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Perturbation Theory Applied to the Nuclear Many-Body Problem*
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Perturbation theory is applied to infinite nuclear matter at the observed density for a well-behaved two-
body potential, containing a tensor force. We 6nd that a tensor force can contribute as much as 10 Mev/
particle to the binding energy in second order. Perturbation theory is then modified to include the pseudo-
potential treatment of an infinite repulsive core. We give a detailed derivation of the DeDominicis-Martin
and Huang-Yang result for a pure repulsive core. We obtain an expansion jointly in powers of the strength
of the attractive potential, and in the range of the core. We find the second-order contributions to the
binding energy for several potentials combining an infinite repulsive core with an attractive potential. For
each case considered& the second-order terms are large (absolute value about 20 Mev/particle).

I. INTRODUCTION system. (This implies modernizing Euler's results by
inserting modern values for the range of the Gaussian
potential. ) The numerical results for the second order
term are reasonably small and close to each other for
the three different shapes of two-body potential. Thus,
perturbation theory seems to converge reasonably
rapidly for well-behaved central forces.

Several lines of argument, however, have led to the
conclusion that the two-body forces are not well-

behaved, but instead become extremely Iarge and re-
pulsive at very short distances. Even if this repulsive
potential is Gnite, it is so large that perturbation theory
converges poorly. ' The repulsive potential is usually
treated as an infinite repulsive core, of radius c, which
gives very similar results to a finite repulsion of some-
what larger range. ~

While an infinite repulsive core cannot be treated by
standard perturbation theory, which involves an ex-
pansion in powers of the strength of the potential Vp,
an analogous expansion may be made by introduction
of a pseudopotential, or closely related t matrix. The
expansion parameter becomes kgb, the product of the
Fermi wave number and the core radius. (The infinite
repulsive core produces a phase shift of value kc in two-

body scattering. This phase shift is averaged over
diferent values of k, the wave number for relative
motion. Since the average of k is of order of magnitude
ky, the expansion parameter is expressed as k~c.) Huang
and Yang' developed this expansion both for an
isolated system of two particles, and for a many-body
system with a pure repulsive core force. Independent
work by DeDominicis and Martin carried the expan-
sion to the (krc)s term.

Gomes, Walecka, and Weisskopf" have considered
the problem of a combination of an infinite repulsive
core and an attractive potential. Their method of
numerical computation involves combining the usual
perturbation theory expansion up to terms of the 6rst

'
ANY diGerent workers have applied perturbation

- ~ theory to obtain the binding energy per particle
E/A in infinite nuclear matter for given assumed two-
body nuclear forces. In most of their work the emphasis
has been on computing E/A as a function of the
nuclear density (or corresponding Fermi wave number
ky). The computed equilibrium density and binding
energy at that density may then be compared with
experimental values.

Perturbation theory calculations made over 20 years
ago by Euler' showed that, at the equilibrium density,
the terms of second order were only several Mev per
particle. Swiatecki' and Bethe' have emphasized that
Euler's small ratio of second-order to first-order terms
(value about 60 Mev per particle) shows that perturba-
tion theory is converging rapidly for this problem;
and that this convergence is due to limitations on
possible intermediate states imposed by the Pauli
principle. Euler used a well-behaved two-body poten-
tial, of exchange character such that nuclear matter
will not collapse. The perturbation is the sum of all
two-body forces. For the low orders considered here, the
Rayleigh-Schrodinger form of perturbation theory
applies without any special modifications for the many-
body problem. ' (In higher orders special care must be
taken concerning "linked clusters. ")

Euler's calculations for a Gaussian two-body poten-
tial were repeated by Huby' for a Yukawa potential,
and by Thouless' for an exponential potential. These
three potentials of different shapes are for cerebral forces
with parameters in agreement with the effective range
treatment' of low-energy properties of the two-particle
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power of the attractive potential Vo with the De-
Dominicis-Martin expansion up to terms of the third
power in the parameter k~c. Our paper may be regarded
as an extension of their work, in that we spell out the
mathematical framework for combining the two ex-
pansions, and in that we calculate two terms not in-
cluded by Gomes et al. , i.e., Euler's term from second
order perturbation theory for the attractive potential,
and a term involving first powers in both the attractive
potential and in krc. (We do not agree with certain
features of the Gomes-Walecka-Weisskopf calculation,
i.e., their use of the eGective mass approximation in
calculation of the t matrix; their assumption that the
triplet central potential equals the singlet potential;
and their choice of core radius for the singlet potential.
However, while these details seriously aGect the calcula-
tions of the binding energy E, they are of less importance
for the question considered here of rapidity of con-
vergence of the expansions. )

The mathematical framework for combining the two
diGerent expansions was suggested by R. E. Peierls. It
is one of several procedures discussed by Tobocman. "
As emphasized by Tobocman, many different approxi-
mation procedures are possible in attacking a many-
body problem. In any particular case we must weigh
the ease of the procedure against the accuracy achieved.
In this paper we adopt a particularly simple procedure,
and we study its rapidity of convergence for the
problem of infinite nuclear matter. Our purpose is to
try to find a relatively simple method that yet con-
verges reasonably rapidly. Such a method, if it exists,
would have two main advantages as compared, for
example, to Brueckner's method. " First, our method
would be easier to understand. In particular, it is clear
just what approximations are made, and whether the
approximations are valid. Second, our method might
prove directly applicable to other nuclear problems,
such as that of the binding energy of a 6nite nucleus, or
the aGects of two-body clusters on nuclear reactions. "
(Brueckner's work on the finite nucleus" demands
further approximations beyond those made in his treat-
ment of infinite nuclear matter. )

Further, the present treatment whether it converges
or not will suggest which terms give a large contribution
to the binding energy, and which terms should, there-
fore, be emphasized in a variation treatment of the
nuclear problem. " For instance, the important con-
tribution that we find due to tensor forces suggests that
a variational wave function should include an adjust-
able parameter to allow for the corresponding deviation
from isotropy of the two-body wave function.

'i W. Tobocman, Phys. Rev. 107, 203 (1957)."K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958)."K.Okamoto, Phys. Rev. 116, 428 (1959).

'~ K. A. Brueckner, J.L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958).

