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Microwave Conductivity of a Plasma in a Magnetic Field*f
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The Boltzmann equation for electrons in a uniform isothermal plasma is solved by expressing the distribu-
tion function as a series of orthogonal polynomials in velocity space with time dependent expansion coe%-
cients. The microwave conductivity is simply related to certain coefficients. Particular attention is devoted
to the case in which the plasma is subject to a constant magnetic field and a microwave electric 6eld. By
introducing an effective" electron temperature, convergence is attained for strong as well as weak electric
fields. The formulation is particularly suited for problems involving partially ionized gases which contain
several species of ions and neutrals. The conductivity of a completely ionized gas is calculated with and
without consideration of electron-electron collisions, and the ratio (yzz) of the two results is graphically
illustrated as a function of microwave frequency.

INTRODUCTION

CURRENT microwave studies of electrical dis-
charges demand a more detailed description of a

plasma than a hydrodynamic treatment can supply.
Such detail is contained in the electron distribution
function, f(r,v, t) which satisfies Boltzmann's equation

8
+v V.f+a V„f=P, C(fF,)

Bt

The quantity f(r,v, t)drdv denotes the probable num-
ber of electrons in the volume element dr about r having
velocities in the range dv about v at time t. The con-
6guration space gradient is V'„V', is the velocity space
gradient, and a(t) is the acceleration due to external
forces. C(fF;) denotes the rate of change in f(r, tv) as
a result of elastic collisions with particles of type j
having a distribution function F;. The sum P, C(fF;)
might be written

Q; C(fF;)=C(ff)+ Q C(fF,)+ Q C(fF„),

Our treatment is restricted from the beginning by the
assumption that a arises from the I orentz force of a
constant magnetic field H and a microwave electric field
E coszot, i.e.,

a(t) = (e/rrt) fE coszot+ (v/c) XH].

The rf magnetic field is taken to be negligible in com-
parison with H, while E and H are constant in space.
The geometry is chosen such that H lies along the s axis
and E in the x-s plane making an angle P with H.

It is further assumed that all particle concentrations
are spatially uniform and that no temperature (here
identified with mean total energy) gradients exist. If in

addition we are allowed to ignore the eGect of a on the
heavy ions, it can be safely assumed that they maintain
a Maxwellian velocity distribution. A future paper will

deal with the more complicated problem of space-de-
pendent distributions. Uniform temperature and con-
centration means: V,f=0 and f(r, tv) becomes a func-
tion of v and t alone.

Ions neutrals II. EXPANSION OF f(v, t)

to exhibit the fact that in general there may be several
types of heavy ions and neutral atoms and molecules
present in the plasma. If only binary collisions are of
importance, the explicit form of C(fF,) is

C(fF ) = ' ~a (~,4)dfl(x, lb)
~v o

X (f(v')F; (V') f(v)F, (V) )dV —(2).
The primes denote velocities after scattering and

78= V—

is the relative speed, which is unchanged by an elastic
collision. o, ( lb)tais the differential cross section for
elastic scattering of an electron through an angle lb in
the center-of-mass system.

*Part of a dissertation submitted in partial fulfillment of the
requirements for the Ph.D. degree at Yale University (1959).

t Supported by the 06ice of Naval Research.

Our approach to the problem of determining f(v, t)
follows LandshofP and Grad. ' By developing f(v, t) as
a series of orthogonal polynomials in velocity space one
obtains a set of coupled differential equations for the
expansion coe%cients. The choice of orthogonal func-
tions is guided by the fact that the angle factors of.the
eigenfunctions of the collision operator C(fF;) are

spherical harmonics in velocity space, I"t (H, sz). The

appropriate radial functions prove to be generalized

Laguerre polynomials, ' I. '+l(nzv'/2kT), apparently first

used in kinetic theory by Burnett. 4 These polynomials

are eigenfunctions of C(fFs) when wo;(to, tb) is inde-

pendent of m.

