence is not strong, as can
be seen from the mean meson multiplicities of 1.8 and
2.2 for neutrons of 1.7-Bev and 3.8-Bev average
energy, respectively. ""The effect of the extra 0.4
meson at 3.8 Bev is reduced by the fact that, as has
been discussed, all the go.; terms, which make up 0,
are weighted by M„~. This weighting tends to suppress
reactions with high meson multiplicity whose abundance
is quite sensitive to the bombarding energy.

The (p, pn) cross section is also dependent on 0~& as
can be seen from Eqs. (18) and (21). The square-root
dependence and the relative constancy of o-~ in the Bev
region help to give the independence of cr„,„„from the
bombarding energy.

E. Inherent Uncertainties Due to
Nuclear Model Chosen

Before the theoretical results are compared with
experimental data it is worthwhile to stress the fact
that the nuclear model used in the foregoing calculations
does not represent real nuclei. One fault of the model
used in the calculations is that the harmonic-oscillator
well was used instead of the more realistic inverse
exponential well. It is difFicult to estimate how much
the values of M„~ would be changed if the inverse
exponential well were used. Both the density-
distribution terms and the radial wave functions in
Eq. (11) ff would be affected. Furthermore, the
degeneracy in the two values of M & for diGerent j but
same e/ values would be removed.

Another fault is that some eGects of nucleon-nucleon
interactions, e.g, , j-j coupling, have been neglected.
Even though Eqs. (7) and (8) hold for j-j coupling,
the radial wave functions and the density terms
would be altered in a complex manner. This would
induce further changes in M„~. In addition to this
effect, Eqs. (9), (19), and (21 to 23) would have to be
altered under any nucleon-nucleon coupling scheme.
This change arises because the sudden removal of a
nucleon from a shell will leave the product nucleus

in any one of several possible parent states. Any one

of these parent states, when coupled to the rslj nucleon,
gives the ground state of the target nucleus. Since
some of these parent states may be unstable to particle
emission, a factor &1 should be included inside the
e/j sum of Eq. (9) and the sum should be extended
over all elj shells of the nucleus. This factor is the sum
of the squares of the appropriate fractional-percentage
coefficients of all the parent states stable to particle
emission. This factor tends to unity or zero as the
nucleon-nucleon interaction becomes weaker and, in
the limit of the independent-particle model, becomes
equal to either 0 or 1, giving Eq. (9) G. For closed-shell
target nuclei, Eqs. (9), (19), and (21 to 23) are valid
as written, because there is only one possible parent
state even with nucleon-nucleon coupling.

The difficulties mentioned above which are caused
by differences between real nuclei and the model
chosen here add an element of uncertainty to any
comparison of theory with experiment. In spite of this,
we shall proceed to see what can be learned from a
simple independent-particle model while keeping the
above discussion in mind.

VI. RESULTS

Two variables are now left in Eqs. (22) and (23)—
which shells are available and the value of g Lor ro by
Eq. (16)j, the nuclear-density-distribution parameter.
A correct calculation of which shells are available, i.e.,
which neutron-hole states of the product nucleus have
small particle-emission widths compared to the gamma-
emission widths, is quite beyond the scope of this work.
However, one can use the eigenvalues of a reasonable
independent particle model as a guide to determine
which shells are available and then use the p,pe cross
sections with Eqs. (18a) and (22) or (23) and Figs. 3
or 4 to determine g or ro. These values of ro can be
compared with values obtained by other experimental
methods. Later another method of treating the data
which considers both the shell availability and ro as
unknowns will be discussed.

A. Radius-Parameter Determinations

The independent particle calculations of Ross, Mark,
and Lawson, "which appear to be successful in predict-
ing the experimentally observed shell filling, will be
used here as a guide to determine the excitation energy
of neutron-hole states in various shells. The availability
of a shell is determined by subtraction of the excitation
energy of the neutron-shell hole state from the highest
particle-stable excitation energy of the product. Only
if the result is greater than zero is the shell available.

The highest particle-stable excitation energy of the
product nucleus is that excitation energy for which the
total particle-emission width is roughly equal to the
gamma-emission width. If a neutron is the least-bound
particle, its binding energy is usually the highest
particle-stable excitation energy. If a proton is the
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TAsLE II. (p,pzz) cross sections snd nuclear-density-distribution parameters. '

(P Ps)
product

C11

O15

F18

Na'2

Mn~

Ni'7

Cu~

Zn6'

Mo»
Nb»b

In114te

$126

Ce141

La141b

Ta18Pm

Proton
bombarding

energy
(Bev)

3.0
5.7

3,0
5.7
5.7

3.0
5.7
5.7

3.0

6.2

3.0

3.0
5.7
3.0
5.7
3.0

3.0

4.1
6.2
4.0
6.2
3.0

3.0

3.0
5.7

. (p ps)
cross

section
(mb)

29.8&1.6
26.7~1
29.8&1.6

4.0+2.4
7.3&0.7
33&5

28~4
19&2
31&5

44~10

37&6

66~14
46&7
66&7
71a6
68&11

72+12'

57&9
63&10
60&15
46a11
24+3

4.2&0.6

47a12
46~12

Reference

44
45
44

46

5
5
6
6

10

10

47

Target

1P3/2

(4)
1P3/2
(4)
1P1/2
(1)
1P1/2
(2)
1d5/2

(2)
1~5/2
(4)
Vv/2
(8)
2P3/2
(2)
2P 3/2

(2)
1f5/2
(2)
1f5/2
(4)
1f5/2

(2)
1gv/2

, (2)
1gg/2

-(2)
1h11/2
(2)1.84
1hj1/2
(10)
2fzn
(2)
1gv/2

(8)
1113/2

(8)

1P3/2
(4)

1d3/2

(4)
1/7/2

(8)
~f7/2
(8)
2P 3/2

(4)
2P3/2
(4)
2P 3/2

(4)
2d5/2

(6)
2P1/2
(2)
1gv/2
(8)7.05
1gv/2

(8)
2d 3/2

(4)
2P1/2
(2)
1h9/2
(10)

2$1/2

(2)
1d3/2

(4)
1d3/2

(4)
1fv/2
(8)
~f7/2

(8)
1fv/2
(8)
1g9/2
(10)
Ifnn
(6)
2d 5/2

(6)5.35
2d5/2

(6)
3SI/2
(2)

2fz/2
(8)

2P3/2
(4) .

