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out that a preliminary value of m of about 8 is too
optimistic; based on his values of abundance and cross
sections he estimated the value of k to be a small frac-
tion. In order that no neutrons are lost by spontaneous
decay it is necessary that the reaction (capture and
fission) lifetime of neutron be much shorter than its
spontaneous decay lifetime. As the expansion of the
supernova shell goes on, its density decreases and the
time required for a neutron to react with heavy nuclides
increases. Fowler' pointed out that after several hundred
days the density will be so small that spontaneous decay
will take place before any reaction. This situation is not
improved even assuming the exploding material to be
con6ned in a shell. "It appears that the necessary con-

ditions are not realized in supernova type I and thus
other explanations perhaps are necessary. " In view of
the plausibility of the 6ssion chain reaction and its
possible occurrence in other circumstances it was de-

' W. A. Fowler (private communication)."J.Greenstein pointed out some difhculties of such an assump-
tion in a private communication although a calculation shows
that a shell of a thickness of the sun-radius is stable against
thermal diGusion and leak-proof for the neutrons."E.Anders has now published a paper in Astrophys. J. 129,
327 (1959) considering Fe', instead of Cf'~, to be responsible for
the exponential decline of the supernova light curve.

cided to publish these results and point out the difh-
culties regarding the supernova type I.

Another source of fission contributing to the chain
reaction may be mentioned here. The odd 3, very heavy
nuclides (A)254), such as E'", have long half-life
against spontaneous 6ssion. After capturing a neutron
and converting itself to an even-even nuclide (by P
decay if necessary), such a nuclide will become one with
extremely short spontaneous fission half-life and there-
fore will undergo 6ssion "immediately. "Thus the neu-
tron capture processes of such very heavy odd-A nu-
clides also contribute to the fission chain reaction just
as does the induced fission. However, the amount due
to this source is likely to be small.
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A new expression is derived for the differential cross section of processes in which two nucleons are captured
from an incident alpha particle or similar projectiles. The formula derived is compared with a similar one
previously obtained together with some experimentai data on the 0"(d,n)N" reaction. Fairly good agree-
ment is observed.

' 'T is well known that the theories of the stripping
~ - reactions' of deuterons were successful in describing
the main features of many such reactions, especially the
experimentally observed forward peaking. On the other
hand, some deuteron stripping reactions showed a
backward peaking of the stripped particles distribution,
which was explained in terms of the heavy-particle
stripping process, as developed by Owen and Madansky. '
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'L. Madansky and G. E. Owen, Phys. Rev. 99, 1608 (1955);
G. E. Owen and L. Madansky, Phys. Rev. 105, 1766 (1957).

Quite recently, however, experimental results have
accumulated on reactions in which two nucleons are
stripped from the projectile and captured by the target
nucleus. This is the case for (a,d) and (He', p) reactions'
and data are also available for their inverse. These
cases show also the forward and backward peaking
characterizing the deuteron stripping process. This may
suggest that in the two-nucleon stripping reaction, a
mechanism similar to that responsible for deuteron

stripping may take place. An expression for the diGer-

ential cross section of this process, based on the 6rst

'T. S. Green and R, Middleton, Proc. Phys. Soc. (London)
A69, 28 (1956); D. A. Bromley, E. Almzvist, H. E. Gove, A. E.
Litherland, E. B. Paul, and A. J. Ferguson, Phys. Rev. 105, 957
(1957); R. L. Johnston, H. D. Holmgren, E. A. Wolicki, and
E. G. Iilsley, Phys. Rev. 109, 884 (1958); J. B. Marion and G.
Weber, Phys. Rev. 102, 1355 (1956).



T%0 —N U CL EON STR I P P I N 6 P ROCESS 243

Born approximation was derived, predicting the
observed forward and backward peakings. 4

In the simple theory of deuteron stripping, such as
the (d,p) reaction, the interaction V(lrs —r„l) outside
the target nucleus appears in Butler's treatment as the
quantity responsible for the stripping process. Here r„
and r refer to the coordinates of the constituents of
the deuteron. On the other hand, in the first-Born-
approximation method (Bhatia, Huby et al.) the
interaction potential V(lr —gl) is taken to be re-
sponsible for the stripping process, with g referring to
the collective coordinates of the target nucleus. The
particles in the core, forming the target nucleus, are
not treated separately, some of the aspects of the actual
many-body problem being thus left out of account.

