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Energy Gap in Nuclear Matter*
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The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of
of the type believed to be important in the theory of superconductivity has been evaluated theoretically.
The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for
numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the
Qammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter,
and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for
nuclear matter should not be compared directly with experimental values for finite nuclei, although the
results suggest that if the theory is extended to apply to Gnite nuclei it probably would be in agreement
with experiment.

I. INTRODUCTION
' 'T was pointed out by Bohr, Mottelson, and Pines'
~ - that the spectra of even-even nuclei have an "energy
gap" and that the low-lying states of atomic nuclei
might have a collective character which could be
described in a manner similar to that proposed by
Bardeen, Cooper, and Schrieffer' in their theory of
superconductivity.

If realistic nucleon-nucleon forces are to be used,
it is difficult to make a quantitative theoretical evalu-
ation of this suggestion for firtite nuclei. However,
Cooper, Mills, and Sessler' have shown how the BCS
method could be applied to t'efirtt'te systems of strongly
interacting fermions and it has been shown4 that nuclear
matter does in fact have a gap in its energy spectrum.

The object of the present paper is to determine the
magnitude of the energy gap for nuclear matter with a
view to gaining some insight into the possible results of
extending the theory to finite systems.

In the next section, the basic equations of the theory
are described, linearized, and rearranged into a form
suitable for numerical solution. The results are pre-
sented in the form of three figures and discussed in the
final section.
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where e(k) is the effective single-particle energy in
nuclear matter. The internucleon pottential is v(r), and
)f(r) the correlation function. The function F(k) is the
Fourier transform of P(r)= —v(r))f(r), so Eq. (1) is
nonlinear.

In the numerical computations to be described here,
the linear approximation' to Eqs. (1) and (2) will be
used. lt is assumed that $(k) is a slowly varying func-
tion of k which may be replaced by a constant ev which
becomes the eigenvalue of Eq. (1).

from equations briefly derived in another paper' of
this issue by letting p —+ ~.

An infinite system of Fermions has an energy spec-
trum with a gap, if there is a nontrivial solution of the
equation

f
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where

II. DESCRIPTION OF THE CALCULATION

1. Basic Equations

The equations from which the energy gap may be
calculated are presented in CMS and may be obtained
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2. Rearrangement of the Equations

The simplest way to obtain accurate numerical
solutions of Eqs. (1) and (2) is to transform the equa-
tions by the method described in ES. The only dif-
ferences are (i) we take the limit p —+ oo and retain ev

in the equations instead of p„and (ii) there are
S-state solutions for nuclear matter and they give rise
to a true energy gap.

Using Dirac notation, we define

5 V. J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960),
hereafter called ES.
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where

Also let
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Then, by the method described in Sec. III. 1 of ES, it
is found that

L, (ep) = —1/(q In[kr).
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3. Numerical Procedures

The internucleon potential to be used has a hard
core of radius c and an external attraction, for which
we make the approximation of ignoring n(r)p(r) for
r(cgp(r)=(r[p)) while retaining the 8-function con-
tribution on the core. ' Then, for S states, the coordinate
representative of Eq. (4) becomes

Gp(r, c)
q (r) = sinkrr —sinkrc-

Go(c,c).
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p Gp(c, c)
H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (Iondon)

A238, 551 (1956).

The procedure used is to solve the coordinate space
representative of Eq. (4) for (r[y) and to use the
solution to evaluate (kr In[&). This value is put into
Eq. (8) from which eo may be determined. The energy
gap hE is 2ep (see reference 2).

The integrand on the right-hand side of Eq. (2) is
sharply peaked a the Fermi surface so that it is su%cient
to use the effective mass approximation

e (k) =h'k'/2rN*

(no* being the effective mass at the Fermi surface) and
the method of evaluating L(P) described by ES to find

.0000l-

Equation (11) has now to be solved numerically and
(p I

e
I kir) calculated from Eq. (13). The numerical

procedures used were described in Appendix I of ES.
Since the singular part of ti(r)p(r) has been removed
explicitly, the number of Gauss points in the quadrature
could be reduced without essential loss of accuracy.