nucleus available shells

0.58+0.04
0.65+0.04
0.55&0.04

0.98&0.58
0.50&0.06
0.60&0.10

0.35&0.06
0.49&0.06
0.50+0.09

f'p

1.21+0.04
1.14+0.04
1.24+0.04

1.10+0.36
1.31m0.08
1.21~0.10

1.57&0.14
1.32+0.08
1.32+0.12

0.56&0.12
0.76+0.13
0.62&0.07
0.54+0.06
0.54&0.10

1.25+0.14
1.07+0.10
1.17&0.07
1.26%0.07
1.27+0.12

0.99~0.18 0.94+0.09

0.57&0.10
0.49~0.09
0.86&0.22
1.06+0.28
0.86&0.15

1.23+0.11
1.33~0.12
1.02~0.13
0.92+0.13
1.00m 0.08

2.34+0.39 0.61&0.05

1.06~0.26
1.04+0.25

0.92+0.11
0.92&0.12

0.72&0.13 1.10&0.10

0.75+0.20 1.07%0.14

0.89+0.15 0.99&0.09

a The nuclear density distribution parameters, g and ro, given in this table are partly based on the number of available shells determined from the she
spacings given by Ross, Mark, and Lawson (reference 12) and the highest particle-stable excitation energies of the p,pn products (reference 25). A different
nuclear model than the one used by Ross, Mark, and Lawson, would give different shell spacings and consequently different values of g and ro than are
given here. The spring-constant parameter, g equals P2/A&, where P is the harmonic-oscillator spring constant. The half-central-density radius parameter,
ro, equals R/A&, where R is the nuclear radius at which the density is one-half the central value.

b (p,2p) product.
& Includes (p,2p) cross section.

least-bound particle, an appropriate barrier correction
must be added and the sum compared to the neutron
binding energy. Except for a very few cases, alpha
particles need not be considered. A possible method
of computing the barrier correction and the highest
particle-stable excitation energies for the p,pe products
for which Bev cross sections are available is given
elsewhere. "

Table II gives the experimental (p,pe)-reaction
cross sections and the values of g and ro derived from
the cross sections, the number of available shells, and
values of 3II„/. Column one gives the (p,pe) product
L(p, 2p) product in the case of La'4' and (p,pe) plus

(p,2p) product in the case of Mo",Nb"). Column two
gives the proton bombarding energies in Bev at which
the cross sections in column three were determined.
The cross sections at both 3 to 4 Bev and 5.7 to 6.2
Bev are given, if available, to indicate the spread in

the experimental data. Equation (23) was used for the
4-Bev data. The references''' '""—"to the exper'-
mental cross-section values are given in column four.
Column five gives a possible choice of available shells
determined from the eigenvalue calculations of Ross,
Mark, and Lawson" and the highest particle-stable
excitation energies, " The target-nucleus neutron-
occupation numbers are given in parentheses im-

mediately below each shell. Values of g, derived from
the cross sections by the use of Eqs. (18a), (22), or

(23), and Figs. 3 or 4, are given in column six. The

44 N. Horwitz and J.Murray, University of California Radiatio~
Laboratory Report UCRL-8881, August, 1959 (unpublished).

4' J. B. Cumming, G. Friedlander, and C. E. Swartz, Phys.
Rev. 111, 1386 (1958).

"The author wishes to thank DI'. Lester Winsberg for allowing
the use of his results befoxe publication.

4' James Grover, thesis, University of California Radiation
Laboratory Report UCRL-3932, September, 1957 (unpublished).
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value of rp, the half-central-density radius parameter,
given in column seven for each cross section is the
mean of the two values computed from the upper and
lower limits of g by the use of Eq. (16).

The appropriate values of M i were used to compute
the g and rs values for the (p, 2p) products. Because
the eRect of the coulomb force is completely neglected,
the values of g and rp (Mo", Nb", and I.a'4') are just
rough guesses.

The values of g determined for the target In"' must
be corrected for the fact that the measured (p,pe)
cross section refers only to the isomer In'" (J=S+)
and does not include contributions from In"4 (J= 1+).4'

This correction can be estimated by adding vectorially
the j value of the neutron hole in a given shell, j&, to
the spin of the target nucleus j2 to get resultant J's
between j&+j& and ij&

—jr'. The fraction of each J
state which decays to either one or the other of the
isomers is roughly determined by assuming the decay
to the ground state to proceed by emission of a single
gamma ray of the appropriate multipolarity. The
lifetimes for such gamma decays are compared by
means of published formulas. "Under this simplifying
assumption, it turns out that, except for the state
with a J value midway between the spins of the two
isomers, the states decay essentially entirely into one
or the other of the isomers. For a given neutron shell,
the number of neutrons eRective in producing one of
the isomers is obtained by weighting each J state by
the statistical weight, 2J+1, and the fraction decaying
into the isomer, summing over all allowed J states,
and dividing by Pz(2J+1). This final fraction is
multiplied by the total number of neutrons in the shell.
For In"'(p, prs)In"', the effective number of neutrons
for each available shell was found by taking the
ground-state spin of In"' to be 9/2+ (due to a 1gsis
proton hole)." The effective number of neutrons so
obtained for each shell are given in column five, Table
II, to the right of the neutron occupation numbers.
It is not possible to make such a correction for Ta'"
because the spins of the two isomers are not available.
Consequently, values of g and rp, computed as if the
only product were Ta'", represent upper and lower
limits respectively.

Figure 7 is a plot of the half-central-density radius
parameter, rp, given in Table II, as a function of the
target atomic weight. Points for 3- to 4-Bev and 5.7-
to 6.2-8ev bombarding energies are denoted by
triangles and circles, respectively. The error limits
given on each point are the experimental error limits
only. The dashed lines connect half-charge-density
radius parameters as given by the electron-scattering
results. ~ The solid lines connect a few radius parameters,

"D. Strominger, J. M. Hollander, and G. T. Seaborg, Revs.
Modern Phys. 30, 585 (1958).' Stephen Moszkowski, Beta- meed Gamma-Ray Spectroscopy,
edited by K. Siegbahn (Interscience Publishers, Inc. , New York,
1955), Chap. XIII.
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Fio. 7. The half-central-density radius parameter, rf), as a
function of target atomic weight. The points are obtained from
experimental 3.0-Bev (n) and 5.7-Bev (0) p, pig-reaction cross
sections LEqs. (22) or (23)j, and the static level spacings of
Ross, Mark, and I,awson (reference 12). The broken line connects
values (~ ) of ro obtained from the electron-scattering results
(reference 30). The solid line connects values (V) of square-
density radius parameters, calculated from the formulas in Ap-
pendix III, necessary to give the observed p,pn cross sections.
These values of r0 are the ones that would have to be used in the
existing Monte Carlo calculations to give agreement between
experimental and calculated p,pl cross sections.