'~ J. Dabrowski, Proc. Phys. Soc. (London) 71, 658 (1958);
J. W'. Clark and E. Feenberg, Phys. Rev. 113,388 (1959).

Our present objective is to examine whether perturba-
tion theory, with certain modi6cations, converges
reasonably well for calculations of the binding energy
per particle in nuclear matter. The criteria for con-
vergence are not exact: they amount to looking at the
first- and second-order terms and guessing whether the
third-order terms will be small enough so that they can
either be neglected or estimated by crude approxima-
tions. Until we have confidence in the method we shall
not try to 6nd the binding energy for comparison with
experiment. To emphasize this point of view, we shall
not even calculate a first-order term, but merely
estimate its order of magnitude as an indication of the
rate of convergence of our series. We shall evaluate the
second-order terms at the observed nuclear density.
The actual two-body forces would presumably give a
density of nuclear matter equal to the observed value,
so that our expansion should converge reasonably well
at the observed density if the expansion is to be of use
in evaluation of the equilibrium properties of nuclear
matter. If the expansion converges well, it would be
straightforward though tedious to extend the second-
order (and first-order) calculations as a function of
density, and thus determine the equilibrium density
and equilibrium properties. "

The method used for solving the many-body problem
should be chosen in a manner appropriate to the two-
body .potential assumed. (i) For certain two-body
potentials, such as the well-behaved central potentials
treated by Euler, ' ordinary perturbation theory con-
verges well. (ii) For certain potentials including a re-
pulsive core, the modified perturbation theory treated
in this paper would converge well. (iii) If our modified
perturbation theory converges poorly for a certain
potential, it might be possible to modify the theory
further to obtain a rapidly converging series for this
problem. (iv) None of the three techniques above may
converge rapidly; but Brueckner's technique may give
a rapidly converging series, i.e., the incoherent scatter-
ing terms may be small. (v) For certain potentials, none
of the four methods above would give a rapidly con-
verging series. Detailed numerical works must be done
for any given two-body potential to determine which
category is appropriate.

In the next section we apply perturbation theory
to the nuclear many-body problem for the case of a well-
behaved two-body potential containing a tensor force,
that 6ts the low-energy measurements. Many examples
of such triplet potentials are given by Biedenharn,
Blatt, and Kalos": the central and tensor potentials
may be chosen to have various shapes; and also for
given shapes we may combine a weak central potential
(strength parameter s.=0.6) with a strong tensor
potential. Alternatively, we may combine a strong
central potential (s,= 1.0) with a weak tensor potential.
We 6nd that the numerical value of the second-order

"L. C. Biedenharn, J. M. Blatt, and M. H, Kalos, Nuclear
Phys. 6, 359 (1958).
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term is insensitive to the potential shape chosen, but is
sensitive to the strengths assumed for the central and
tensor potentials. Specifically, the second-order term is
almost twice as large for the strong tensor potential,
than for the weak tensor potential. (See Tables III and
IV). The convergence of perturbation theory is poor
for the strong tensor potential, and fair (i.e., not much
worse than in Euler's work) for the weak tensor
potential.

In Sec. III we develop a modified perturbation theory
for treating the infinite repulsive core alone, and we

apply this modified perturbation theory to find terms
up to the second power of k~c. The kyc term was derived
by Lenz. "The (k&c)' term result was stated by Huang
and Yang and DeDominicis and Martin without a
detailed derivation. We shall supply the details.

In Sec. IV we develop our modified perturbation
theory for a two-body potential containing both a
repulsive core and an attractive potential. In Sec. V we
consider two-body potentials taken from Biedenharn,
Slatt, and Kalos, "and Gammel-Thaler. "Our results
(Tables V, VI, VII) show that in all cases considered
the second order terms are large, i.e., our modified
perturbation theory converges poorly for the nuclear
many-body problem using an attractive potential com-
bined with a repulsive core of radius about 0.4 fermi.

In the final section we discuss our numerical results,
and consider brieQy other related methods that are
expected to converge better than the methods treated
in this paper: Moszkowski's" and I.omon's" different
separation of the potential into two parts, and the use
of a velocity-dependent two-body potential2' instead of
a repulsive core.

II. ORDINARY PERTURBATION THEORY

Euler, ' Huby, ' and Thouless' have applied ordinary
perturbation theory to the nuclear many-body problem,
for well-behaved central two-body potentials. We shall
use a notation similar to Euler's and give only a brief
development of the formula for the second order term.
The details are given in his paper.

%e separate the Hamiltonian H into one part LID in-
volving the kinetic energy T alone, and a perturbation
e consisting of the sum of well-behaved static two-body
potentials. (Of course, many-body forces may be of
importance, but are not considered in this paper. Use of
velocity-dependent two-body force is mentioned in the
last section. )

Here and throughout this paper certain summations

i'i W. Lenz, Z. Physik 56, 778 (1929)."J.Gammel s,nd R. M. Thaler, Phys. Rev. 107, 1337 (1957).
Also see reference 12.

'9 S. A. Moszkowski, Bull. Am. Phys. Soc. 4, 256 (1959); and
University of California at Los Angeles UCLA Technical Report
No. 2, O.O.R. (unpublished).

~0 K. L. Lomon, Bull. Am. Phys. .Soc. 4, 48 (1959).
s' M. Moshinsky& Phys. Rev. 106, 117 (1957);109, 933 (1958).

are implied, but are not stated explicitly: T denotes the
sum of the kinetic energies of the individual nucleons,
and e denotes a sum of the interaction of all pairs.

Following the standard Rayleigh-Schrodinger per-
turbation theory, the energy E is given, up to second
order by

Here ps and g„are eigenfunctions for the unperturbed
Hamiltonian T for the ground and excited states, re-
spectively, of infinite nuclear matter. Thus, ps is a
Slater determinant of plane-wave functions for the
individual nucleons, with wave numbers from zero up
to the value k~ at the Fermi surface. The excited state
wave function p„has a single pair excited, each member
of the pair being outside the Fermi sphere. The energies
in the denominator Ep and E„are the eigenvalues for the
unperturbed Hamiltonian; i.e., they are the kinetic
energies.