' R. I.andshoff, Phys. Rev. 76, 907 (1949); 82, 442 (1951).
~ H. Grad, Commun. Pure and Appl. Math. 2, 331 (1949).' H. Buchholz, Die Eon)flente IIypergeorgetrische I Nnktion

(Springer-Verlag, Berlin, 1953).
4 D. Burnett, Proc. London Math. Soc. 39, 385 (1935);40, 382

(1935).
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We are thus led to write

oo oo +l
f(u, t)= p p Q a„l"(t)

n=0 l=0 m=—l

xexp ( N2) L l+ ,'(si2-) 2tl Ylm (8 02) (5)

where u is the dimensionless velocity variable

Legendre polynomials by5

t (2l+1)(l—m)!~ l
sin 8

4 (l+m)! )
dm (12)

Pl(cos8)e' ",
d cos0

u= (m/2kT) *v. (6) Yi (8 ~)=(—1) Yl"'(8 V')

T= (1+0—)To, (7)
~I

Yl™"(8, 02) Yl '(8, 02)dO(8, rz:) =8l, l 8,
where T, is the gas temperature, assumed common to all
heavy particles. The parameter c is a measure of the
increase in electron energy due to the external fields. It Since f(u, t) is real we must have

is defined by the relation
a„l "(t)=(—1) a„l"'(t).

The electron temperature, T, is defined by the relation They are orthonormal over the unit sphere

(13)
0/2 (1+0) = (alo /aoo )time average.

The time average of the mean electron energy is

skT(1 aio/aoo )time av= 2kTL1+0/2(1+0) jy

so that T is not the temperature in the usual sense, This
definition of T greatly improves the convergence of the
expansion for f(u, t). For example, suppose we wish to
describe the velocity distribution of electrons in a
microwave discharge. The mean energy of the heavy
particles is —,'kT, . On the other hand the electrons absorb
microwave power and may attain a mean energy many
times that of the heavy particles. If we take 7=T„ the
expansion, Eq. (5), would require a prohibitive number
of terms to approximate the distribution function. By
choosing

kT=mean energy of electrons

we "center" the distribution function in the most
densely populated region of velocity space.

The generalized Laguerre polynomials are defined as'

(n+l+-2, ) (—sl2) '
L '+'(2t2) = P&22—j) j!

A more useful relation is

( s
P s"L„'+l(st') = (1—s) &'+i& exp

~

— I' ~. (10)
1—s

The constant u00' is fixed by the normalization
condition

A oo'= (2iV,/~) (M;/2kT, ):,

U= (M;/2kT, )~V,

(16)

E; is the concentration of type j particles and M; their
mass.

IG. CONDUCTIVITY

The conductivity tensor e is a phenomenological con-
stant relating the mean current density J and the
electric field. We write

E cosset= Re(Ee'e')

The complex conductivity is then related to K by

J=Re(rr Ee'"') =trzl E cosozt+rrz E sinoot, (17)

X,=
J f(u, t)du(2kT/m)'; 1V,=number of electrons

per cc.

Substituting for f(u, t) from Eq. (5) and using Eq. (11)
we find Lremembering that Lo'(u2) = 1]

aoo = (21Y',/2r) (m/2kT) '*.

The distribution of heavy particles is

F, (U) =200 exp( —U2)Lo**(U ) Yo (8,@), (15)

where again

The orthogonality condition, determined at once from provided
Eq. (10), is O'= ll g —$0'Z.

exp ( 2l2) L l+-', (N2) I l+—', (2l2) 2l2 i+id (2l2)
For the geometry chosen e has the matrix form

I' (P+l+-', )
(11)

t
. 0 0

&xx=oyy
0 ~

0'gy= 0 yg.

5M. E. Rose, The Elemerltary Theory of Angular Momentum
The familiar spherical harmonics are defined in terms of John Wiley and Sons, Inc. , New York, 1957).
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The kinetic expression for J is

f
J=e) uf(u, t)du(2kT/m)', (20)

where du is an element of volume in u space.
Substituting for f(u, t) and using the orthogonality

relation Eq. (11) one finds

The (vi)„„are matrix elements for the collision
integral.