~ J. M. Blatt and V. F. Weisskopf, Theoreticat Nuclear Physics
(John Wiley 8z Sons, Inc. , New York, 1952), Chap. IX, pp. 482
to 483, 488 to 492.

"Alfred K. Glassgold, Revs. Modern Phys. 30, 419 (1958).
'~ Sidney Fernbach, Revs. Modern Phys. 30, 414 (1958).

rp, calculated to be necessary to give the observed

p,prs cross sections for nuclei containing a degenerate
Fermi gas with a uniform density distribution. This is
the nuclear model used in the Monte Carlo calculations. '
The radius parameter, rp, was calculated from the
observed p, pcs cross sections at 3 Bev by the use of the
equations derived in Appendix III with o.i——38 mb
and 0=150 mb.

A number of interesting points are revealed on
examination of Fig. 7. The very large values of rp

needed for the uniform-density model (roughly 1.8
fermis) to reproduce the experimental p,prs cross
sections, compared with the points for the harmonic-
oscillator model and the electron-scattering results
(and literature data obtained from total nuclear cross
sections") show that the p,pn reaction cross sections
cannot be explained without the diRuse nuclear surface.
This has already been suspected from the Monte Carlo
calculations. "The values for the half-density radius
parameters (0.9 to 1.3 fermis) determined from the
harmonic-oscillator well lie fairly close to the half-
density radius parameters (1.0 to 1.1 fermis) deter-
mined from electron scattering work. Other determina-
tions of nuclear radii give values for. rp of 1.07 felmis
(exponential-well half-density radius parameters)"
and 1.25 fermis (square density distribution). @ The
agreement between these values of the half-density
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radii and the values found in this work is quite satis-
factory, especially in the light of the discussed un-
certainties contributed by the use of the harmonic-
oscillator model. It is, of course, not correct to compare
half-density radii directly with square-density radii.
However, the comparisons made above are rough
enough so that errors from this source are relatively
small.

Unlike the other nuclei studied in this work, the
half-density radius parameters obtained from the p,pe
cross sections for C", N", and 0" can be directly
compared with those obtained from the results of the
electron scattering from these three nuclei. One reason
is that the electron-scattering results were analyzed
in terms of a harmonic-oscillator well, as was used
here. Another reason is that the available neutron shells
are known. ' Also, as has been discussed, Eqs. (22) and
(23) are valid under j-j coupling for C" and 0's because
they are closed-shell nuclei. The same holds for N"
because the one neutron outside the closed shells is the
only one available. Still another reason is that the
eftect of the coulomb force on the nucleon density
distribution LEq. (12)) is small. Finally, there is no
numerical error made in using Eq. (16) for C" and
0". This can be shown by substituting the values of
1/P for C" and 0" (given as as in Table I of reference
30) into Eqs. (15) and (16), solving for rs, and com-
paring the values so obtained with those given in
Table IV, column 8, of reference 30. No electron-
scattering data is given for N", so the value of ro for
this nucleus is taken to be midway between that of
C" and 0".

A direct comparison (see Fig. 7) between the values
of ro obtained in this work and the electron-scattering
work shows that, for C" N'4 and 0" the nucleon
half-density radius parameters are larger than the
charge half-density radius parameter by 0.1 to 0.5
fermi (exclusive of the 3-Bev N'4 point because of its
large error limit). This difference seems to be somewhat
larger than the value of 0.1~0.1 fermi obtained by
other means for the difI'erences between the half-
nucleon and charge-density radii (the factor of A& is
included in this latter value). " It is diflicult to say
whether this difference is real or is due to errors in the
assumptions used here. Perhaps the zero-degree
laboratory scattering-angle approximation or errors
inherent in the method of computing 0., as are discussed
later, are the cause. It would seem that these error
sources are not su%.cient to explain this discrepancy.
A reduction of ro from 1.2 to 1.0 fermis would require
an offsetting reduction in o. from 168 to 80 mb which
is quite drastic. The crude method used to estimate
the contribution from elastic p-e collisions may also
be contributing errors. If Ii were set equal to 0.9
(the nucleus perfectly transparent to the struck

"L.Klton, Revs. Modern Phys. 30, 557 (1958l.

neutron) then o would still have to be reduced to 125
mb to give ro= 1.0 fermi.

It is interesting to note that, on the basis of the
available-shell assignments made, the (p,pe) radius
parameters show a decrease with increasing A. Some
of the decrease is probably due to the error associated
with using Eq. (16). There also appear to be some
irregularities associated with major shells; i.e., Fe'4,
Mn", and Ni" all have 28 or less protons and a smaller
value of rs than do Cu", Cu", and Zn" (Table II),
which have more than 28 protons. Similarly, In"',
which has between 28 and 50 protons, has a larger
value of ro than does P", Ce"' or Ta' ' with more
than 50 protons. Molybdenum-100 causes some

difhculty here, a difhculty which could be resolved by
a study of more (p,pn) reactions around mass 100
uncontaminated by (p, 2p) reactions. The low-Z
elements again show a value of ro similar to that of
copper, zinc, and indium. Thus it appears as if nuclei
with 20&Z(28 protons and Z&50 protons may have
smaller half-density radius parameters than the other
nuclei. Neutron major shells appear to have less eGect,
because Mn", Ni" Cu" Cu" and Zn" all have more
than 28 neutrons, and In"' and I"' have between 50
and 82 neutrons. It must be realized that these ideas
regarding shell effects on ro are of a most tentative
nature as they depend on the nuclear model used to
determine the values of M ~ and which neutron shells
are available.

B. Available-Shell and Radius-Parameter
Determinations

It is perhaps more profitable to consider both the
availability of the shells and the radius parameter as
unknowns. Then the (p,pe) cross sections can be used
to determine, for each target isotope, values of ro as a
function of the shells selected to be available. Figure 8
gives values of ro as a function of available shells
[computed by the use of Eqs. (16), (18a), (22), and
(23) and Figs. 3 and 4$ for some of the cross sections
given in Table II. The ordinate gives the half-density
radius parameter, and the abscissa gives the neutron
shells in the order in which they appear in the nuclear
well. ""The abscissa of each point is the lowest shell
considered available: i.e., for that point all shells below
are unavailable, and all shells up to and including the
highest neutron-containing shell are available. The
lines connect points for a given target in the order of
the neutron (proton in the case of La'4') shell filling in
the well. " The right-hand point of each series cor-
responds to only the topmost neutron-containing shell
being available. Each series extends to the left to the
1$$/s shell (all the neutrons available). However, the
series were terminated at a point where the number of
shells taken to be available was considered to be more
than sufhcient for any reasonable nuclear model. The
abscissae for the Mo", Nb" points refer to the lowest
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3.0-Bev (n) and 5.7-Bev (Q) p,pN cross sections and Eqs. (22)
or (23). The solid lines connect points belonging to the same
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are considered unavailable, all the shells higher in the potential
well including the highest occupied neutron shell (represented
by the right hand point of the series for each product) are con-
sidered available. The solid vertical lines of the abscissa represent
major neutron-shell closures.

available Mo"' neutron shell. The lowest available
Mo"' proton shell for the 6rst point on the left was
taken as 1fr~s The rest .of the points were computed
for a 2ps~s proton shell as the lowest available. Several
point series, similar to those given, were omitted to
avoid clutter. The major neutron shell closures are
indicated along the lower margin of Fig. 8.