The value of the first term (gs( T~ Ps& is well known'
for our assumed perfect Fermi gas:

(1/A) ($e~ T( Pe&= st= s (5'k~'/2M) =24 Mev. (3)

Here Ty is the kinetic energy, of value 40 Mev, at the
Fermi surface. Throughout this paper we use ky=1.40
fermi ', corresponding to the nuclear radius parameter
rs ——1.52/ky=1. 09 fermis. LFor infinite nuclear matter,
r& is defined by the relation volume per particle
= (4/3)z. ro 7

The first order term (Ps(s~Ps& has been calculated
by many authors" 'p for diGerent assumed potential
shapes and exchange mixtures v. At our value for k~,
the literature gives

(1/A) (Qo (
s

( Po)=—60 Mev.

Note that the value of this term differs appreciably
among different potentials e that fit the low-energy two-
body data. For instance, a weak central force (strength
parameter s,=0.6) gives only about 60% of the con-
tribution of a strong central force (s,=1.0). Note that
a tensor force gives no contribution to (gs~ s( gs), since
a tensor force averages to zero on angular integration.

In evaluation of these equations some workers'' '
have made a choice of the unperturbed Hamiltonian
different from our choice Hs= 7=fs'k'/2M. Their argu-
ment is that in general a se)f-consistent effective
potential felt by a single particle is velocity-dependent. "
We might then use He' X+V(k) to find t——he energies
Ep and E„in the denominator of the second order term
in Eq. (2). In practice, this choice of Be complicates
the already dificult sum over intermediate states e.
These workers then make the effective mass approxi-

"J.VanUleck, Phys, Rev. 48, 367 (1935).
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mation by selecting the term in V(k) that is quadratic
in k, and combining this term with the kinetic energy T
to give Hs"=A'k'/2M*. Several arguments" ""show
that the effective mass M* has a value in the range from
0.535 to O.Klf, where M is the true nucleon mass. Since
M* occurs in the denominator in determining the energy
denominator of the second order term, the second order
term is proportional to the value chosen for M*. (Note
that the eigenfunctions ps and P„are unchanged when
we adopt an efFective mass. ) Thus, the convergence
of perturbation theory is improved by the use of an
effective mass that is smaller than the true nucleon
mass.

It may seem surprising that the value of the second
order term should depend on the arbitrary choice of
H p as Hs'. (One is tempted to make perturbation theory
converge extremely rapidly merely by choosing M~ as
extremely small. ) However, the dependence of per-
turbation theory results on the choice of Hp disappears
if we go to the third order. Feenberg" has shown that
the combination l

Et"$'/(Et'& —Et") is invariant to a
"scale transformation" such as the introduction of an
effective mass. LHere Et" and E"' are the second and
third order contributions to the energy, respectively. ]

Since computational problems cause us to stop at the
second order perturbation term in this paper, our result
does depend on the arbitrary separation into Ho and ~.

Neither our use of the true mass 3f, nor the alternative
use of the effective mass 3I*, can be regarded as giving
an exact answer.

In evaluation of the second-order term of Eq. (2), we

neglect the exchange term" which is much Inore
difFicult to evaluate than the ordinary term. For the
exchange mixtures in common use such as the Serber
force, the exchange term is somewhat smaller than the
ordinary term, and has the same sign. Our use of the
true mass M, and our neglect of the exchange term are
two errors in opposite directions and of comparable
magnitude. Our result for the second order term should
be in error by an amount less than either of these
neglected effects: our calculation may be accurate to
30'P~. In any case, it should be accurate enough to draw

conclusions as to the rapidity of convergence of per-

turbation theory as applied to the nuclear many-body

problem.
Euler' has manipulated the second-order term of Kq.

(2) into a form convenient for use with different

perturbations. The summation over intermediate states
e is rather involved: we are concerned with a pair of

nucleons, wave-numbers k, and ks in the ground state,
which scatter to an intermediate state e with wave-

numbers k,'= ki+q and ks' —q. (The sum of the

momenta is conserved for our present problem of
infinite nuclear matter; though it need not be for the

finite nucleus problem. All wave numbers are given

23 E. Feenherg, Ann. Phys. 3, 292 (1958).

TABLE I. Numerical values of Euler's function P(u).'

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
09

P(u)

0
0.12
0.48
1.02
1.71

2.47
3.19
3.78
4.15
4.14

1.0
1.2

1.6
1.8

2.0
3.0
40
5.0
6.0

E(u)

3.82
3.03
2.52
2.18
1.92

1.71
1.11
0.84
0.67
0.56

a The function P(u) is given in analytic form in Eqs. (7) and (8) of the
text, and in reference 1.

in units of kr. ) We want the expression

(5)

tPktd'ks
(4s-'/15) P (g)/q =

q (q+ki —k,)
(6)

0&u&1, P(u) =P, (u) = (4+7-', u —Sus+1-s'u')

X In (1+u)+29u' —3u4

+(4—7-,u+Su' —1-', u')

Xln(1 —u) —40u' ln2, (7)

1&u, P(u) =Ps(u) = (4—20u' —20u'+4u')

Xln(u+ 1)+4u'+22u
+ (—4+20u' —20u'+4u')

Xln(u —1)+(40u' 8u') lnu—. (8)

Numerical values of the function P(u) are given in

Table I.
Euler gives convenient and accurate power series

expansions:

Pi(u)~40 (1—ln2) u' —10u4+ (-'u') +0.21u',

Ps(u)~(10/3)u '+-'u '+0.16u '.

