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Using a 4-dimensional approach, the couplings of the strongly interacting particles are restricted in a
simple way which is not inconsistent with experiment. This leads to the consideration of a Goldhaber-type
model. The gross properties of the hyperons are calculated in the intermediate-coupling approximation for
this model.
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INCR all of the strange particles are strongly
interacting, a theory of strange particles faces not

only the problems associated with a field theory, but
the additional problem that the strong interactions are
not susceptible to the perturbation theory approach,
which has been successful for calculations involving
weak and electromagnetic couplings. However, one
can still attempt to apply the general approach of
field theory to the "strange" particles and attempt to
use experiment to deduce information about the
interactions.

Many theories' —' have been advanced to deal with

the strongly interacting particles and can best be
classified in terms of the number of coupling constants
which are introduced. These range from one to eight,
for theories linear in boson fields, with special titles
such as global symmetry, cosmic symmetry, etc. , given
to theories containing few coupling constants. The
gamut runs from a single coupling constant for all

strong interactions to separate constants for each
interaction involving a different isotopic spin multiplet.
It would seem desirable, particularly in view of the
successes of the universal Fermi interaction, to limit
the number of coupling constants as far as possible
consistent with experiment. The procedure carried
out in this paper indicates that it is possible to restrict
the couplings of strongly interacting particles in a
simple way. The particular approach leads to considera-
tion of a Goldhaber-type model~' which may be an
aid in understanding the properties of baryons.
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Energy Commission and the OfFice of Naval Research.
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The first limitation which might be attempted is to
equate the Z and A coupling constants:

representing p, e, respectively, and the E a spinor in a
space E, basis vectors

(Erl
&E,J

representing the E'E doublet. If the product space,
I)(E, is formed, the possible basis vectors are given by

IrEr' pE'
I2Er nE'

.I2E2, .nE .
This set of quantities, which transforms as a spinor
under independent rotations in the spaces I and E,
will be denoted by q&. If we examine the terms of this
spinor, we notice that the quantum numbers of the first
component are baryon number 1, strangeness —1,
s component of isotopic spin +1. These are also the
characteristics of Z+. Thus, we could form a second
spinor such that

g+
Jj0

ggs

IIE&

IgE2 '

,I2A. 2.

Ke are led to an extremely simple way of formulat-
ing the E interactions by observing that insofar as
isotopic spin states are concerned there exist three
spinors: the nucleon, cascade, and E; and a singlet and
a triplet, the A and Z, respectively. Suppose we consider
the nucleon as a spinor in a space / with basis vectors
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insofar as the properties by which one describes the
particles are concerned; Ke can carry out a similar
process using the cascade and the charge conjugate
of the E', E doublet and form a third spinor g3 where

'E+
E+

~)0 E0
Eo

Then interactions between hyperons, nucleons, and
E's may be written very simply as spinor products.
The simplest terms we can write are

alqlOg2+blg20q2+Hermitian conjugate, (5)

where the symbol 0 indicates 1 or p'. This set of
interactions is identical with the one proposed by Pais.
The Si, S2 symmetry is present and clearly inconsistent
with experiment. However, these are not the only
possible terms, since any scalar in the space I)&E is
allowable. ' There is one other scalar which can be
formed, namely

a2q, O~I ~xn2+b2q2O~I ~&212+H c
&

. . (6)

where ~1 and ~~ are isotopic spin operators in the spaces
I and E, respectively. Then the most general charge-
independent interaction linear in the E field with equal
coupling for Z and A is given by

nlO(ai+a2&1 &ic)n2+820(bl+b2&I &Ic)n2+H. c. (7)

This differs from the Pais interactions' in that the Si,
S2 symmetry does not exist unless a2=b2=0. We can
demand the so-called cosmic symmetry by setting
ai=b~, a2= 62 with no restrictions on the m interactions.
These, of course, are not the most general charge-
independent interactions, since there might be terms
of higher order in the E field, derivative couplings, etc.
In this simplified notation the various symmetries are
obvious. For example, invariance under t" conjugation
rests on the fact that ~1 z~ commutes with the G
operator and invariance under interchange of nucleon
and casade E and E' are obvious from the manner in
which the spinors were formed. However, the E2, E3
symmetry of Pais is not present.