~(p+/+-', )
~nZ ~Z ~n

2(Pl)

u'+'L '+l(e, ')du g C(fF,). (25)

3~ (2kT)'J=—(p')~e] [
Pi(api-' —upi"')8' ™I

+j( iao—i ' i-ao—i+')+k~2apio] (2. 1)

Here, i, j, and k are unit vectors in the x, y, and s
directions. Thus, e depends explicitly only on the aors

However, we shall find these to be coupled to the a„o'.

IV. COUPLED EQUATIONS

Here, we only outline the method of obtaining the
equations for the a i"(t); details are given elsewhere. '
By substituting the expansion $Eq. (5)j for f(u, t) into
the Boltzmann equation and exploiting the orthogo-
nality of the spherical harmonics and Laguerre poly-
nomials one obtains the following equation coupling
the a„,"(t).

/o™—2+(t) cosp( ( G"i
& (2l+1) (2/ —1))

((™1~~L~~~I
~

y(t) sinp ——
~ i (2l+1)(2l—1) )

((l—m —1)(l—m)i &

+I $&Z y+' (2l+1)(2l—1) )

~(/ —m+1)(t —m+2) ~
—:

+V(t)p»np I ~p—1 Z+1
(2l+ 1)(2/+3)

((/+m+ 1)(i+m+2) i l

~y—1 Z+1
(2l+1) (2l+3) )

(l+1)'—m'
+2y(t) p cosp~ (alii'i =0, (22)

(2l+1)(2l+3)

Inspection of Eq. (22) shows that the expansion
coefficients for a given value of / are coupled with those
for l 1an—d l+1. In practice one is forced to place a
finite limit on the summations over e and I, so that
when /=l, the coefficients involving l+1 must be
dropped. The convergence of the a„z with e and l then
depend on the parameter o introduced in Eq. (7). For
e((1 (weak electric field) we 6nd

C„Z ~~ 800 ' l/0
(26)

C~p ~ 680p', mao

In this case the isotropic part of f(u, t) deviates from the
Maxwellian form by terms of order o. For o))1 (strong
electric field)

a i "(m/M)' aoo; &))1. (27)

88&0
+ & (~p).-~-o'+2(o)'V(t) cospp'. -»'

+(-', )'y(t) sinPP(a„-ii —'—u„-ii+') =0, (22a)

1=1;m=0

gg&~ P
+2( ) ~ '=2(-')'Y(t)cosP o', (22b)

1=m= I

Convergence of the a 0' with m depends on the micro-
wave frequency, ~, the characteristic frequency for
momentum transfer, (ii)op, and the concentration of
electrons. Distortion of the isotropic part of f(u, t) is
slight in all cases. To determine the conductivity it is
suKcient to consider Eq. (22) @lith /=0 and /=1. On
examining Eqs. (22), (26), and (27) we see that for //0
we are justified in dropping the terms involving
a~~ z+~ ~ +' while retaining those with a„z J

+'. For
l=0, the coefFicients of a„z ~

+' vanish. This pro-
cedure leads to the following set of coupled equations;

where the various symbols are dehned as

p= angle between E and H,

y(t) = (eE/m) cosset(m/2kT) &,
(23)

Ba„+'

8f

p—~H'"i + 2 (~i)~~~~i+

=—(p) ly(t) sinPa„p. (22c)
co~=e~™ (24) a, i ' can be found from a„i+' with the aid of Eq. (13).

D. Kelly, Ph.D. thesis, Yale University, 1959 (unpublished). We have restricted the sum over n to a finite number
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(P+ 1) of terms. By comparing results for P=0, 1, 2,
one can test the convergence of this scheme. The solu-
tion of these equations for the ap& needed to determine
the conductivity is presented in the next section.

Calculation of the conductivity requires explicit forms
for the collision-integral matrix elements. We may
denote the expansion, Eq. (5), as

f(u, t) = fp(u, t)+ q (u, t), (5a)

where fp(u, t) is the isotropic part of f(u, t) and q (u, t) is
the small [as we have seen from Eqs. (26) and (27)]
portion which describes how the external forces "warp"
the distribution of velocities.