The matrix element gslul $„) in the numerator of
Eq. (5) gives us the Fourier transform of the potential.

summed over-all ki and ks inside the Fermi sphere, and
summed over-all e for k, ' and ks' outside this sphere.
For the ordinary term (though not for the exchange
term), the numerator is only a function of q. The
integral of the energy denominator

l proportional to
q (q+ki —ks) j over ki and ks in the region satisfying
the Pauli principle for ki' and ks' is done for fixed q.
Euler's Appendix gives the result
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For a central potential —Vow(r/P)

(yp~. ~@„)=P(~)= —V, e'»p "(r/p)d'r

= —4m VoP'f(w). (9)

for x«1 and x))1. LSince Euler's g(x) = (2'x4/m)I, Eqs.
(13) and (15) are in agreement. )

Ke have reviewed Euler's treatment so that we can
extend it to the case of a well-behaved tensor potential
—Vow&(r/P)S». We replace Eq. (9) by"

Here

f(w) = ~ (»nwX/wX)o(X)X'dy (10)
(Qp ~

o
~

tt „)=Fi(q) = —Vp e'»o'oi(r/P)S»(r)d'r

= —4 V,P'S„(y)f, (w), (16)
where y=r/P and w=2ux with x=kiP. Euler obtains

g+&/A = —(1/2o5gp4) (p~o/2's)c, P(N)NLP(N)]'dN. (11)

The coeKcient c2 depends on the exchange character of
the two-body potential:

cp ——3('V+)'+3('V+)'+9('V )'+1('V )'. (12)

f (w) = jp(wX)o (X)S'dX

The spherical Bessel function

jp(s) =—sins/s —3 coss/s'+3 sins/s'.

Here S»(r) is the tensor operator in ordinary space

S»(r) =3 (si. r) (a& r) —ei op,

(18)

For the exchange term in second order, Euler gives a and
coef6cient c2'. S12(g) 3 (&1 g) (o 2

' g) &1 O2

g &'&/A = —(3/20pr') x'( Vo'-/Tg) I

I= fP(N)oi(j(2nx) jodo'.

(13)

cp'=3('V+)'+3('V+)' —9('V-)' —1('V-)' (12')

The superscript gives the spin multiplicity, and the
plus or minus subscript gives the parity of the wave
function. (Thus, 'V+ is the value of Vp for a spin singlet
spatially symmetric state. ) We assume a Serber force,
different (both for Vp and P) in the spin triplet (even,
central) and in the spin singlet states. For each even
state co=3(vo)' with a different Vp (and P) value de-
pending on spin. Equation (11) becomes

8&"/A = —(6/5n') x'( Vp'/& f)It, (20)

where r" and j are unit vectors. For any given direction
j, the integrals over d'k», d'k2, and sum over m can be
done as above by Euler giving P(u). In integrating
Pi(q) over the direction for j we obtain, since for a
spin-triplet state,

P'ip(i)]'= 8—2Sip(i),

(4 LS»(0)7')-=4 (8),

or eight times the usual 4m. We now modify Eqs. (13)
and (14) using this factor of 8, and using fi(2Nx) For a.
tensor force of Serber character c2=3 and

Ii= P(oi)NP f&(2Nx) j'dl. (21)

TABLE II. Euler's second-order energy. '

0.1
0.2
0.5
1.0

1.5
2.0
4.5
8.0

g(x) from Euler

0.051
0.107
0.328
0.707

1,034
1.307
2.079
2.479

& The second-order energy for a Gaussian potential (without core) is
proportional to g(x): See Eq. (15) of the text, and reference 1.

For the particular case of a Gaussian v = —Vo

Xexp( —r'/P'), Euler has evaluated the integral I and
obtains

E"'/A = —(3/2'57r)x'(V p'/Tg)g(x), (15)

where x= king. Table II extends Euler's numerical
results for g(x). Euler also gives its asymptotic form

The factor of 8 in Eq. (19) causes a strong tensor force
to give a surprisingly large contribution to the second
order energy.

The second-order term 8"& is calculated from Eqs. (15)
and (20) for various potentials fitting the low-energy
data. Biedenharn, Blatt, and Kalos" have provided us
with a great variety of triplet potentials. We have the
freedom in choice of shape for central and tensor
potentials. After the shapes are assumed, there are
still four parameters available (central strength and
range, and tensor strength and range) to fit only three
experimental data (deuteron binding energy and quad-
rupole moment, and the effective range). Biedenharn
et al. use this extra freedom by choosing the central
force as weak (strength parameter s.=0.6), with corre-
sponding strong tensor force. Alternatively, the central
force can be assumed strong (s.= 1.0) with a weak tensor
force. We choose a Gaussian shape for the triplet force,
and either Gaussian, exponential, or Yukawa shape for
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the tensor force. The details of the potentials used are
given in the Appendix.

The singlet potential is chosen as a Gaussian shape,
with strength parameter 0.95 and efkctive range 2.5 f.

The central triplet, tensor, and singlet potentials
are each assumed to have Serber exchange character.
Other cases can easily be treated using Eq. (12).

Certain details involved in using Eq. (20) for a tensor
force are also given in the Appendix. These calculations
were performed on a desk computer, with an accuracy
of several percent. The results are given in Tables III
and IV for weak central and strong central potentials,
respectively. Table III shows that the strong tensor
force- associated with the weak central potential gives
about —10 Mev contribution to the nuclear binding
energy per particle; the value is insensitive to the
tensor shape. On the other hand, the weak tensor
potential used in Table IV gives about —5 Mev con-
tribution, while the contribution of the central potential
remains small, the total second order being about
—6.5 Mev.

If a pure central triplet force were used, ' then the
strength parameter s, should be about 1.4, and Table IV

TABLE III. Second-order terms for weak central potential
(without core).'

TABLE IV. Second-order terms for strong central potential
(without core). '

Singlet Gaussian
Strong central triplet Gaussian

Weak tensor
Total second order

—0.7
1.3

Gaussian Exponential Yukawa
—5.1 —4.5 —4.4—6.8 —6.5 —6.4

a The second-order contribution to the binding energy per particle is
given in Mev, computed from Eqs. (15) and (20). The strong central
triplet potential has strength parameter so ——1.0; details concerning the
potentials used are given in the Appendix.

the detailed solution for the binding energy calculated
through terms of order (kfc)' as part of our more general
problem of combining a repulsive core with an attrac-
tive potential.