A point series is given in Fig. 8 for the reaction
Ce'4'(p, 2p)La'4'. This has been computed by using
neutron wave functions, Eq. (11), for proton wave
functions in Eq. (10) and computing values of re as a
function of shell availability. (For p-p collisions, o& is
about equal to ot for p-rs collisions, and the value of o

should not change much for p-p collisions. )
Except for the points for C, N, and 0, Fig. 8 should

be considered as only approximately representing the
correct situation. Under a coupling scheme any given
shell could be partly available, because some of the
product parent states with a hole in the given shell

may be particle-unstable. Also, the position of the
points might be somewhat diBerent if the wave func-
tions corresponding to an inverse exponential well

were used. It is to be hoped, though, that the general
characteristics of Fig. 8 would be preserved if the
correct model were used; accordingly the discussion
will be limited to general features.

The series of points for each element all show the
same characteristic of a decrease in rp as more shells

are made available. The steepness of the initial portion
on the right of each series is dependent on the number

of nucleons in the topmost occupied shell. Iodine-127

and Ta'" have many neutrons and protons in their
topmost shells, whereas In"' has only two neutrons.
For several elements, the series of points makes it
possible to put lower limits on the number of shells
available. Thus for In'" the large value of rp required,
if only the 1g&~2 and 1h»~2 shells are available in In"',
make it quite likely that a large part or all of the 2d5~2

neutron shell ip also available. Similarly the unreason-
able values of rs required for Ni" and Cu'4 if the ifr~s
is unavailable show that much or all of the 1fr~s neutron
shell is allowed. This is noteworthy in that the 1fr~s 1fs~s-

spacing more than crosses a major shell closure.
(Mn", Cu", and Zn" give the same result. )

If one takes the highest particle-stable excitation
energy of the product nucleus into account, upper
limits on the excitation energy of populated levels can
be set. For example, in the case of In"', the highest
particle-stable excitation energy of 7.0 Mev (neutron
binding energy)" '4 yields the result that most or all
of the levels popu1ated by removal of a 2d5~2 neutron
from In"' have less than 7.0-Mev excitation energy.
Similarly, from the highest particle-stable excitation
energy of 7.91 Mev (neutron binding energy" s') for
Cu", one ca,n show that most or all of the Cu" levels
populated by removal of a 1f7~s neutron from Cu '
have an excitation energy less than 7.9 Mev. Similar
arguments can be given for Cu" Zn" Mn", and Ni' .
Under the independent particle model the above two
cases show that the ihtr~s-ids~s and 1fsfs ifr~s n-eutron-

shell spacings are less than 7.0 and 7.9 Mev,
respectively.

These arguments can be carried to other as yet
unmeasured (p,pe) cross sections to estimate the
energy spacing across other neutron shells. For example
for the Nb" or Ru" (p,pcs) cross section one can
determine the availability of the ig9~2 neutron shell
and estimate an upper limit for the 285]2-1gg/2 shell

spacing across the %=50 major shell.

C. The Problem of Ce'4'

Ce'4' is the only nucleus for which (p,pcs) and (p,2p)
cross sections are known in the Bev energy region. We
see from Fig. 8 that the values of rp, obtained from the
Ce"' production cross section, range from less than
0.67 fermi to 1.5 fermis, which is a reasonable range.
However, the maximum value of rp obtained from the
La"' production cross section is 0.67~0.05 fermi
which is an unreasonably small value. One possible
explanation of this low value is that the Coulomb
force (which was neglected) concentrates the protons
strongly towards the center of the nucleus. This
concentration is beyond that already given by the
sum over squared harmonic-oscillator wave functions

~ A. Wapstra, Physica 21, 367 (1955}.
» K. Way, R. W. King, C. i. McGinnis, and R. van Lieshout,

Nuclear Level Schemes A =40 to A=9Z, Atomic Energy Commis-
sion Report TID-5300 (U. S. Government Printing Of6ce,
Washington, D. C., 1955), pp. 186, 187.
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for X)Z t Eq. (12)j.This seems unlikely, because the
concentration required to fit the La"' cross section is
unreasonably large. Also other work shows that the
radial neutron and proton density distributions are
not too different from one another. ""Another alter-
native is that the Ce" nucleus is quite small and has
relatively little surface. This also seems unlikely in
that a half-density radius parameter of 0.6 to 0.8
fermi is an extreme reduction compared to that for
other nuclei. A third alternative is that the order of
proton-shell Ailing in the Ce'4' well is wrong, and the
highest filled proton shell is some shell other than the
1gvf~ shell with just a few protons in it. However, this
alternative is contradicted by the observed ground-state
spins and parities of the odd-z, odd-A nuclei from
antimony through lanthanum. ""

Another possible explanation for the small value of
ro obtained for La"' is that there is a strong coupling
between the two 2f7/2 neutrons and the 1gq/2 proton
hole in La'". Therefore many of the La'" parent states
are unstable to particle emission. This would decrease
the number of available neutrons and increase the
value of ro. A similar strong coupling can also be
allowed between the two 2f7/2 neutrons. and 1hg|/g,

3s~i2, and 2d3f2 neutron-hole states of Ce'" if one
assumes that the three closely spaced 1h»i2, 3s&i2, and
2d3f2 neutron shells" are available. However, the effect
of this coupling on La'" seems unreasonably large
when compared to the effect on other nuclei represented
in Fig. 8. It does not seem possible at present to decide
between these or any other alternatives as to why the

(p, 2P) cross section (and ro) is so low. More Bev (p, 2p)
cross sections for other elements are definitely needed.
This difficulty with cerium will be more thoroughly
discussed in a future publication.