In his analysis of the deuteron stripping theory,
Gerjuoy' has shown that in the first Born approximation
method for the (d,p) stripping reaction, the potentials
V(l r —r„l) and V(l r —pl) are equivalent in calcula-
tions of the cross'section, in one of the several develop-
ments based on different sets of assumptions. In the
theory of the two-nucleon stripping process mentioned
above, ' the interactions V(lr —(l)+V(lr„—gl) are
used, with r„and r„standing for the coordinates of the
neutron and proton captured from the projectile, and
g referring to the collective coordinates of the target
nucleus.

By considering the (rr,d) stripping reactions on
similar lines to those given by Gerjuoy for the (d,p),
it can be shown that in the first Born approximation,
the matrix elements of the potentials

v(l'-~l)+ v(l .-~l)

V—= V(l «—r-I)+ V(l «—r. I)+V(lr- —r. I)

are equivalent in calculations of cross sections for the
(n, d) stripping reactions. Here ra refers to the coordinate
of the outgoing deuteron (see Fig. 1). The precise
meaning of the equivalence of the two potentials is
presented in the Appendix to the present note.

Below, the latter form of the potential, referred to as
V, will be used in the first-Born-approximation matrix
element for the (es,d) reaction, together with the delta-
function representation for the three interparticle
potentials. This representation has been successfully
employed in deuteron stripping theories. ' lt will be
seen that the diBerential cross section 0- may be repre-
sented in a compact form suitable for comparison with
experimental data.

In the center-of-mass system the cross section may
be written

da= (S/4 st)M.*M.*(k./k. )P l
I

l

s.

'M. el Nadi, Proc. Phys. Soc. (London) A70, 62 (1957);
M. el Nadi and M. el Khishin, Proc. Phys. Soc. (London) 73,
705 (1959).

5 E. Gerjuoy, Phys. Rev. 91, 645 (1953).
G. Breit, Hamdbleh der Physeh, edited by S. Fliigge (Springer-

Verlag, Berlin, 1959), Vol. 41, Part 1, p. 327.

FIG. 1. The two-
nucleon stripping
process. The proton
p and neutron n are
captured by the tar-
get nucleus T from
an incident o, parti-
cle. The outgoing
deuteron is shown as

while r„, r, r~ are the vector displacements of the
proton, neutron and deuteron. The quantity

rd,
' re $(M +——M„)—/Mf jR,

where R=sr (r„+r„), is the vector displacement of the
deuteron with respect to the center of the 6nal nucleus.
The notation Ma* ——MeMy/(Ma+Mr), M,*=M M,/
(M +M,), with M, and Mf standing for the masses of
the initial and 6nal nuclei will be used and the custom-
ary symbols kd=(2Ma*Ea)'*/5 and k = (2M *E )&/5
with Ea and E standing for the energies of the deuteron
and n particle in the center-of-mass system will be
employed.

The internal wave function for the o. particle will be
denoted by p (r~,r„,r&). This will be approximated by
the Gaussian form exp( —y' g,&;r,ss). Here y is a
constant, r;; is the distance between the two particles
i and j' in the o. particle, and summation extends over
i and j from 1 to 4 with the condition that i&j.

The total exponent of e in the matrix element (2) is
given by

X=—ika ra'+ik r„
ika fry

—$(M„+M„)—/Mf)R)
+ik -', (r~+r„+2ra)

=iQ Ry-,'iK 9,y-,'iK &„,

where
rd ry+ gy rn+ pm R+ 9)

Q= k.—(M,/Mr)ka, K=-,'k —ka.

(3)

Similarly one obtains for the exponent of the internal
wave function of the o. particle

4—p' P r,ss= —y'(2a'+3p„s+3p„' —2p„p cost)), (4)

where a is the distance between the proton and neutron
which will constitute the outgoing deuteron after their
detachment and 0 is the angle between p„and y .