We want to solve for the energy with Hamiltonian
H= T+v„:

(22)

Here @o is as before the eigenfunction for kinetic energy
T for infinite nuclear matter. Po is the eigenfunction for
H, and is zero whenever any two nucleons are separated
by a distance less than c. Of course, perturbation theory
fails for an infinite ~„. This infinite ~„must be replaced
by a pseudopotential, or 5 matrix defined so that

Singlet Gaussian
Weak central triplet Gaussian

Strong tensor
Total second order

—0.7—0.4
Gaussian Exponential Yukawa
—11.1 —10.0 —9.7—12.2 —11.1 —10.8

t= vp+v„Gt. (24)

(23)

The pseudopotential satisfies" ' the operator equation

& The second-order contribution to the binding energy per particle is
given in Mev, computed from Eqs. (15) and (20). The weak central triplet
potential has strength parameters so =0.6; details concerning the potentials
used are given in the Appendix.

Here G is the modified Green's function for the kinetic
energy operator T, taking account of the Pauli principle
in summing over intermediate states e:

gives a second-order term of only about —3.3 Mev per
particle. Thus, an increase in the strength of the tensor
force increases the magnitude of the second order term
appreciably from —3.3 for no tensor force to —6.5 for
a weak tensor force, to about —11 Mev per particle
for a strong tensor force. We do not have at present a
precise criterion for the rapidity of convergence of
perturbation theory applied to the nuclear many-body
problem: a reliable estimate of third-order terms would
certainly be very useful. We guess that perturbation
theory converges well enough to stop at erst order if
there were no tensor force; the convergence may be good
enough for a weak tensor force, but convergence seems
poor for the strong tensor force used in Table III.

III. PURE REPULSIVE CORE

The problem of an infinite repulsive core of radius c
has been solved independently by DeDominicis and
Martin, ' and by Huang and Yang'; but neither authors
give the details of their solution. (1Vote added irt proof.
See A. A. Abrikosov and I. M. Khalatinkow, Appendix
A1, Repts. Progr. Phys. 22, 329 (1959).) We shall give

(25)

Also Eq. (24) can be solved erst for v„giving

v„=t(1+Gt) '=t —tGt+tGtGt+ (27)

If we substitute v„ from Eq. (27) into Eq. (26) we are
pursuing a circular argument, and recover the result
t=t. However, we can write equations similar to (24)
and (2'7) which will be useful in finding an expression

~ R. J. Eden, Xz~clear Reactions, edited by P. M. Endt and M.
Demeur (Interscience Publishers, Inc. , New York. , 1959), Vol. 1.

25H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (I ondon)
A238, 551 {1957).

Bethe and Goldstone" show how to solve Eq. (24)
in an expansion of powers of (kfo). This method was
followed by DeDominicis and Martin. ' Instead, we
shall follow a method suggested by R. E. Peierls,
similar to that used by Tobocman. '

Equation (24) can be (formally) solved by iteration
for f giving

t =v,+v„Gv„+v„Gv,Gv„+
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for t.
t..=v,+v„G„.t„„ (28)

This is the usual second-order perturbation theory
result of Eq. (5), where now we treat t of Eq. (31) as
the perturbation. As above, the matrix element from
state 0 to state n gives the Fourier transform of the
perturbation LSee Eq. (9)):

8 l~-*l~-&-P.(V) = " '"-'(4-~ /~)~(.)d"

= 4m A'c/3f.

The sum in Eq. (33) over states u satisfying the Pauli
principle again gives us Euler's P(u) defined in Eq. (6),
and given explicitly in Eqs. (7) and (8).

For the term G„we sum over all intermediate states
and take the Cauchy principal value, obtaining a new
function P„,(u). If u)1, all intermediate states will
automatically satisfy the Pauli principle, so P„,(u)
=P2(u). For u&1, we find that P,(u)APi(u); but
P„(u) again equals P2(u) with the one change that
ln(u —1) in Eq. (8) is rewritten as 1ni1—ui.

The term (G—G,) then gives us (P(u) —P (u))
which is diferent from zero only for I&1. We keep

v„=t„,—t,G„,t„,+t„,G„,I„,G„,t„,+ . (29)

Here t„, is the pseudopotential for an isolated system
("ux" standing for "no exclusion principle" ).G, is the
Green's function for an isolated system: that is, in
Eq. (25) all states n are included in the sum. If we
substitute v„ from Eq. (29) into Eq. (26) we find an
expression for t in terms of t„:

+t (G—G )t,+higher order terms (3. 0)

This equation is useful since t„, is relatively simple.
For a pure repulsive core, t„,is given by

t .= (47rh'c/M) B(r), (31)

where we have neglected terms of order c' or higher.
3f is the true nucleon mass.

The energy of the system of fermions is, from Eq. (30),

~=8.
I
T'I ~.&+&~.1 il ~ &

= &@0l Tl +0)+ &Vol ~
I @o&

+(col &..(G—G-*)&-I +o&

+higher order terms. (32)

Neglected terms are of order (kfc)' or higher. The term
&40i Togo& gives a contribution of (3/5)Tf to E/A, as
in Sec. II. The term (go it .i q4& gives the Lenz" term
(2/v ) (kic) Tf. The last term &4o i t„,(G G») t» i Po&

—is
calculated following Euler's work, ' outlined in Sec. II.
Using Eq. (25),

Qol~-*Is-&(~-I~-I~o&
(~ol~-«.*l~o&=Z . {33)

E E

track of various factors, following Euler. )See our Eq.
(11)j. In particular, if we assume a Wigner-character
repulsive core and include both ordinary (c2) and ex-
change (c2') terms we have c,+c~'——12 )See Eqs. (12)
and (12')j.

We find

(1/~) &Alt*(G—G-*)4*(0 &

= —{1/2'5~4) (ky'/I'y) (12)(4~&'~/iaaf)'

P'i (u) —P„,(u) $udu = —(11—2 In2)/7. (36)

Combining our first three terms we have the Huang-
Yang and Deoominicis-Martin result:

E/A = Trg 5+ (2/7r) (-kqc)

+ (12/35v') (11—2 ln 2)( kcf)' + j (37)

IV. MODIFIED PERTURBATION THEORY FOR
A REALISTIC POTENTIAL

Instead of treating separately a well-behaved attrac-
tive potential v or an infinite repulsive core v„we shall
consider the problem of a potential w=v+v„. This
amounts to combining the results of Secs. II and III
and adding one extra term for an interference efkct
due to combining an attractive potential with a re-
pulsive core. Our purpose here is to develop the modified
perturbation theory appropriate for this problem in a
systematic manner, and to include all terms up to the
second power in the strength of the attractive potential,
the range of the repulsive core, or a combination of
these two parameters.