D. Nuclear Rearrangement

The approximations used in deriving Eqs. (12) and
(21) to (23) and their use with the experimental
high-energy (p,pn) cross sections reveal an interesting
result. In this work (P,pn) reactions have been assumed
to occur when a multi-Bev incident proton enters a
nucleus and strikes a neutron in a given shell, and the
reaction products leave the nucleus in a time short com-
pared to nuclear rearrangement time. This allows one
to consider the nucleus as a container for nucleons
whose momenta and shell distribution can be taken to
be that of an unperturbed nucleus. After the collision
products have escaped, the nucleus is left in any one of
a number of excited parent states whose energy distri-
bution is equal to the excitation energy of the neutron-
hole state plus the distribution of the rearrangement
energy. "In this context, the rearrangement energy con-

'6 Lawrence filets, Revs. Modern Phys. 30, 542 (1958).
"The author is indebted to Professor Ben Mottelson for point-

ing out this extra source of excitation energy and the fact that it
must contribute less energy than the binding energy of the
least-bound particle in the product nucleus.

sists of all the energy released when the nucleus goes from
the ground state of the target minus one neutron from a
given shell to the corresponding neutron hole states of the
product. This energy comes from such sources as the re-
coupling of the nuclei in open shells when a neutron is re-
moved, a slight radial shrinkage of the nuclear potential
well, etc. The point here is that the nuclear rearrange-
ment associated with the snatching of a neutron from an
available shell must predominantly populate product
states whose rearrangement energy is less than the
highest particle-stable excitation energy of the product
nucleus, or about 8 Mev. If the rearrangement were
such that all populated product states were more than
8 Mev above ground state, all P,pe cross sections
would be equal to zero."

It is possible in several cases to set the upper limit
on the rearrangement energy associated with the states
predominantly populated by nuclear reorganization
at less than the highest particle-stable excitation
energy of the product nucleus. As has been discussed
in another work, ' the only particle-stable state of N"
is the ground state, because the proton binding energy
(1.95 Mev) is less than the excitation energy for
the 6rst excited state (2.37 Mev). ' Further, the low
value of the (p,pl) cross section for N'4 is explained
satisfactorily by the low number of available neutrons
(See Table II and Figs. / and 8). Consequently, the
nuclear rearrangement associated with the snatching
of a 1P&/2 neutron from N" must predominantly
populate the ground state of N". The energy associated
with this rearrangement to the N" ground state must
be zero Mev.

A similar situation exists for the product 0".From
Table I and Figs. 7 and 8 it can be seen that the
0"(p,pe)0" cross section is satisfactorily explained by
taking the 1P~/2 and 1P3/2 neutron shells to be available.
If one assumes that, because of a large rearrangement
energy, the 1p8/~ shell is not available, the half-density
radius parameter, ro, from Eqs. (16), (18a), and (22)
and Fig. 3 would have to be 2.1 fermis to give the
(P,pn) cross section observed. The large discrepancy
between this value and others (see Figs. 7 and 8 and
ensuing discussion) supports strongly the availability
of the 1p3/2 shell. The 1p3/2 neutron-hole state of 0"
is at 6.14 Mev; there is one more level at 6.86 Mev
before the first particle-emitting level at 7.61 Mev is
reached. " This part of the level scheme shows that
the nuclear rearrangement occurring after a 1/3/2
neutron has been snatched out must predominantly
populate either the 6.14-Mev level or the 6.86-Mev
level of 0". The respective energies associated with

rearrangement to these two levels are zero Mev and
0.68 Mev.

This same argument can be applied to heavier nuclei.
It has already been shown how the buried 1f~/2 neutron

"F.Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955).
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shell in Cu" Cu" and Zn" is probably available,
because its exclusion gives unreasonably large values
of rs. Snatching a neutron from the 1fr~s closed shell of
zinc or copper would give a product hole state with
appreciable excitation energy (roughly 5 Mev), "
because it is across both a major and minor (the 2p3/s)
shell. Since the highest particle-stable excitation energy
for zinc and copper is 8 to 9 Mev, ""- there must be
no large population of states whose associated re-
arrangement energy is greater than 3 to 4 Mev. This
figure is quite approximate and is only a rough first
guess. This same argument can be applied to other
cases such as the 2d5~2 shell of In"' and possibly the
1h~~~2 shell of Ce"'. These relationships between
simple nuclear reaction cross sections and nuclear
rearrangement will be discussed in more detail in a
later publication.

Role added ie Proof. The id—eas expressed in this sec-
tion regarding nuclear rearrangement and rearrange-
ment energy appear to be consistent with the views
expressed by K. Brueckner [Proceedings of the Inter-
national Conference on the Nuclear Optical Model, The
Florida State University, Tallahassee, Florida, March,
1959, Pages 132—144j.

E. Other Uses of (p,pn) Cross Sections

We have shown how the p,pn cross section can be
used to obtain information about rearrangement energy
and shell availability. Here we wish to point out that
for some nuclei the high and low angular momentum
subgroups of the group of available neutron shells can
be studied separately. To do this, one has to measure
the (p,pe)-reaction cross sections to two isomeric
product states of an even-X-even-Z target nucleus.
Because the ground state of such a target has a value
of J=O, the sudden removal of a neutron will leave the
product nucleus in states whose J values are all equal
to the j value of the removed neutron. The strong
gamma ray lifetime dependence on the multipolarity
of the transition strongly weights the populating of
the high- and low-spin isomers by the high- and
low-angular-momentum neutron shells, respectively.
This division of the neutron shells is not nearly so
clean-cut for the even-S-odd-Z targets with isomeric
product states which are the only ones studied so
far. This is because the neutron hole produced by the
sudden removal of the neutron can couple with the J
value of the target nucleus to give a whole range of spins.

Another possible use of p, pn reaction cross sections
can be seen from a closer examination of Eq. (21).
Suppose the p,pe reaction cross sections were known
for a series of isotopic targets in which a large neutron
shell was filling. Then Eq. (21) shows that a plot of
O„„„against the neutron number in the filling shell is
an almost straight line (the A dependence of M„r over
a restricted A range is small at large A) whose slope
equals 3E„~ for the filling shell. In this manner it

appears possible in some cases to determine M„~
experimentally.

VII. POSSIBLE ERROR SOURCES

It has been shown how the results of the theory
embodied in Eqs. (21) to (23) and Figs. 3 and 4 may
help to understand nuclear structure more clearly by
yielding information about nuclear radii, rearrangement
energy, and hole-state excitation energies. These
results have been derived from a theory based on
several simplifying assumptions, such as the impulse
approximation, single nucleon-nucleon collisions, classi-
cal nucleon and pion trajectories inside the nucleus,
and a very approximate treatment of elastic p-e
collisions. Besides these assumptions and the difficulties
inherent in using the independent-particle harmonic-
oscillator model to represent real nuclei, there are
other implicit approximations in the theoretical results.
A discussion of these points will help to put this work
in a better perspective.