Here the summation sign implies the sum over Gnal
states and average over the initial state, and

I= ~dr„dr„dred( exp( ikd —ra')%rr &*(r„,r„,()V

)&exp(ik r ) &p (r„,r„,rd)lbl, ~'((), (2)
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The wave function of the residual nucleus
Prr~I(g, r„,r„) will now be expanded in terms of the
wave function of the target nucleus 4'r, ~'(() and that
of the captured particles as follows:

&(g,r„,r„)= p Ar, ,l+r, '($)ft~t„(r„r„)
ls, L

pI; I. II q
XZI I+r' *(~t)'tj~ (~) (5)

jr kM, M Mr)

interaction potential

where Vp is a constant. ~

Now, since the integrand in (8) is symmetrical with
respect to y„and p, the first two terms on the right-
hand side of (1) give equal contributions. Using the
term —Vob(l y I) in the integral (8), one obtains for
the integral over g„

with

tl„ /„ I. y
'JJ~"(~)= 2 I I V&.~"(~n) v&-~(~-), (6)

&~, m„M&

—Vp exp(i. K.y,/2 —3y'p, ')dg„

= —(x -*' Vs/3v3y') exp( —E'/48'') (11)

where the two bracket symbols denote the %igner
vector-addition coeflicients, f1~&„(r~r„) is the product of
the radial parts of the wave functions of the bound
proton and neutron, co~, co„, and co„denote in each case
collectively the polar angles defining the directions of
the vectors (, r~, and r, respectively.

The coeflicient Ar, ,l. in (5) gives the probability
amplitude that the final nucleus is composed of a core
with angular momentum I, and a proton-neutron
system with total orbital angular momentum I.. It is
proportional to the reduced width amplitude. The
integral over g in (2) gives

' 0're~I*((,r~, r„)%'r,~*(g)dg

(I;= P Ar;, rfi, t„(r„r„)l I
W~"*(&) (7)

r,sr EM, M M~]

Using Eqs. (3), (4), and (7) one flnds for the matrix
element (2)

(I; I. Ir qI= P Ar;, r ft„1„(Ro)I

rsr kM; M Mzi

' exp(iQ R+-,'iK (g„+y„)—y'(2a'+3p '

+3p„' 2p„p„cos9)) 'JJJ.~*(Q)d—g~dp dQ. (8)

In the matrix element (8), Ro is substituted for lr„l
and lr I, where Rs is the nuclear radius. This follows
(Bhatia, Huby et al.) from the assumption that strip-
ping takes place at the nuclear surface. The integration
over 0 is readily performed by means of

exp(iQ R)pl~" (Q)dQ

=PL41r(2I+1)j-'*Jr,(QRe)bsr o, (9)

where j& is the spherical Bessel function of order L.
The evaluation of the integral in (8) over y~ and y„,

is greatly facilitated by the assumption of the 6-function

Similarly, using the third term on the right-hand side
of (1), i.e., —Vol(l y„—y„l )= —Vp5(

I rl ), in the
integral over p, one gets

—Vp ~ exp(iK g, 4y'p, ')dy„—
~o

= —(s.l Vo/8y') exp( —E'/16'') (12)

Thus the complete expression for the matrix element
(8) becomes

I~gz, AI, ,If1„4(R
IM, O

Xi (2I.+1)2L3.07 exp( —E'/48'')

+exp( —E'/167') jJ (QRo) (13)

Squaring (13), substituting in (1), summing over the
final and averaging over the initial states, one gets for
the differential cross section in the center-of-mass
system

do ~I 3.07 exp (—E'/48'')+ exp (—E'/16'') ]'
Xf&,1 s(Ro) pr. lAr;, L, lsgrs(QRp). (14)

The angular dependence enters through both Q and E,
as

Q'=Lk. —(M,/Mg)k j' +(4M/ M)kr. kg sin (—8),
E'= (-'k —k~)'+2k kd sin'(-'8)

7 For simplicity of calculation the coeKcients of the three 5
functions have been assumed to be the same. There is no com-
pelling reason for believing that the best representation of actual
conditions is obtained' in this manner. If the relative spin orien-
tations of the two protons and the two neutrons are taken to be
the same as in the ground state of the alpha particle and if one em-
ploys the Majorana-Heisenberg mixture (t —g)P~+gPn for the in-
teraction potential, then one obtains in fact a somewhat smaller
eftective interaction between p and n than between p and d, the
ratio of the latter to the former being 1.5. It is not certain,
however, th atthis method of estimating the ratio is suKciently
complete and it is also not clear that the difference between using
different coefficients of the 8 functions in Eq. (10}cannot be com-
pensated for in its e8ect on the angular distribution by a
suitable adjustment of the value of the nuclear radius R. The
simplifying assumption of equal coeScients has been used,
therefore, - in the present note. This problem does not, of
course, arise in the stripping of a three-body projectile; e.g., in the
(He, p} reaction. The writer is indebted to Professor G. Breit for
drawing his attention to the possible importance of the effect
discussed in this footnote.
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where
i If—I,

i

—1&1 +l„&If+I,+-', +s,

L= I,+I„,
and l, and If are the spins of the initial and 6nal nuclei,
respectively. Also the conservation of parity implies
that the total orbital angular momentum L must be
even or odd according as the parities of the initial and
6nal nuclei are the same or different.