The x interactions of Z and A may also be written in
terms of the spinor q2, for example,

C122 Q2 YS'21'62+ C222
' '62+ '2K'02~

is the most general x interaction involving the 2, A

system. The first term is identical with the Z, A, x
interaction of Pais and others. The second term differs
from the first only in that A is replaced by —A in
every term. In particular, the interaction ~ p2p&z»
ivhere ~= ~q+~lr, the total isotopic spin, corresponds to
a choice c~= c2 and eliminates the direct A, m interaction.

It is perhaps worth noting that the nucleon and
cascade could be combined to form a four-component

' Y. Shirnamoto, Phys. Rev. Letters 1, 463 (1958).

spinor and the x interaction written

C'Z '
Q4 0~5/4)

~ S
'g4 is mo

M

Ig

,I2,

This corresponds to the assumption that the and E
have the same coupling with the x's, and is merely
presented to indicate that all baryon interactions may
be written in terms of "simple" spinor products.

The E-baryon interactions in the form given by
Eq. (7) are suggestive of a Goldhaber-type model for
the baryons. This is, of course, due to the fact that
Z and A have, insofar as isotopic spin space is concerned,
been written in terms of combinations of nucleons and
E's. If we adopt the philosophy of Goldhaber, the
logical course is to try to write all hyperons as combina-
tions of nucleons and E's. Then we could formally
consider a product space of strangeness —2. This
corresponds to IgE&(E. If this is carried out, two
different sets of basis vectors occur. One set is a simple
two-component spinor in the space I:

The E&E2 coefficient is present only to indicate that
the basis vector correspond to strangeness —2. The
second set corresponds to a total isotopic spin —,', and
it might be argued that this would correspond to a
scattering state rather than to additional particles.
In order to get some feeling for the Goldhaber-type
model in terms of the interactions given by Eq. (7),
we can calculate in fixed-source approximation the
energies corresponding to mass splittings of the hyper-
ons. The deficiencies of this type of model are obvious,
since it is clear that a fixed-source approximation is
unreasonable. However, this type of calculation, which
can be carried out exactly with intermediate coupling,
can give us some qualitative feeling for the situation.

glori'pl+

g2912I ' 2IR1

gled

APN44+ g24 N2&N ' 4''24.

As usual, the fixed source approximation is obtained by
replacing ~ by U. : then the first term simply con-
tributes to the E mass and we will consider it no

GOLDHABER MODEL

To take as simple a Hamiltonian as possible, we
consider a fixed square source which interacts with
pairs of E mesons by means of an isotopic vector
interaction. (To obtain a completely relativistic
Hamiltonian for the Goldhaber model consistent with
the considerations outlined in the previous section, our
interaction would be
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g' N(k) U (~" y'~y')
f(k) = ——

M (eg' &ug+X (ir'm'+P'qP)
H = I (~7r+~'P)d'x

further. ) To simplify further, we will consider a separ- and f(k) satisfies

able interaction
(17)

+ ~~—Upd'x ~ Ugd'x, (10)
g r'

M

Following Wentzel, "we introduce four real variables
instead of the two complex variables:

P+'= (1/v2) (xi+ixg), y '= (1/v2) (x3+ix4), (18)

where g is a spinor in isotopic spin space. The p, ~
satisfy the commutation relations

[~-(*), s(-)j=R.( ), -s(*')j='~.~~('-—"), (»)

with
x~=r cosy cos8~,

x3=f sing cos82,

x2= —r cosy sin8&, !
x4 ———r sing sins, .! (19)

with all other commutators 0.
Because of the pair interaction, the dominant

interaction is an S-wave one between the E meson and
nucleon. The fixed-source assumptions restricts us

exclusively to 5 waves.
The constants of the motion are, aside from energy,

the total isotopic spin, T,

Hao= i20[Q p,2++ xPj, (2o)

1 8 8 1
pi'= ———r'——— +2 cot2q

ya gy Qy y~ 8&p

and the bound E field behaves like a 4-dimensional
harmonic oscillator.