The portion of the collision integral describing e-e

encounters, C(ff), contains the terms

{fo(u')fp(~') —fo(u) fp(U) )
+{fo( ') v(~') —fo( )p (Il))

They yield what is referred to as the linear contribution
of the e-e collisions. The remaining portion involves

and 5 is the mean ion charge for the plasma

5=—Q BP1V,/X, .
ions

(I'~).-=0, (33)

oo +1.o'(I'o) -=3K Z . - "(I'o)...
g=p m=—

&

XC(1, 1, 0; m, m)C(1—,1,0; 0,0), (34)

For very strong magnetic fields Tannenwald' has
shown that D in the logarithmic term of Eq. (31) is
replaced by a length proportional to the Larmor radius.

The (V&)„„account for the quadratic electron-
electron interaction and do not enter the equation for
l= 1. One may write

{p'(u')p (&')—~ (u) p(~)} q, y, n=p
rps"t~(Yp), „„

which gives rise to what we call the quadratic e-e

contribution.
Consideration of the convergence with t [Eqs. (26)

and (27)] allows us to expand P; C(fF;) and discard
higher order terms. The details of this expansion are
given elsewhere' and methods for calculating the matrix
elements are given by Chapman and Cowling. ~ One finds
that the (r ~) „„may be written as the sum of three terms.

( ).-=[2(P')/I'(P+t+l)]
XL(X ).-+(I' ) -+(Z ).-] (28)

t(1—t) (s r)[1 ',—(s+t+—r-rst)] 't'— —

12gpp

X{Pprt vP[A—(r,s, t) 2P])—, (35)

provided

1 ', (r+s+ t —rs—t)—
1—st

The (X~)~„contain the linear contribution of electron-
electron (e-e) collisions

00 [1——;(s+t)]—:
s"t&(Xp),„=-(st)'

n, y=p 2 1—st

s t
3(1—r)(1—s)(1—t) +

1—s 1—t 1—r

1—-', (r+s+t —rst)

1 ', (r+s+ t rst)———
(36)

QO [1-l (s+t)?
s"t&(Xg)„=Xst {(1——',st)

~, n=p (1—st)'

X[1—-', (s+t)]+—',st(1 —st) ). (30)

Here X is a frequency characteristic of e-e collisions

~( e' q'pkT tr ~3kTD~'
~=~-I —

I I

—
I

» 1+I, I (»)
2&kTi (mJ ( 2e' i

and define

»~ (~A) =s~, (4)~', (37)

p=
(1—r) (1—s) (1—t)

The C(1, 1, 0; m —mp, m) in Eq. (34) are Clebsch-
Gordan coeKcients. ' Finally, (Z&)~ is a sum of terms
accounting for the electron-"heavy" [ions (e-i) and
neutrals (e-u)] collisions. If we assume that the scat-
tering cross section for these collisions is of the form of a
power law

D is the Debye length;

kTp(1+e)
D

4prlV, e'[1+ S(1+e)]

t2kT~ "t'
v t (tg, j)= 2m x, I

(32) & m)

7 S. Chapman and T. G. Cowling, The 3fatherrlatical Theory of
EorI-Unform Gases (Cambridge University Press, Cambridge,
1939).

Collisions with an impact parameter greater than D are
ignored.

X S&,, (4)[1—P (cosP)] smPdP, (38)

9 L. M. Tannenwald, Phys. Rev. 113, 1396 (1959).
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Pt(cosf) being a Legendre polynomial, then we obtain where

s"tv (Zp) v„
n um

~It+5' m
=Q v1(h, j)I'~

~
(1—s) "1'(1—t)""

~L~ =detLL, „),
Lqn CO ttq, n+(Vl )qny

qn= &1 qr &1 rn)
r=o

(47)

(48)

X (1 st)
—[1P+P) lq] st

and Lq" is the cofactor" of L,„.In similar fashion it is
found from Eq. (22c) that

C

s"tv(Z,),„
n, p=o

(8+5 )
(h, j)1'I

2

, (1—s) ""(1—t) "1'(1—st) [& "+'&to] (40

~ m ~leE p Dq"
2„+'=—

) ~

—sinP Q a&Cq

&3kT) m q=o
~
D~

t'm p-:eE
8„+'=—

~ I

—sinP
&3ur) m

D q'8

(50)