There are a few sources of possible error in the
assumption made that the e6ective average exit cross
section, 0, is a sum of exclusion-principle-corrected
cross sections for pion-nucleon and nucleon-nucleon
collisions averaged over event types and particle
energies. One source stems from the neglect of the
wave properties of high-energy pions and nucleons. If
a nucleon and a pion are scattered at an included
angle of 20' and 300-Mev kinetic energy each—which
are not unreasonable figures" "—then the nucleon and
pion must travel 0.8 and 1.1 fermis respectively before
their separation is greater than the pion reduced
wavelength. This is an appreciable distance of travel
compared to nuclear dimensions. For this part of their
paths where the particles are closer than a wavelength
apart, the cross section for interaction with nucleons
would not be just a sum of individual nucleon-nucleon
and pion-nucleon collision cross sections because there
would be some sort of interference.

Another source of error which also arises from the
neglect of the wave properties of the colliding nucleons
is that, depending on the angular distribution of the
emitted nucleons and mesons, the momentum transfer
to the target nucleon along the incident-particle
direction can be very small for high incident energies.
The uncertainty principle then shows that it can be
impossible to localize the collision to within a nucleon
dimension, or even nuclear dimensions as has been
done in Eqs. (1) ff. This problem has been treated in
the literature and conditions are given to determine if
the collisions can be localized. " The meson energies
in the "reconstructed events" used to determine 0.,
were used in the appropriate condition equation. " It
appears that on the whole the picture of a collision
localized to within nuclear dimensions has approximate

' E. Feinberg, J. Exptl. Theoret. Phys. (U.S.S.R.} 28, 241
(1955) Ltranslation: Soviet Phys. -JETP 1, 176 (1955)g.
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validity. For about one-half of the ppa. events and
most of the pns.+~ and pns. +a a' events at E~ 3.8——
~2.4 Bev, the collisions are localized to nucleon
dimensions.

An error source affecting 0 may exist if the isobar
model of pion production from high-energy nucleons
is valid inside the nucleus. ""Since the isobar states
have small but finite lifetimes, the nucleon-nucleon
collision products traverse the first part of the path as
isobars which then each decay into pions and a nucleon.
Consequently for the erst part of the path, 0 consists
of cross sections for nucleon isobar-nucleon collisions.
An error is introduced unless these cross sections are
equal to the sum of the individual cross sections for
collisions between isobar-decay products and nucleons.

The assumption that the pion-nucleon collison cross
sections used to determine 0. are the same inside the
nucleus as outside may be a further source of error.
Recent theoretical work shows that various parameters
describing pion interactions inside a nucleus vary
strongly with energy. " However, the errors made in
assuming the free pion-nucleon cross sections to hold
inside the nucleus should be small, except possibly
near the resonance. "The free n-p scattering data do
not show strong peaking in the produced meson
intensity at the resonance energy. For this reason and
possible similar hard-to-correct errors in "lifting" the
free n-p scattering data into the nucleus, no correction
was made for this error source.

The magnitude of the error arising from these sources
in the approximations used to develop the theory is

very difficult to determine. It is hoped that it is small,

possibly through cancellation effects of the individual
errors. Perhaps in the future it will be possible to
evaluate the uncertainties arising from these sources.

There are several small errors arising from the
experimental input p-n collision data and the methods

of handling the data. One uncertainty in the input
data is that, for pn —+ pn7r+s vr' and other less frequent
events, the number of neutral pions produced is un-

certain. "For this work, the number of m' particles in

each event type explicitly stated in the input data was

used. There is some evidence that the average x'
multiplicity is somewhat larger than that given by
the above data. "Several errors arising from the method
of treatment of the input data include neglecting the
few high meson-multiplicity events in the input data
(the five-prong and a few of the three-prong events
were neglected) and letting A/2=1V=Z for all target
nuclei in the determination of 0. These and other
errors arising from the method of event reconstruction
and estimation of the reduction in 0 due to the exclusion

principle should be small.

80 K. Watson and C. Zemach, Nuovo cimento 10, 452 (1958);
K. Watson (private communication).

VIII. SUMMARY AND CONCLUSION

The failure of the model used in the Monte Carlo
calculations to predict either the right magnitude or
dependence on target element of the p,pn cross sections
for Bev protons has been evident for some time. The
lack of a nuclear surface and shell structure in the
model have been suggested as the most likely reasons
for lack of agreement between theory and experiment.

In order to remedy this situation, a theoretical
treatment of simple nuclear-reaction cross sections, as

exemplified by that of the p,pn reaction, was developed.
This allows the use of several diGerent nuclear models.
The theory is based on several simplifying approxi-
mations which appear to be valid in the multi-Bev
bombarding-energy range. These approximations in-
clude the impulse and zero-degree scattering-angle
approximations, use of classical trajectories for the
incident and scattered particles, and quantum me-
chanical treatment of the target particle. Equations
(9) and (10) give the results of using the above simpli-

fying approximations in the theoretical treatment.
In order to obtain numerical results, the

independent-particle harmonic-oscillator nuclear model
with spin-orbit coupling was chosen because it gives a
diffuse nuclear surface, shell structure, and analytic
wave functions. In the interests of self-consistency, the
same wave functions were used to give the total nuclear
density as well as the probability of finding a nucleon .

with a given set of quantum labels at a given point.
Equation (13) was integrated on the IBM-'/01 computer
for several shells and target elements over the periodic
table for a range of values of the spring constant. The
cross sections 0.

& and 0 were set equal to 30 mb and
180 mb, respectively; 0- was estimated from the 3.8-Bev
cloud chamber data. Also M ~ was determined as a
function of 0 and cr~ for selected shells of F", Cu",
and Ce'4'

The contribution to the p,pn reaction cross section
from elastic p-n collisions was roughly estimated by
dividing the energy gain of the struck neutron into 3
regions, 0 to 8 Mev, 8 to 18 Mev and ~&18 Mev. The
first region never contributes, the second always
contributes, and one half of the third region was
assumed to contribute. It was shown that even with
wide error limits on the contributing fraction of the
third region, the error limits on ro from this source is
only 7% for 5.7-Bev bombarding energy.