In Eq. (14), there is no interference between different
values of L, so that 6tting with experimental data can
be accomplished by one or more values of L.

Comparing the expression (14) with the previously
derived expression, 4 one observes the simplicity of the
present formula as regards to its 6tting to experimental
data. Although the two formulas are basically the same,
the present form combines the different summations,
expressed in the earlier formula, in one or more simple
terms depending on the possible values of L.

To compare the formula~ (14) with the experimental
data, the observations of Green and Middleton' on the
reaction 0"(d,cr)Ni4, for the ground level transition
were considered. The ground level of N'4 is I= 1+ and
that of 0' is I=0+, so that there is no change of parity
in this transition. Hence L is even. Assuming the
particles to be picked up in the Pf state, the values of
L are limited to 0 and 2 only.

The value of the constant y delning the Gaussian
wave function of the n particle is given by (1/p) =4.5
&10 " cm as this is found to give reasonable values
for the binding energies of the n particle and the triton. '

Figure 2 shows the theoretical curve calculated,
according to formulas (14) above, and to the corre-
sponding formula in reference 4, both for the same

sIn a recent publication LS. Hinds and R. Middleton, Proc.
Phys. Soc. (London) 74, 196 (1959)j of further experimental data
on Be'(He', P)B", mention was made of some work, under publi-
cation, by H. C. Newns, in which the di6erential cross section for
the two-nucleon stripping process is given by

do(8)~s~A(I)jx(QRO) [s.

Apart from the form factor given in (14), the formulas are of the
same form.

9 T. Muto and T. Sebe, Progr. Theoret. Phys. (Kyoto) 18, 621
(1957).

The quantity inside the first parentheses of (14) gives
the form factor for the (cr,d) reaction.

Equation (14) can also be used for (He', p), (T,p) or
(T,ts) reactions with the following modifications: The
form factor in (14) is replaced by [2 exp( —E'/32&')
+exp (—E'/Sy') $'.

()s=[k&—(M';/Mf)k„g'+4(M;/M, )k&k, sins(&e),

Its= (ski, —P )s+s&&P„sin (—fi)

In the derivation of Eq. (14), the spins of the particles
were neglected. If this is taken into account, then the
following selection rules, associated with the matrix
element for the general case, apply

If= I,+L+1/2+1/2,
or

400—

500—

dc

dQ

200

~00

10 20 30 40 50 60 70 80 90

8 (c.M.)

Fro. 2. Comparison of theory and experiment for 0"(d,o)N".
The dashed curve is calculated by means of Eq. (14) of the text
while the solid curve is obtained by the corresponding formula of
reference 4. The experimental points are from Green and Middle-
ton.

value of the radius 6.0)&10 " cm. In 6tting formula
(14) to the experimental data, the following ratio for
the coefficients A2 and Ao was obtained:

[
A,/A, ]

s= 1O/3.

The difference between the two theoretical formulas,
as shown in Fig. 2, may be attributed to the fact that
in the earlier work, the differential cross section was
expressed as an indnite series and that only the 6rst
few terms of this were calculated. Moreover, in the
present calculations, a different value for the constant

y of the Q.-particle wave function is used.
Satchler and Sawicki' have recently shown, that

when deuterons are stripped by spheroidal nuclei, some
additional selection rules are implied, which can prevent
the mixing of different angular momentum quantum
numbers L in the cross section for some particular
nuclei.

As in the formula (14) above for the (n,d) reaction,
summation is implied on all the possible values of L,
it may be of interest to consider if this mixing is limited
when the n or the He' particles are stripped by sphe-
roidal nuclei. The cross section is still given by Eqs.
(1) and (2) with the following expressions for the
initial and Gnal nuclei:

@;=(2I~+1/1&a')-'*[x(0,', z') X)m,x '(();)

+ (—)"-"x(—f);; s') &~;,-ir,"(f),)j~a(g), (15)
and

4 g
——(2Iq+1/1&n-') '*[7t (Qf .