Although we have presented results only for power law

cross sections, the theory readily adapts itself to situa-
tions involving more complicated forms of p( 1'). Of

particular interest is the case h= —3 which describes e-i

scattering. If all ions have the same mass, M;, and the
mean ion charge is 5 we find

0 0

2m
PZp] =

M;
1—

Pq 5 —,
' —(15/8) 6

—
q 5 —,

' —(15/8) 6 13/4 —(69/16) 8

1 3/2 15/8

3/2 13/4 69/16

15/8 69/16 433/64

V. SOLUTION OF COUPLED EQUATIONS

In seeking the solutions of Eqs. (22a) —(22c) we

employ a substitution analysis and write

Gn1 =2 n Slno1t+Bn COSP1t) (43)

(44)u„oo——C +D„sin2ppt+F cos2p1t.

We also assume

p m q'eE
Ano=2(

~

—COSP P p1Cq
E 6kT) m q=o

(45)

~ m q-*'eA' v Lq"
B.P=2(

(
—cosP P (v1)„C,

&6ur) m, .=o
(
L

~

D„, P„«C..
It is found, a posteriori, that

D„, Ii (m/3f;)C; Dp=Fp=0.

On substituting Eqs. (43) and (44) into Eq. (22b) we

obtain the results

(51)
q=o r=o fDf

with
Don= (qp qpH )8q+n(v, 1 )qn —2qqpH(v1)qn (52)

Unfortunately it is not possible to solve Eq. (22a) by
using Eqs. (44) and (45)—(51) because the matrix
elements (vp)v coIltain a contribution from the quad-
ratic e-e scattering. Explicitly,

I'(p+-')
Gno VO yn

n=o 2.pt

P P +1
= Z ~-p'fop). -+(Zp).-3+3 Z Z & &.1"~-1

n=O q~ m=—1

X(Yo)qv C(1, 1, 0; m1—m)C(1, 1,0; 0,0).

The last term on the right introduces products of the C„
so that Eq. (22a) gives a set of nonlinear equations of
the form

I' P
Q pvnCn+ 2 rtvmnCmCn =Kv

m, n=o

Ke must therefore determine under what conditions
it is permissible to ignore the quadratic term. This
term will be of little consequence if the electron concen-
tration is so low that

l1/(V, )po((1,

i.e. , if e-e and e-i collisions are infrequent in comparison
with e-e encounters. This will usually be the case for a
degree of ionization below 10 '.""In case we are con-
tent with the approximation afforded by taking I'=1
the quadratic term vanishes —a result of the fact that e-e

collisions cannot change the concentration or mean

energy. However the collisions do aGect the results
indirectly through their contributions to (v1) and (v1').

"H. Margenau and G. Murphy, The Mathematics of I'hysics and
Chemistry (D. Van Nostrand Company, Inc. , Princeton, New
Jersey, 1955).

11 J H. Cahn, Phys. Rev. 75, 293 (1949); 75, 838 (1949).
~ J. M. Anderson and L. Goldstein, Phys. Rev. 100, 1037

{1955).
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(a) Quadratic Term Negligible

We consider erst the case where the quadratic term
is negligible, by virtue of a low electron concentration or
because we limit the analysis to I'= i. The C„are then
determined by the equations

Although Eq. (59) is derived for constant collision
frequencies it provides a reasonable estimate of e for
other situations with v replaced by (vr)oo."

Returning to the conductivity problem we use Eq.
(56) in Eqs. (45), (46), (50), and (51) to determine the
~o" and&o .

where

P
$12v C = f2po—Co, P=1, 2, , I',

( m q'*eE
v2A po = 2

l l

—cosP
(3kTi m

p„„=(vp),„+-'sn'-p P sin'p
I qoP

1
,p)

i

ooCp, (45a)

'Rel ((v&)q z~Haq, ) '

lal )
Lqy —j. -

+ qp( ) (54)
&28o =2

l l
cosp p (Pz)qr

02=—(m/2k T) (eE/m)'.