In order to apply the above results to nuclei, 0 was
carefully determined from the 1.7- and 4-Bev neutron
cloud chamber data to be 160 mb and 168 mb, respec-
tively. The values of 0-~ were taken to be 33.6&1.6 mb

and 38~2 mb at 5.7 and 3.0 Bev, respectively. These
values of cr~ and o were included in Eqs. (22) and (23)
by means of Eqs. (18b) and (18c).

Experimental values of o~, „were used in Eqs. (22),
(23), (18a), and (16) to give the nuclear half density
radius parameters as a function of shell availability.
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The use of reasonable choices of shell availability gave
values of ro which are in satisfactory agreement with
those obtained by electron scattering and other types
of measurement (Fig. 7). This is in contrast to the
model used in the Monte Carlo calculations and
conirms the requirement of a disuse nuclear surface
for the explanation of (p,pn) reaction cross sections.

The low-Z elements, for which the available shells
are known and the harmonic-oscillator model is valid,
give values of the nuclear half-density radius parameter
of 1.2+0.1 fermis (Fig. 7), which is larger than the
value of 1.03 fermis for the electron-scattering charge
distribution using the same nuclear model. It is dificult
to say whether this difII'erence is real or whether it is
due to errors in the assumptions used in this work.
The values of F and 0. would have to be changed rather
drastically to bring ro down to 1.0 fermi.

The results (Fig. 8) show also how tire idea of a
reasonable value of the nuclear radius parameter may
be used with some (p,pn) cross sections to determine
the minimum number of available shells. Coupled with
the highest particle-stable excitation energy of the
product nucleus, this information can be used to help
decide which nuclear models give more appropriate
energy eigenvalues. For example, this argument shows
that in Zn'4, Cu63, and Cu" the 1f~/2 1f5~2 neut-ron-level

spacing must be appreciably less than 8 Mev.
The Ce"' and La'" data present somewhat of a

problem in that the (p,pn) and (p, 2p) cross sections
are low. One possible explanation is that strong nucleon-
nucleon coupling reduces the number of available
nucleons for the (p,pe) and (p, 2p) reactions. Another
possible explanation is that the protons are well
inside the neutrons —even farther than is indicated by
the fact that E is greater than Z.

A general consideration of the mechanism of (p,pn)
reactions at high energies shows that the rearrangement
energy associated with states predominantly populated
by nuclear reorganization after a neutron has been
snatched away must be less than the highest particle-
stable excitation energy of the product nucleus
(roughly 8 Mev). This upper limit on the rearrange-
ment energy of largely populated states can be extended
even lower for several target nuclei. In particular, for
N' and 0" targets the energy associated with the
rearrangement to the N" ground state and the 6.14-
and 6.82-Mev states of 0"must be zero Mev and less
than 0.68 Mev, respectively. A similar conclusion holds
for the targets Zn", Cu" and Cu" for which it is shown
that the buried 1f7~2 neutron shell is very likely avail-
able. The appreciable if&~2 hole-state excitation energy
in these targets depresses the upper limit of the re-
arrangement energy for populous product states well
below the highest particle-stable excitation energy.

The existence of isomeric states of the (p,pe) product
allows the division of the available shells into high and
low angular momentum groups and the separate study
of each group. Even-even target nuclei are m,uch more

suitable for this purpose than are even-odd nuclei.
This is because there is only one spin and parity
possible for a neutron hole in a given shell. For even-Ã,
odd-Z targets, a wide range of spins is usually possible
for a hole in a given neutron shell.

The results of this work indicate that much informa-
tion may be obtained from (p,pm)-reaction cross
sections in the multi-Bev region. Much more experi-
mental data is certainly needed. Furthermore, all but
a small part of this work covered (p,pe) cross sections,
whereas (p, 2p)-, (p,pm+)-, and (p,pm ) Lor (p,e)]-
reaction cross sections can also be treated in the same
manner as the (p,pn) cross sections. Equation (10)
holds for (p, 2p) as well as (p,pe) reactions and, with
the inclusion of other factors, can also be used for
(p,pn.+) and (p,pn ) reactions.
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APPENDIX I

Angular and energy distributions are easily obtained
from elastic p-p collisions, because the angular de-
pendence of the scattered products at high energies
in the c.m. system is known. ""In the absence of
experimental data at Bev energies, the angular de-
pendence of the p rt elastic cross sec-tion in the c.m.
system is taken to be the same as that of the p-p elastic
cross section in the forward c.m, hemisphere. "

For elastic nucleon-nucleon collisions, the recoil
energy, T2, in the laboratory system of the target
particle is given by Morrison, "Eqs. (7a) and (13):

T2 mc'[(y 1)/2j(1——+cosg), — (A1)

6'The author is indebted to Professor Kenneth Watson for
suggesting the following angular dependence, extrapolated from
existing experimental data, for elastic collisions of Bev protons
incident on neutrons. The proton differential-scattering cross
section in the forward c.m. hemisphere can be taken to be the
same as that from p-P elastic collision data. This is the forward
diffraction peak. Superimposed on this is an isotropic differential-
scattering cross section. For p-n collisions, this can be considered
equal to the 90' c.m. differential-scattering cross section from
elastic P-p collisions. At multi-Bev energies, this differential-
scattering cross section is very small (reference 21) and has been
neglected by the author.

6'Philip Morrison, ExperimerItal Enclear Physics, edited by
E. Segrb (John Wiley R Sons, Inc. , New York, 1953), Vol. 2,
Part VI, pp. 3 to 11.
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zeroj, then from Eqs. (81) and (82) we havewhere 0 is the scattering angle of the target nucleon in
the c.m. system, and p —1 gives the laboratory kinetic
energy in units of mc'. The laboratory scattering angle,
8s, of the target particle, as given by Eqs. (6) and (13)
of reference 62 and a trigonometric identity, is

p/p p
——(1—r'/Rps) &, (83)

where pp is the central nuclear density. Normalization
of Eq. (83) to require that A nucleons are contained
in a sphere of radius Ep gives

(y—1)+(y+3) cos8
cos02=

(y+3)+ (y —1) cos8
(A2) p p

——8A/s'Rps. (84)

Because Eq. (81) also gives a relation between pp and
Tp, use of Eqs. (84) and (82) (at T=O) and Eq. (81)
gives

The number of neutrons from elastic p-n collisions,
(dX/d8)d8, scattered per unit scattering c.m. angle into
the solid angle 2m sin0d0 and normalized to one incident
proton, is given by

a)= (-,')&(2A &h/rNRp')

P = (ma)/is)
'

P'= (-,')i(2A /Rps)