We write the Hamiltonian 6=2'+w where w= v+'v„.
(Note that we define v=0 for r&c.) As in Eq. (24) we
express the t matrix in terms of the perturbation, m, and
solve by iteration:

t= w+wGt=w+wGw+ (38)

Again 6 is the Green's function for operator T, taking
account of the Pauli principle. We use Eq. (29) for v„
to express m in terms of t„, for a pure repulsive core:

w=v+v, =v+t„, t„G„,t,+ .. . —(39)

Substituting Eq. (39) for w in Eq. (38) we obtain, in-
cluding terms through second order:

t= (v+1»—ties nGzt„,+ )
+(v+t„,+.. .)G(v+t„,+. )

=v+4 +t„,(G G„,)t„,+vGv+2—t„,Gv (40)

X P'i(u) -P„g(u)]udu
0

= (12/35v') (11—2 In2) {kqc)2T~. (35)

We have used from Eqs. (7) and (8)
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The energy is given by Eq. (32):

E=&tol7'I4o&+&Colt'l@o&+&Vol& I4'o&

+&~.l~-.(G-G-*)~-*l~.&+&~.I
G l~ )

+2(gol t»Gn
I $p&+higher order terms. (41)

This expression gives the energy in a combined expan-
sion in powers of 3, (that is the core radius c) and in
powers of the attractive potential v.

Gomes, Walecka, and Weisskopf' obtain an expan-
sion similar to our Eq. (41); however, they include the
DeDominicis-Martin term of third order in t„„and
they omit the eGn and 2t,Gv terms of our equation.

V. APPLICATION OF MODIFIED
PERTURBATION THEORY

We shall investigate the rapidity of convergence of
our modified perturbation theory expansion Eq. (41)
for several diGerent choices of the two-nucleon potential
with an infinite repulsive core.

The radius of the infinite core is usually chosen' as
about 0.4 f, and we have adopted this value here. (We
also use 0.4315 f for the potentials taken from Bieden-
harn's tabulations. ' The radius of the core is sensitive
to the shape chosen for the attractive potential v. If a
square-welP' is chosen for v, then the '5 phase shifts are
best fitted by a core of radius about 0.2 f, or only half
the value usually chosen. We do not know which core
radius is most appropriate to the Gaussian shape
treated below. )

Expressions for the first five terms in Eq. (41) are
given in Sec. II or III. We shall develop the expression
for the last term, 2(pplf Gnlgp&, and then use these
equations to find the various second-order terms, for
diferent choices of the two-body potential. From
Eq. (11),

2(AIt *GnIA&

Here, as in Eq. (6), q=ki' —ki=momentum change
of the 6rst particle; and q'=ko' —ki which equals
—(q+k, —k,) from momentum conservation. To obtain
the last expression on the right of (42), we integrate
over d'k~d'k2 for fixed q' in the region such that the
Pauli principle is obeyed for ki' and ko', obtaining
F(q'). We now integrate the last term over q',
and obtain the same result for the exchange term,

J"F(V')F(V') q'dc'

as for the ordinary term

J'F (q)F(q) qdq.

We shall include both ordinary and exchange terms
and use co+co'=6 for a given spin state (triplet or
singlet) for a Serber character attractive potential t.
Using the factors in Eq. (11) we have

(1/A)2(@o I 4&& I go) = (6/Spr')krcz'VoI, (44)

I,= I F(N)lf(2gx)dg.

The function f is defined in Eq. (10). As above,
p= —Von(r/P), where now v(r/P) is zero for r&c.
Also, x=kiP.

Note that as in the calculation of (pplnlpp& oilly a
central (singlet or triplet) n contributes in Eq. (44); a
tensor potential averages to zero on angular integration.

The first four terms in Eq. (41) are calculated or
estimated as similar for any attractive potential v. We
choose kf =1.4 f ', and c=0.4 (or 0.43) f. Equation (3)
gives us the Fermi energy Tf=40 Mev, and

(1/A) (Po I
7'I gp&=24 Mev.

(&o I &- I 4.&(4. I
~

I 0o)
=2+

We use Eqs. (9) and (34) for the Fourier transforms
F(q) and F,(q), respectively. As in our treatment of the

pure repulsive core, the exchange term integral gives
the same result as the ordinary integral. This follows
from the argument that F,(q) is independent of q so an
exchange integral

(1/A) (4p I
t»

I Pp) = (2/tr) (kfc) Ty= 14.3 Mev (46)

for c=0.4f (use of c=0.43 f increases the value to
15.4 Mev).

The fourth term in Eq. (41) is given by Eq. (35):

n The second term (&pl&I Po) is again about —60 Mev

per particle and depends on the separation between
=2(—1/2 57r')(kf'/Ty)co) F(tt)NFe(oo)F(e)dN. (42) central (triplet) and tensor force. LSee Eq. (4).j

The third term in Eq. (41) is given in Eq. (37):

4

» F.(V)F(q')
d'kid'k2

g'g
(1/A)(y, l&..(G—G..)t..ly )

=Tg(12/35 ')(11—21 2)(kr )'=41 Me, (47)

t F(V')
=F,~~~~ d'kid'ko F,F(g')F(g'). (43)

q. q'

oo L. T. Bennett, B.L. Eoknt, and J. S. Levinger (private corn-
XOUB lCSt1011).

for c=0.4 f. (Use of c=0.43 f gives a value of 4.8 Mev. )
This second-order term includes both ordinary and

exchange integrals, and uses the true nucleon mass.
The last two terms in Eq. (41) are evaluated using



LEVINGER, RAZA VY, ROJO, AND WEBRE

TABLE V. Second-order terms for weak central force with core. '

Singlet
Central triplet
Strong tensor

Total

(2/~) (4 o I 4*Gs I A&

+ 5
+10

0

(t/~) (A I
sGs

I A&

—3

—16 (Gaussian)—16.6 (exponential)
—23

Eqs. (13), (20), and (44). [Since G is given by Eq. (25),

a See Eqs. (13), (20), and (44) for the calculations, and see the Appendix
and reference 16 for the potentials used. The energies are given in Mev.