In Appendix A, we calculate the 4-dimensional
Laplacian in these coordinates and find that

T= ——',i (s~y —y~n. )d'x,

and strangeness, 5, given by

(12) + . (21)
cos2p ggq2 sln2y 8g 2

The meaning of the angular part becomes more obvious
if we change variables:

5= i (—iyy —ym) d'x. (13) 0= 2(p,

&7+=~1+02, 0 —=01—82.
(22)

We are principally interested in obtaining the bound
states of this system. We will calculate in intermediate-
coupling theory:"" i.e., in any normal product of
creation and annihilation operators, any annihilation
operator a(k) is replaced by f(k)a and at(k) by f(k)at
and the variational principle is applied to obtain the
best wave function f(k). This is equivalent to a Hartree-
Fock procedure. (That this procedure is valid for a
pair Hamiltonian is not at all obvious: however,
it has been investigated by Drachman" for the scalar
pair theory and found to give excellent results. )
The Hamiltonian so obtained will then be exactly
diagonalized.

The reduced space Hamiltonian we must consider
is, thus,

II,=D(~'~'+y'qP)+ (g'/2M) U'~" @'~y' (14)

l3

sin'0 By+2

82
—2 cosg ' . (23)a„a„!

As shown in Appendix 8, since

7&2 is given by

Trr = i ma~—o—(P~o
2 2

(24)

8 8 1
Trr' ——— —sin8—+

!sins ae ae sin'8

Then,
1 8 8 4 1 8 8

P pP= ———M——— —sin8-
r' Br Br r' sin980 88

where
1

,

I d'k a)gf'(k)
(2-)'~

1 I N(k)
d'k f(k),

(2m)'
(16)

"S.Tomanaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).
T. D. Lee and R. Christian, Phys. Rev. 94, 1760 (1954).

"R.J. Drachman, Phys. Rev. 1Q9, 996 (1958).

82 82 82

+ —2 cos8
8 (p+ 8 (p t9 ++8 (p

1 8
T3

z Bp

2 85=-
i 8p+

'3 G. Wentzel, Helv. Phys. Acta BQ, 135 (1957).

(25)

(26)

(27)
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Hence, the angular part is the isotopic spin of the
bound E-meson field. : it behaves like a symmetric
top whose two 3-components are the two conserved
quantities, the 3-component of isotopic spin and
strangeness. Prod Edmonds, " the normalized angular
wave functions are

consistent with a given i, i.e. , s=&(2i+1), the equa-
tions decouple since only Tx=i+-,' —can give this
value of s.

There are no solutions satisfying the criterion of
square integrability for sA + (2i+1). For s= & (2i+1),
if g is sufficiently large, i.e.,

(2g)
g2 U'2

M 0

We cail write p' in a form from which its matrix there are no solutions for s = (2i+ 1) H.ence
elements can be immediately determined:

i2;+i) = (2i+3)[f2+ (g'/M) U']l. (35)
r (e *""+cos-', He '*"~-)

v2 I e "~+ sin-', ge "~-)

r (&--:,— (v+, 0, v-) )
K2 (—n;, ;&(q+, 8, j ))

Because of the vector nature of the interaction, we
can write the wave function in the following form:

Estimating the value of g necessary for the disappear-
ance of positive-strangeness states, we find (with M
equal to the E mass)

g'= 10/3

The h. corresponds to an s= —1, i=0 state, the to
the s = —2, i= ~ state. Then, the ™—A mass difference is

rn-. —mz = [0'+ (g'/M) U']'*=300 Mev.

+z,S,z's =

where

'JJ'; ~i,;.;,,,=Q (i, ia, i+1, -,'~ i+1, i,—n, -'„n)
Xgi, s/2, i s —nX n.

The eigenvalue equations are

&a+z,s,i, =~.-,P', s, i,„
ol

(30)

(32)

The above result is obviously much too large;
however, the m-mesonic effects have not been taken into
account and these would be expected to increase the
energy of the A (since the interaction with m's is
quadratic) whereas it would depress the

VJe can now estimate the magnetic moment of the A'.
The E mesons will not contribute since they are in S
states relative to the nucleon. Thus, the magnetic
moment operator is

1dQ+ 2
+—[(i+l) (i+ l)+ —.'e]u+

2 dr2 r'
Then,

1 g' U' s+-1———.
2 MQ2i+1

r'I+
B=2( ~+u-)=2nm,

which is quite large compared with most previous
estimates.