Since we have"
(86)dlV/d8= (e+ 1) cos"8 sin8. (A3)

we obtain
This result is obtained from the cos"0 dependence of
the p-p differential scattering cross section in the
forward c.m. hemispheres. "

The fraction of collisions, Iiz, which scatter target
neutrons with a laboratory recoil kinetic energy of T
or less is obtained by integrating Eq. (A3) between
the limits m and 0~. The value of 0~ is obtained from
Eq. (Al) with Ts set equal to T. These operations give

For use here it is preferable to give P' in terms of the
half-density radius, R, rather than the turning-point
radius. From Eq. (83) it can be seen that R'=Rp'[1
—(-,')**(.Writing R=rpA'* and evaluating the numerical
constants we Anally get

P'=0 847/A. :rp'=g/A',

Fr (1—[1 ——2T/rlc'(y—1)j"+'). — (A4) where g is given by

APPENDIX II
g= 0.847/rp' (89)

Equations (15) and (16) can be derived by consider-
ing the nucleus as a degenerate Fermi gas. Then the
nucleon density, p, is given by"

p = [16'(2rrr) ~/3h']T**, (81)
where T is the Fermi kinetic energy of the nucleons,
and nz is the nucleon mass.

For a harmonic-oscillator nuclear well, T is given by

T= Tp ssco I'
~ (82)

TAm, E III. Comparison of half-density radius parameters.

Half-density radius parameter,
rp (iermis)

from Eq. (14) and
Element (fermis)~ from Eq. (B9) Mayer and Jensen'

P19

Cu65

Cel42

0.60
0.80
0.50
0.80
0.80
0.90

1.19
1.03
1.30
1.03
1.03
0.97

1.16
1.00
1.37
1.06
1.12
1.06

a See referenCe 31.

6'Wladyslaw Swiatecki, Proc. Phys. Soc. (London) A68, 285
(1955). The author is indebted to Dr. Swiatecki for a valuable
discussion about the points covered in Appendix II.

where Tp is the Fermi energy at the center of the
nucleus and co is the oscillator frequency. If Rp is the
classical turning point of a nucleon with the Fermi
energy [obtained from Eq. (82) by setting T equal to

In spite of the approximations involved in using
Eq. (81)," Eqs. (87) and (88) give fairly accurate
values of the half-density radius parameter, rp. This
was checked by plotting the actual nuclear density
distribution as a function of the radius for a few values
of g by using Eq. (14) and the shell occupation numbers
of Mayer and Jensen" for three nuclei, F", Cu", and
Ce'". Table III gives the results. A comparison of the
results in Columns 3 and 4 shows that rp obtained from
Eq. (88) varies from being 3'%% too large for F" to
9% too small for Ce'4' when compared to the correct
values of rp obtained from Eq. (14).

T'= 3/rp'A, (C1)

APPENDIX III

The (p,pe) cross sections as a function of rp for the
model of the nucleus used in the Monte Carlo calcula-
tions9 can be computed easily under the assumptions
made in this work, since all the necessary integrations
can be performed analytically. The nuclear model
used for the Monte Carlo calculations was that of a
degenerate Fermi gas with a uniform radial density
distribution out to Rp=rpA'. For R greater than Rp,
the density was set equal to zero.

These characteristics can be easily put into Eq. (10)
of the main part of this work. Since the radial distribu-
tion is independent of the position and momentum of
the nucleons, the „,i,; subscript can be removed from

T~,;(r'+ ),sand we can write for the normalized
single-nucleon distribution
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where the factor of —,
' is outside the integrals in Eq. (10).

In this model, the two density factors, p(R) and p'(R)
will be set equal to one another because the one nucleon
less in p'(R) will have even a smaller effect than for
the harmonic-oscillator model. Normalization of p(R)
to contain A nucleons in a sphere of radius Ro=roA&
gives

p (R) =3/4~ro'. (C2)

pBp

rdr
2rp'A Jp

g (&O2—r2) k

~ —(Rp2-r~) '

(gp2 r2) 4
30y

Xexp-
4mrp' &,

3o

4xrp' —(~p~ —r ~) &

Evaluation of the integrals gives

8K ro 1—(1+2ai) exp( —2ai)

Substitution of Eqs. (C1) and (C2) into Eq. (10) and
changing the ininite limits to limits on the surface of
the sphere gives

dry 4m (2m) &Tl ~47rro'A y

ho ( 3 ] (C5)

where the last factor on the right converts dp/dT into
dN/dT. The fermi en.ergy is obtained from Eq. (C5) by
the requirement that

Tgi

(de/dT)dT=X,
Jp

where S is the total number of neutrons in the nucleus.
Substitution of Eq. (C5) into Eq. (C4) along with the
normalization condition for TI; gives, after rearrange-
ment,

32mro'Eo (7r'A ) ' '*

&18~)
(C6)

The neutron density per unit energy, dn/dT, for a
Fermi gas, which is determined from Eq. (B1) of
Appendix II "is

9A ((r—o i)

1—(1+2a) exp( —2a)

o 2
(C3)

Equations (22) and (23) give

o.„,„=o-m, M, (C7)

where
ai =3o iA ~/47rro2,

(dm )
N. =

f /dT,
~r, ~, &dT)

(C4)

where e, is the number of allowed neutrons.

a =3oA '*/pro'.
For A))1, the sum over the allowed shells in Eqs. (22)
and (23) can be replaced by an integral over the Fermi-
gas density distribution from the Fermi energy Ty to
a depth E~ down from the top of the Fermi sea. Here
E& is the highest particle-stable excitation energy. ""
Because M given by Eq. (C3) is independent of the
integration variable in Eqs. (22) and (23), it can be
moved outside the integration. Then one has

where o-=36 mb for 3-Bev protons and 34 mb for
5.7-Bev protons. The substitution of Eqs. (C6), (C3),
and (C4) into Eq. (C7) allows one to find what values
of ro are necessary to give the observed (p,pe) cross
sections for different target elements. As before, o-~ for
3- and 5.7-3ev protons is 38&2 mb and 33.6%1.6 mb,
respectively. The value of o was determined in the
same manner as before except for Tp=20 Mev and
was found to be 150 mb for 4-Bev neutrons on hydrogen.
If rp is set equal to 1.3 fermis, as was done in the
Monte Carlo calculations, ' o„,„„from Eq. (C7) for
3-Bev protons on Cu' and Ce' ' turns out to be 5.3 mb
and 5.7 mb, respectively. These values are in satis-
factory agreement with the actual Monte Carlo
calculations which give values of o.„,„ for 1.8-8ev
protons on Cu'4 and Ce'4' of 7+3 mb and 10~5 mb,
respectively. 4