, s'pV) 5)m fKf'r (0,)
+(—)" "X(—f)f s p'I')™i irf '(f)~)j~o(8 (16)

"J.Sawicki, Nuclear Phys. 6, 575 (1958); S. Yoshida, Progr.
Theoret. Phys. (Kyoto) 12, 141 (1954); G. R. Satchler, Phys.
Rev. 97, 1416 (1955); G. R. Satchler, Ann. Phys. 3, 275 (1958);
D. A. Bromley, H. E, Qove, and A. E. Litherland, Can. J. Phys.
35, 1057 (1957).
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where ys($) is the spinless core wave function of the
vibrational ground state, x(0, ; r') the wave function of
the particles outside the core, i' denotes the coordinates
of these particles in the intrinsic system, Ssrx (8) are
the usual rotational matrices depending on the Kulerian
angles 0;, and E represents the component of the total
angular momentum I along the nuclear symmetry
axis. The quantity E is assumed to be nonnegative.

The wave function x(Qr, s'p'e') may now be written
down as

t'l, l. l q
&(Q„ep'n') =x(0, ; s') p (oo EQ~ 0 QJ

as before, the following expression is obtained:

I Ft„t„(RO)j 3.07 exp( —E'/48'') +exp( —E'/16'') j
)I; L Iry )I; L Irq

!XZ~( —)x' x'I
tE, 0 Er) E3'II; 0 Mfi

X (i)~(2L+1)'*jr,(QRo). (20)

Squaring (20), summing over Mg and averaging over
3f;, one gets for the diGerential cross section

do~FL~ta(Ro)E3 07 exp( E'/4g&') +e xp( E'/16'y )3

x&"(0„;p')x'-(0. ; '). (»)
Using (15), (16), and (17) the overlap integral becomes

]I; L Iqq '
Xgr, ] ~

jr,'(QRo).
l E; 0 Eri

(21)

d(di' %r*%';

t'l„ l„ l )=L(2I'+1)(2I~+ 1)/(1«')'3' 2 I

u.o. (0„0„0)
X fx*(0„;m') x*(0~;p') Su fx

fr&*�(8;)

X)M K r'(8, )

+(-)"-"-'x*(-0-;")x*(-0.; p')

Q~f xf rI *
(8 )Ssr x r;(8 )) (18)

The wave functions of the captured nucleons x (0„;I')
and x(0„;p') will now be transformed from the intrinsic
nuclear system to the 6xed system by means of

x(0„;I') =R(r„)gm„Sm„u„'"(8,)Yt„~((o„),
(»)

(0.; p') =R(.)Z-. ~-..."(8;)Y.- (.).
Inserting (18) and (19) in the reaction amplitude I,
integrating over 0;, and summing over Q„and 0„, it is
found that

which implies, when the spins of the captured particles
are taken into account, the following selection rules:

I4-LI &
I ~+/2+/2I &I~+I;,

E,=E,+0', ~~+&/. +&/,
~

&0', (22)

where 0' is the projection of the vector L+I/2+I/2 along
the body axis. If either I; or If is zero, as in the case
of even nuclei in their ground states, then (22) together
with the parity conservation rule will, generally, limit
L, to one value only.

In the integrals over r~ and r„which lead to (20),
the lower limit was taken as the nuclear radius Ep,
instead of the corresponding values for spheroidal
nuclei, as this was shown by Satchler and Sawicki" to
have negligible effects on the scattering amplitude.

This is similar to the expression (14) derived above,
except for the term

)I; L, Ir~ '

(E; 0 Ef)

&l l„L~ PL, L Irq ~I; L Izy
XI

4m„m~ ) &E, 0 Erl l,Mr — M, J

X dr~dr„dry(r„)R(r~) Yt„~*(co„)Yt~~~'(co„)

XexpLiQ R+iK (8 +8„)/2
'y (2a +3P„+3p„—2PpP cos8)j. —

Using the formula

tl„ l, L' q
Yi„(a)„)Ir„(co )= Q ) '~gr, . '(0),

r"sr' &m„m„M')
in the above integral and proceeding in the same manner

APPENDIX. DERIVATION FOR THE MATRIX
ELEMENT OF THE (n,d) REACTION

To derive an expression for the scattering amplitude
for the (n,d) reaction, the method used by Gerjuoy'
for the (d,p) stripping reactions will be followed and a
similar notation will be used.