15 to 23 Mev, and the usual second-order term
(1/&) (4'o

~

tjGs
( go) varies from —20 to —33 Mev. There

appears to be some slight hope of convergence, since if
we add these two terms together, and also use the result
given in Eq. (4/), we obtain —3 Mev, +8 Mev, and—8 Mev, respectively, for the three tables. These
numerical results carrot be taken seriously in our
present calculation, since our (Qs ~

eGv
~ gp) term is for

the ordinary term only, and the other two terms include
the exchange term as well. Also, the three terms will
likely be affected differently by use of a velocity-
dependent "shell-model" potential V(k) in the un-
perturbed Hamiltonian. Finally, the cancellation may
work well for the second-order terms, but poorly for
third-order terms.

o& n n& o

l
n Eo—E

T&BLz VI. Second-order terms for strong central
potential with core. '

Singlet
Central triplet
Weak tensor

Total

(2/~) (A I
~-~s I 4e&

+ 5
+18

0

(~/~) (A I
eGe

I eo)

—3—13—5 (Gaussian)—4 (exponential)
—20

where E"' is the standard second-order term of Eq.
(5).7 Note that for (Ps~sGv(@o) we calculate only the
ordinary term; while for 2(&s~t„,Germs) we include
both ordinary and exchange terms.

We shall take our attractive potentials mostly from
Biedenharn, Blatt, and Kalos" (their Table 2.3). From
their work we estimate the singlet intrinsic range
b, =effective range —2c=1.6f; and we choose the
shape as shifted Gaussian. Their values for the central
(triplet) and tensor forces are quoted in the Appendix.
We shall use their cases of shifted Gaussian shape for
the central triplet, combined with shifted Gaussian or
exponential shape for the tensor force. As in Sec. II, we
treat separately the case of weak central (s.=0.6)
combined with strong tensor, and strong central
(s,= 1.0) combined with weak tensor.

Our results for the strong central potential are given
in Table V, and for the weak central potential in
Table VI.

We treat the Gammel-Thaler" potential in the same
manner, obtaining the second-order terms given in
Table VII. Note that we have not included their
two-body spin-orbit force.

We see from Tables V, VI, and VII that the total
second-order terms are large in each of the five cases
treated. The (2/A) (Ps ~

t„.Gvj gs) term varies from

VI. DISCUSSION

Tables V, VI, and VII show that various second-order
terms for an attractive potential with an infinite re-
pulsive core are of the order of 20 Mev per particle.
We conclude that our present modification of perturba-
tion theory gives a poorly converging series for calcula-
tion of the binding energy of infinite nuclear matter, at
the empirical density, with the potentials chosen.

One reason for the large second order terms is that the
use of a repulsive core necessitates use of a deeper and
narrower attractive potential. Thus, the (4o(tjGs(4o)
terms in Tables V and VI, are much larger than
corresponding terms in Tables III and IV.

It seems possible that certain changes either in the
potential used or in the modified perturbation theory
would substantially improve our convergence.

First, one might use a velocity-dependent two-body
potential" instead of the static potential with repulsive
core chosen in this paper. This might give second order
terms similar to those in Tables III and IV for a static
potential without core.

Second, the potential with core could be chosen with
a smaller core radius, " for a diferent assumed shape
of the attractive potential e. Use of a core radius of
only 0.2 f would cause a substantially smaller absolute
value for the (Ps~ 1„,Gv) $s) and (@e(eGs( ps) terms

Third, one might follow the method"" of a different
separation between large and short range potentials. We
can repeat the derivation of Eq. (41) for the binding
energy starting with the perturbation w=mr, +v, instead
of our previous ts=s+e„. s, is a short-range potential
including the core and part of the attractive potential
outside the core. For r&b, v, =w. v~ is the remaining
large-range attractive potential; for r&b, vg=m. The
parameter b can be chosen" as 0.8 or 0.9 f, so that v,
gives zero phase shift for low-energy scattering of the
isolated two-body system; or b can be taken as an
adjustable parameter.

Equation (28) is now rewritten using e, instead of the
repulsive core e„:

a See Eqs. (13), (20), and (44) for the calculations, and see the Appendix
and reference 16 for the potentials used. The energies are given in Mev.

I I4* =&.+n8G nate* (48)
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Then II„,' and e& are used in the derivation, to replace TAs~z VII. Second-order terms for Gammel-Thaler potential. '
t„.and v, respectively. We obtain instead of Eq. (41):

&= (4oj 2'f Ao&+(4o f oL f4o)+(4o f& 'j 4o)

+(@of
1..'(G—G..)Ie.'f @o)+(yo f

BLGBL f 4o& Central triplet

+2(po f t„,'GBL
f po&+higher order terms. (49)

Total

(2/~)(4oj 4*GeI4e&

+10
+11

0
+21

(I/~)(AIoGej ooo&

7—6—20
—33

This series must converge as well or better than Eq.
(41) used above, since we can choose b=c and obtain
again our results in Tables V, VI, VII. Moszkowski"
gives persuasive arguments that his Eq. (49) should
give a rapidly converging series.

Of course, there is no assurance that any of these
methods will be successful. The alternate method of
Brueckner" is to find t from the analog of Eq. (24) for
the complete perturbation m:

a See Eqs. (13), (20), and (44) for the calculations, and see the Appendix
for the potentials used. Note that the Gammel-Thaler spin-orbit term has
not been included. The energies are given in Mev.

gives

3' gs-
t

6
fi'(w) = —— «f(-'w) —

I

—+1 j exp( —w'/4),
2w' 4 Ew' )

where

1=w+wG1 (50)
pt

erf(t) =
~ exp( —x')Ch,

Jp
(A1)

The solution is particularly dificult since Brueckner
and Gammel use the Green's function G for an un-
perturbed Hamiltonian Ho including a velocity-de-
pendent potential V(k). They then need to find a self-
consistent solution of Eq. (50) by an iterative procedure.
As Brueckner has pointed out,"our second-order term
in Table VII due to the Gammel-Thaler tensor potential
is about three times the —6 Mev per particle that the
tensor potential contributes in the Brueckner-Gammel
treatment.