In the I'=1 approximation we have

—Cr/Co = y, ro/pn

In view of Eq. (54) this becomes

(56)

P oP LQQ

X 5„o—P (1-5,,.) C, , (46a)

t m ~-**eE

l

—si~
E3kT) m

Ct (vp) tp 2Q'
+ p cos p(vy) o

Co (po)22 3(po)rz-q~ ~

L"

Dqo y-
+sin'pRel ((v),o

—i Jr5, ,p) l
. (56a)

lDli

2m
(Po)v = P 5v, — 5v, +x (1—5v, o).

M, 1+e
(5g)

In this instance the Laguerre polynomials are eigen-
functions of the collision integral. In general one finds
that the rate of convergence depends on the degree to
which the scattering departs from the h=o form.
Noting that

—Cr/Cp ——(arp'/upp') „,„—= e/2 (1+«),

one finds

We now consider a special case; it is assumed that the
electron and ion concentrations are low enough to
permit ignoring e-e and e-i collisions. We further assume
that only one species of neutral scatterers is present and
that it is of the h=O type. This is referred to as the
constant collision frequency case. One finds

(v&),.= v&(0,j)8,.=—P5„.,

P P pyop~~ jg QO

X P 8q, o
—P (1—

&q o) ooCo, (SOa)
goo

f' m y
*'eE-

Bp
—'= —

l I

—sinP P ((vg)q„2porrB, ,,—)
&3kT) m

P p~op" Dqo

X Bq, o
—Q (1—B„,o)Co 1. (51a)

oo lDl J

Substituting into Eq. (21) we can find J and thus e.
The results are valid for arbitrary 6eld strength in cases
where e-e collisions are unimportant, and for arbitrary
electron concentration with P=1. For the constant
collision frequency case we obtain the well known
result'4 "

E,e'
o =a»=

2m .v'+(M —oqrr)2 v'+(op+a)rr)2

p2+~2 oo
2-

X v —ioo, (60)
p'+ooq+ooa2

M; ~eEy ' cos'P sin'P
+

3kT, ( m, ) vq+oo2 2

X + . (59)
P + (Ql carr) P + (oo+corr)

» Note that for all but the i'2 =0 case, (Pi)oo depends on T and
thus ~.

'4 H. Margenau, Phys. Rev. 69, 508 (1946).
P. Allis, BeedbucIt der I'hysik, edited by S. Fliigge

(Springer-Verlag, Berlin, 1956)."L. Goldstein, M. Gilden, University of illinois Electrical
Engineering Research Laboratory Technical Report No. 9, 1956
(unpublished).



M I CROWA VE CON D U CTI V I TY OF PLASMA I N MAGN ET I C F I EL D 33

.6—
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Fre. 1. (neo/N. e) Rea vs
(pg)QO/&o for a completely
ionized gas, ignoring e-e col-
lisions, in the I'=0, 1, 2, 3
approximations.

b

3 g)

.2

0
.OI l00

Fro. 2. (mu/N, e') Imo vs
6'i)oo/&o for s completely
ionized gas, ignoring e-e col-
lisions, in the I'=0, 1, 2, 3
approximations.
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FIG. 3. (mes/N, eo) Re~ vs
(v&)00/~ for a completely
ionized gas, including e-e
collisions, in the I'=0, 1,
2, 3 approximations.

I

(&()oo/+

IO I00

FIG. 4. (~/N, eo) Imo vs
(vy) p0/co for a completely
ionized gas, including e-e
collisions, in the P=O, 1,
2, 3 approximations.

I

[V(loo /Ql
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FIG. 5. The ratio yz defined by Eq.
(66) as a function of (vt)pp/co.

~8—

4—

I

10 100 1000

S,e

E,e'

2m v'+ (co —cv")' v'+ ((o+(u~)'

QP —M" v +2svM

"'+~a'+ v'
(61)

m v'+(o'
(62)

(b) Weak Electric Field, a(&1; Quadratic
Term IncIuded

The quadratic e-e term in Eq. (22a) changes the re-
sults for C, eAO, but does not aGecti7' Cp. When e«1,
C ~ ECp and the conductivity depends only on Cp= Qpp .
Thus, providing e«1, it is not necessary to solve Eq.
(22a) with its troublesome quadratic term. One uses
Eqs. (45)—(51) with C„=Cp6', p and substitutes in Eq.
(21) to obtain the result

(vg)pp
——-,'(2/m-) l SA.