If the nucleus is pictured as a 6xed center of force,
then the solution 0' at in6nity must be of the form

+=4.+c, (A1)

where P is the plane wave of n particles incident on

"J.Sawicki and G. R. Satchler, Nuclear Phys. 7, 296 (&958).
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the initial nucleus, and C is everywhere outgoing.
Allowing the energy to have an inlnitesimal positive
imaginary part, the outgoing character of C is secured
provided it remains bounded as r„, r„, or r~ or all
approach inlinity. Let p(r, r„) denote the wave func-
tions of the final nucleus in a (n,d) reaction in which
one neutron "n" and one proton "P"are captured into
bound states. Then the scattering amplitude A(n) in
the direction n will be given by

gikrd

3 (n)

and r& approaches infinity along n.
A solution is sought with outgoing deuterons whose

energy corresponds to leaving the neutron and proton
bound to the center of force schematically representing
the target nucleus. The total Hamiltonian is given by

H= Tg+T„+T„+Vg+V~
+V +V ~+ V~~+ Vd ~, (A3)

where T represents the kinetic energy, V the potential
energy, and the symbols d, P, e the deuteron, proton,
and neutron, respectively. The solution satis6es

while g(E—)) is the outgoing free space Green's
function for the deuteron satisfying

(Tg E+—X)g (E X)=—0(rg rg')—,

and has the form

(A12)

1 2Md expLi(E —X)i(rd —rd'( j
g(rg rg—') = (A13)

4m r~—r~'

From Eq. (A6) one gets

p =$0+G(V +Vy Vd ——Vd„—V„„)p . (A14)

Eliminating Po from (A7) and (A14) one finds

%=/ —G(V +V„—Ve —Vg~ V~)g—
—G(Vd+ V„g+V~e+ V ~)4. (A15)

Substituting (A15) into Eq. (A2), and using Eq. (AS)
it is seen that the contribution from the first term on
the right-hand side of (A15) vanishes exponentially as
rq —+ ~, since both q and y(n) are bound states. The
second and third term on the right-hand side of (A15)
can be simplified by using Eqs. (A10), (A13) together
with the orthonormality of the set p(X). Letting
r~ —+ ~, then one has

(P E)@=0, — (A4) 2 (n) =A, (n)+A, (n), (A16)

with 4 having the form (A1), where

tt = p(n) exp[i' (2r~+r„+r„)/4],

so that P (e) satislies the wave equation

where
12Mq r~

(AS) A, (n) = ——
~ drddr, dr„e—'~&'&p*(r„,r„Xg)

4m k'

(Td+T„+T„+Vg„+Vg~+V ~ E)f =0. —(A6)
&& (V„+V~—Vd„—Vg~ —V ~)p, (A17)

where
+=$0—G(V~+ V.~+ V,~+U.,)%,

(Ts+T +T„+V,+V„E)$0=0, —

The solution of Eq. (A4) can now be written as

(A7)

(AS)

12Md p
A2(n) = —— ' dr&dr„dr„e ' &'&&p*(r„,r~,X~)

4x

X(Vd+V g+V,g+V „)4, (A18)

(T +T~+V +U~ X)p(X)=0, —(A11)

(Tg+T„+T„+V„+V~ E)G=1-
=8 (r~—r~') 5 (r~—r~') 5 (r„—r„'). (A9)

The solution of (A7) satisfies the boundary conditions
at the nuclear radius, and satisfies the boundary
condition at ~ if G is the outgoing Green s function,

G (rd, re', r„r„,r„'r~')

=g), g(E—'A) p(r r„,X) q*(r„',r„',X). (A10)

p(X) form the complete set of eigenfunctions of the
neutrons and protons in the 6eld of the initial nucleus
so that

where ) y is the total energy of the bound proton and
neutron in the 6nal nucleus:

Eliminating the potentials in (A17), by using Eqs.
(A6) and (A11), it can be shown that Ai(n) =0.

In the 6rst Born approximation one may replace 4'

by P, so that the scattering amplitude will be given by
(A18) with 4 replaced by P .

Neglecting Vq, Eq. (A17) shows that in the lirst-

Born-approximation amplitude either of the following

interaction potentials may be used:

V +V~ or Ve„+Vg~+V„e.

This proves the equivalence of the two methods for the
derivation of the cross section.