1 g' U' [(2i+1)'—s']'*
r'u = u+, (33)

2M 0 2i+1 0

1dQ 2
+—[(~+2)(~—k)+ i's]u-

2

g2 U2

+—1+—— r'u
2 MQ2i+1

g2 U2 [(2j+1)—e ]&
r I+=2

2M 0 2i+1
B . (34)

Note that s varies between —(2i+1)~s~ (2i+1)
by steps of two and that for the maximum value of s

'4 A. R. Edmonds, Angular Mnmeltum in Quuntum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Chap. 4.

CONCLUSION

The work presented here is intended to point out
that there is in fact no valid reason for assuming that
the S= —1 baryons cannot be coupled identically to
all other particles without introducing an additional
symmetry, and to examine the possibility of introducing
only a single strange field. The previous section indicates
that we can qualitatively understand the fact that
only hyperons with negative strangeness exist. The
model chosen here gives rise to to two particles corre-
sponding to and A. However, if the neglected x's
are bound, an s= —1, T=1 multiplet corresponding to
the 2 might be introduced. The presence of recoil, of
course, will shift the levels and be responsible for the
existence of the unbound states, the free nucleon, and E.
At present we are trying to formulate quantitatively
the effect of the pion field and of recoil. This is, of
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course, dificult. One possible approach is to introduce
the pion eAects in strong-coupling approximation and
to treat recoil as a perturbation.

It is worth repeating that this model is a qualitative
one. There is no guarantee that the E and x effects can
be discussed separately. In fact, in the exact treatment
the bound states must arise from the combined 6elds.
No direct Em interaction has been introduced so the
E—~ coupling takes place solely through virtual
baryons. If the predictions of this model agree with
experiment, it should still not be regarded as a true
description of the hyperons; rather we must attempt to
understand the factors which lead to the success of the
model. In a subsequent paper a more quantitative
treatment will be carried out. In particular, the effects
of the pion field and of recoil will be introduced.
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APPENDIX A

The line element in the 4-dimensional space is given
by

dS'= dr'+r'dip'+r' cos'yd8P+r' sin'qd8o' (A.1)
—=P hPd(, o

5= ——',[(p1—ip, ) (x,+ix,)+(p, —ip4) (xo+ix4)

—(p,+ipo) (x7—ixo) —(po/ip4) (xo ix4—)5

[(xlp2 xopl)+ (xop4 x4po)$

1(B B
=-.

I

— +
i ~B81 B8o)

(82)

Introducing y~, then

Now,

2 l9
5=—

z By+

T= zz orozco yosoro

and introducing angular variables, we have

1(B B) 1 B

2i (B8, B8, & i Bo

1 t9

T 1 s1n (81 82) +Cos (81 82)
2i By

( B B )
ta11p—+cot, p

B81 B8o &

APPENDIX B

We now derive the expressions for the strangeness
and isotopic spin of the E held in terms of the angular
variables,

5= —o(n'y' —@'n')

Then

and, thus,

hi ——1, ho=r, ho rcosoo——, ho=r sing. (A2)

B (1 B By-
=— —sing=+cosy

~

—cot8
B8 (sln8 Boo+ Bp

(B6)

In general

B 1 B Qghp B

*' Bx,o g)hi i Bp; hp Bp,

1 8 8 1 1 8
r' +———

r3 8r Br r~ sin2y By
slI12 y

1 B ( 1 B B
To= cosoo=+s—1noo

~

—cot8
B8 s1118 B (P+ Bp

Comparing with Edmonds, " we see that the three
Euler angles for rigid rotator correspond exactly to
~)y—)y+ ~

0=8, v= v'+.
Hence,

1
+

cos~y BHq2 singly 88i~

1 I9 l9

(A3) TIr = — —s1118
sin8 88 88

"P. M. Morse and H. Fesbbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
Chap. 5.

1 (B' B2

+.
i + —2cos8 --

i
. (89)

s111 8 (By+ Bp Boo+By j