Spitzer and Harm" and Landshoff' have calculated cr

for the d-e (co= 0) case. Spitzer introduced a quantity &e
to relate a(e-i only) and o-(e-e and ei)-

0 c-e and e-i= QE&e-t'y (66)

For the constant collision frequency case, Eqs. (63)—
(65) give results identical with Eqs. (60)—(62).

When there is no magnetic held present e becomes
diagonal

0.x z =&y y
=0 zz =0.j

Figures 1—4 illustrate the rapid convergence of the
method. Figures 1 and 2 are plots of (nun/E. e')o vs
(v&)pp/a& for a completely ionized gas, ~=1, ignoring e-e

collisions while Figs. 3 and 4 show the same quantity,
but include both e-e and e icollisi-ons. (v, )pp is a fre-
quency characteristic of the rate of momentum transfer
between electrons and ions:

E,e'
Re P ((vg), p

—~Hb, , p)

Dqp

iM Re
D00-

(63)

and found yg=0.582. Using the I' =3 approximation y~
was determined as a function of (vy)pp/(u. The result is
shown in Fig. 5. Figures 6—8 compare Reo., for a
completely ionized gas with and without e-e collisions
for three values of (v')pp/cv, in the 8=1 approximation.
Figures 9—11 show Reo.„,for the same values of (vi) pp/a&

E,e'
Im P ((v,),p ice"b, p)— ,

VI. EXPERIMENTS; APPLICATIONS OF THE THEORY

&zz =
PT,es- ~ (v'), pL' icuL' '—

m q=p

Cp=cpp T &—T, & when c((1.

Dqp Dpp—Im, (64)

(65)

Very few experiments have been performed. with
electron concentrations high enough to show the eGects
of e-e and e-i collisions. Of particular interest is the work
of Anderson and Goldstein" which shows that there is a
critical degree of ionization above which the conduc-
tivity is determined by e-i collisions. They measured the
conductivity of a plasma formed by the afterglow of a

"L.Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).
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FIG. 8. (mu/fV, e') Rea„vs pere/ar for (vi)op/co= 1, for P= 1, showing the effect of excluding e-e collisions.

helium discharge, concluding that for pressures above
about 5 mm Hg the conductivity was determined by e-n

collisions. The "effective" e-e collision frequency was
found to be

v, „=3.12X10sP(T/300)i, P=pressure mm Hg. (67)

The "effective" collision frequency as it is used here
refers to the particular average value of the velocity
dependent collision frequency which allows one to write
the conductivity in the form

N, e' v. ,—~
tÃ Ve g +pP'

when only type j scatterers are of importance. The
conductivity appears in this form in the present theory
only in the P= 0 approximation, where it reads

N, e' (v&(j ))pp ior-
m (r &(j))pps+cu'

80 — fv,]„
l00

60 — P. l

20 —.

8-I
ONLY

0

-20—3
E -"-40

-60—

(ve i)theory = (vr(loI1))pp =
p I

Em.

=3.6N, T 'log(4. 39X10'T'1V, &), (69)

a result which is almost identical with that of Ginsburg"
who found

(v. ;)&h„,y=3.59N, T & log(3.22X10'T*'N, ').

At lower pressures e-i collisions determine the conduc-
tivity, the eGective collision frequency being determined
as

(v, ,)exp ——3.6N, T f log(3.7X10'T*'N; '). (68)

-80—

-IO.$8

l

.99 I.QI l.02

This should be compared with the corresponding quan-
tity in our calculations

Fro. 9. (mes/lV, e') Reo„vs co~/cu for (vq)pp/ca=1/100, for P=1,
showing the effect of excluding e-e collisions.

"V.L. Ginsburg, J. Phys. U.S.S.R. 8, 253 (1944).
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showing the effect of excluding e-e collisions.

The critical degree of ionization may be defined by

&e-n= &e-i ~

Using (67) and (69) one finds that the critical degree of
ionization for helium is 2.7&(10 ' at T=300'K.