APPENDIX

gives

gives

ttE(y) =e—e

3 3 1
f,"(w) = ——tan 'w+ ——

w' 1+w'
(A3)

3 3 1 2
feB(w) = tan —'w ——— —,(A2)

78 w' w'+1 (w'+1)'

»(y)=e "/y

The attractive two-body potentials used were taken
from Biedenharn, Blatt, and Kalos "and from Gammel
and Thaler" (as quoted by Brueckner and Gammel, "
Table III). We give the potentials without core in
Table VIII, first the weak central potential and
associated strong tensor potentials, and then the strong
central potential and weak tensor potentials.

The integrals f, (w) needed in Eq. (17) were evaluated
analytically for Gaussian, exponential, and Vukawa
potentials, without core. .

B (y) =exp(-y')

The integral I& of Eq. (21) was evaluated numerically,
using the diferent functions f~ above, and the function
P(N) from Table I. The resulting I& depends on the
value of @=kfP. Values for x and Ie are given in Table
VIll, and are used in Eq. (20) to give the second-order
term E@i/A of Tables III and IV.

The attractive potentials with core are defined to be
zero inside the core radius. They are given in Table IX.
The shifted Gaussian central potential has the form

ttg (y) = expL —(y —c')'j, where c'= c/P

TABLE VIII. Potentials used (without core). '

Potential
Strength Intrinsic

Reference parameter range Formula I((x)

Singlet Gaussian
Weak central triplet Gaussian
Strong tensor Gaussian
Strong tensor exponential
Strong tensor Yukawa
Strong central triplet Gaussian
Weak tensor Gaussian
Weak tensor exponential
Weak tensor Yukawa

~ ~ ~

row 1
row 1
row 4
row 7
row 3
row 3
row 6
row 9

0.95
0.6
1.199
1.25
1.34
1.0
0.882
0.891
0.933

2.5
2.33
2.59
2.64
2.69
1.80
3.20
3.44
3.74

2.44
2.27
2.52
1.04
1.78
1.75
3.12
1.36
2.46

—35 exp( —0.33r')
—25 exp( —0.38r')
—L41 exp (—31r') )Sge—(134e r'e")Sye
—(57e o""/0.79r)S12—71 exp( 0 64r')—.—L20 exp (—0.20r') /Sic

(57e
—1.Ocr)S12

—(21e~ ""/0.56r)S,e

~ ~ ~

0.0081
0.139
0.030

~ ~ ~

0.0045
0.0718
0.014

~ The reference gives the row in Table 2.1, of giedenharn et al. , reference 16. The intrinsic range is given in fermis, and the formula for the potential
in Mev. The parameter x =AfP; and I& is the integral of Eq. (21).

"K, A. Brueckner (private communication).
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TABLE IX. Potentials used with core. '

Potential
Strength Intrinsic

Reference parameter range Formula Integral

Strong tensor, shifted Gaussian
Strong tensor, exponential
Strong central triplet, shifted Gaussian

Weak tensor, shifted Gaussian
Weak tensor, exponential
Gammel-Thaler, singlet

Gammel- Thaler, central triplet

Gammel-Thaler, tensor

row 1
row 4
row 3

row 3
row 6

Singlet, shifted Gaussian

Weak central triplet, shifted Gaussian row 1 0.6 0.91

0.849
0.803
1.0

0.599
0.562

2.07
2.24
0.88

2.96
3.44

0.95 1.6 —87 expt —0.83(r —0 43)sj

—162 expl —2.5(r—0.43)sf

—{45exp) —0.48(r —0 43)sj}S~s—(121e '~9&~ ~&}$
—{290expL —2.7(r —0.43)sj}S~s

—{16exp/ —0.24(r —0.43)sg}S&s—(36e 1.03(r—0.43 )S12—434e 's sr/1. 45r

—877e s.ss~/2. 09r

—(159e s.ss"/1 045r)S. n

1.54

2.03
0.88
0.86

2.88
1.36
0.97

0.67

1.34

I=0.079
I.=0.22
I=0.82
I,= 1.17
I]——0.037
I]——0.20
I=0.96

I,= 1.29
I]=0.012
Ig ——0.072
I=0.12

I,=0.37
I=0.21
I.=0.57
I5=0.045

The reference for "row" gives the row number in Table 2.3 of Biedenharn et al. , reference 16.The Gammel-Thaler potentialsare from reference 12.The
intrinsic range is given in fermis, and the formula for the potential in Mev. All attractive potentials are zero inside the core of radius of 0.43 FM for
Biedenharn's potentials, and radius 0.40 FM for the Gammel-Thaler potentials. The parameter x =kyP. The three integrals I, Ig, and Its are given in Eqs.
(14), (21), and (45), respectively.

Equation (10) gives gives the function
C

fg(w) = (+sr/4) fcoswc'y2(c'/w) sincoc'j exp( —cos/4)

+$(c'/w) coswc' —sx sinwc'j

Xexp L
— /c4o]G(w/2)+ sin&oc'/2w. (A4)

The function"

G(x) = exp(ts)dt
dp

The tensor shifted Gaussian has the same radial
dependence. The integral f,g(w) was foundby numerical
integration for diferent values of m, and substituted
numerically into the expression for I&.

For ft for the tensor exponential, with core, we used
Eq. (A2) for the integral from zero to infinity, and made
a small numerical correction (less than O'Po) for the
integral from zero to the core radius.

The Gammel-Thaler central Yukawa potential

"E.Jahnke and F. Emde Tables of Functions, (Dover Publica-
tions, New York, 1945), 4th ed.

f"(w) = — (w coscoc +slIlcoc ).
w(1+w)'

(AS)
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For calculation of ft for the tensor Gammel-Thaler
potential, we used Eq. (A3) for the integral 'from zero
to inanity. Numerical corrections for the integral from
zero to the core radius were about 1%.

The values of I, It, and I, PEqs. (14), (21), and (4S)$
calculated in this manner for the various attractive
potentials with cores are tabulated in Table IX. These
quantities are used in Eqs. (13), (20), and (44) to give
the second order contributions to the energy quoted in
Tables V, VI, and VIII.