4. Potentials

The best available two-nucleon potential has been
obtained phenomenologically by Gammel and Thaler. ~

In S states there is probably an energy gap for triplet
as well as singlet states. However, the singlet gap is
certainly larger and, in view of the complications
introduced by tensor forces, the triplet gap has not been
calculated here.

The Gammel-Thaler form of n(r) is

n(r) = ~, for r(c,
'V, e ""/p—r for r) c.

For the 'S state, 't/, =425.5 Mev, @=145 f ' and
c=0.4 f.

For the single-particle energies, we have taken the
form4

(15)e(k) = h'/2m+ V (k),
where

V (k) = —Vo/(1+uk'). (16)

Vo and u are determined by the requirements that e(kz)
shall equal the energy per nucleon in nuclear matter
(—15.5 Mev at normal density) and that the effective
mass m* at the Fermi surface, defined by

de(k) b'kr
(17)

dk kg 8$

r J. L. Gammel arid R, M. Thaler, Phys. Rev. 107, 291 (1957).
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FIG. 1. The energy gap in nuclear matter as a function of the
eGective mass at the Fermi surface, for "normal density" corre-
sponding to kg=1.40 f '. The binding energy per nucleon has
been taken to be 15.5 Mev in the evaluation of V(k) LEq. (16) ff.j
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Fxo. 2. The energy gap in nuclear matter as a function of density
for m*=m, i.e., ignoring the dispersive effects of nuclear matter.

shall have a specified value. The results are to be quoted
as a function of m*/ns.

Equation (19) now shows why the energy gap is such
a rapidly varying function of density and effective
mass and why it is so small at normal density. The 'S
phase shift, 6, is almost zero at a momentum corre-
sponding to normal density, and. increases rapidly as
the momentum decreases (i.e., as the density decreases).
Since both cot5 and m~ appear in the exponent in Eq.
(19), a small change in either quantity produces a large
change in AE.

Consequently, it is dificult to draw any quantitative
conclusions about the energy gap in finite nuclei from
a study of nuclear matter, since at least one very
important effect is the variation in density of finite
nuclei associated with the nuclear surface.

However, the order of magnitude of the energy gap
in finite nuclei might be estimated by averaging the

4,Q

III. RESULTS AND DISCUSSION

The results of the calculations are presented in Figs.
1, 2, and 3 which show the variation of the energy gap
with m* at two densities (normal density, kr ——1.40 f '
and a reduced density, k+=1.0 f '), and the variation
with density for m*=m [i.e., V(k) =Oj.

We have also studied the sensitivity of the quantity

O
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by examining three cases:

(18)
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and this approximation improves as kp decreases. '
s V. J. Emery, Nuclear Phys. (to be published).

(1) Sckrodieger equation, i.e., ~e(k) e(kr)
~

—is re-
placed by (k'/2m)(k' —kr, '), for which T= —5.06.

(2) V(k) =0, for which T= —4.02.
(3) V(k) corresponding to m*= 0.67, for which

T= —6.43.

Thus, T is not very sensitive to the exclusion prin-
ciple or the dispersive properties of nuclear matter, so
that the strong dependence of AE on these effects is
localized into 1.&(es) Lsee Eq. (8)j.

For rough estimates of the magnitude of DE, then,
it is sufhcient to replace T in Eqs. (10) and (18) by
(—cot5), s where 8 is the Schrodinger equation phase
shift for relative momentum 54. Equation (10)
becomes
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Fio. 3. The energy gap in nuclear matter as a function of the
effective mass at the Fermi surface, for a reduced density corre-
sponding to kf =1.0 f '. The binding energy per nucleon has been
taken to be 10.0 Mev in the evaluation of V(k) PEq. (16) ff.g.

nuclear matter gap over densities from zero to normal
density (kr varying from zero to 1.4 f '). It can be
seen from Figs. 1, 2, and 3 that such an estimate would
be consistant with the gaps observed in heavy nuclei'
so that a theory of finite nuclei analogous to the one
presented here might well be expected to be in agree-
ment with experiment.
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