For hydrogen, Allis and Brown" found

v, „=5.9)&10'p; hydrogen

for electron energies above 2 volts. For air, the work of
Rose and Brown" indicates that for electron energies of
several volts

v, ~=4.3)&10'p; air.

Because of the T l factor in (v. ,) the critical degree of
ionization is strongly temperature dependent.

Unfortunately the concentration of charged particles
in the experiment of Anderson and Goldstein was not
high enough to allow verification of the e-e contributions
to the conductivity calculated in this paper.

Lin, Resler, and Kantrowitz" measured the d-c con-
ductivity (o~=0) of a high temperature (15 000') shock-
produced plasma. They attained degrees of ionization in
excess of 10 '. Their results show favorable agreement
with the theory of Spitzer and Harm" for the d-c
conductivity. Our results for the d-c case (c«1) are of
course identical with those of LandshoG, the calcula-
tions agreeing to better than one percent with those of
Spitzer and Harm in the I'=3 approximation.

The theory developed here is also useful in inter-
preting cyclotron resonance experiments. "'4 The micro-
wave power absorbed by a plasma subjected to a
constant magnetic fieM and microwave electric field

X
b0

3 IQ
e

e5

I.5

FIG. 11. (mes/E, e') Reo.„,vs &err/ca for (v&)M/ca= 1, for P= 1, showing the effect of excluding e-e collisions.

'0 W. P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952).
2~ D. J. Rose and S. C. Brown, J. Appl. Phys. 28, 561 (1.957)."S.-C. Lin, E.L. Resler, and A. Kantrowitz, J. Appl. Phys. 26, 95 (1955)."D. Kelly, H. Margenau, and S. C. Brown, Phys. Rev. 108, 1367 (1957).' R, M. Hill, Sylvania Microwaves Physics Laboratory, Technical Report MPL-13, 1958 (unpublished),
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exhibits a strong resonance peak at co=coII, provided
&u))(v&)pp. For the constant collision frequency case the
absorbed power density is

X,e'E' V P

&.b.=
4m v'+ (cu —(u~)' v'+ (co+~lr)'

d (v')
3'v (M~ —GP)—i

—
i fpdv,

~p dv(v )
"J.L. Hirshfield and S. C. Brown, J.Appl. Phys. 29, 1749—1752

(1958).

The width of the resonance curve at half its maximum
value is 2v. For cases where the collision frequency is
velocity dependent one generally assumes a power law
behavior for the cross section, i.e., one takes

wo;(w, P) =Sg,,g)w". (37)

The half-width of the absorption curve allows the
determination of h. In this respect, calculations based on
the theory developed here' are in good agreement with
results obtained earlier by the present author" and also

by HilP4 who considered the cases h=0, &1, +2.
There is one notable example where the theory de-

veloped here has proved inferior to other approaches.
It involves a method developed by Hirshfield and
Srown25 to measure collision frequencies of slow elec-
trons. From Eq. (63) one sees that the imaginary part
of 0- vanishes when

ReD"/iDi =0. (70)

At this point the plasma becomes purely resistive and
the resonant frequency of a plasma filled cavity is the
same as that for an empty cavity. Hirshfield and Brown
show that (provided co))mean collision frequency) the
condition for zero frequency shift is

t'" ( ~a' —~') &fp
0=

i
1— iv' dv

av

with fp(v) denoting the isotropic part of the distribution
function. Taking v=cv" and assuming fp(v) is Max-
wellian they obtain the result

r (-', ) (2kT
COH' —Ca'= C'

r(-',—h) E ~ )

The theory developed here does not give satisfactory
agreement with this result because

p" d (v') t-" 3 2v dv—
I
—

i fpdv= ———f v'dv
~p dv(v ) ~ v v dv

(1 ) (v dv)

(v' J . i v' dv),

is approximated by

1 1 ( dv)

(v), ' (v), '( dv),„

in the I'= 0 case. Taking P= 1 does little to improve the
agreement. More ambitious calculations with larger
values of I' might prove Eq. (70) useful in situations
where the mean collision frequency is comparable with or.
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