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'
Analytic Hartree-Pock calculations have been carried out for the lowest neutral atom 3d" '4s' states of Ti

through Zn. Except for Cr and Cu, these calculations are for the neutral atom ground states. The results are
compared with the earlier 3d" state calculations. It is observed that the 4s electrons have little effect on the
3d and inner shells.

I. INTRODUCTION

A NALYTIC Hartree-Fock calculations have been
done for the neutral atom iron series (Ti to Zn)

3d" '4s' configurations, where e denotes the number of
electrons outside of the argon core. Except for Cr and
Cu, the calculations are for the neutral atom ground
states. In these two cases 3d" '4s states lie slightly lower
than the computed states. The primary purpose of these
calculations is to supplement an earlier series' ' of calcu-
lations which was done for 3d" ion and neutral atom
states. This latter work was done on the Whirlwind
computer at MIT and the question of computer capacity
necessitated either the exclusion of 4s electrons in the
computations or a severe decline in the accuracy of the
solutions. The restriction to the 3d" type of state led to
the neglect of three important types of states; they are:
the 3d" '4s' s,nd 3d" '4s for neutral (I) atoms (these
supply the low-lying neutral atom states) and the
3d" '4s for singly ionized (II) ions. When similar com-
puter procedures became available on the IBM 704
computer at MIT, a computer of greater capacity than
Whirlwind, it seemed desirable to do some calculations
for iron series atoms with 4s electrons present. The
calculations to be reported here are for just neutral atom
3d '4s' states. This restriction stems from the fact that
the method used for solving the Hartree-Fock equations
is particularly advantageous (and economical in com-
puter time) if calculations are done for a series of ele-
ments for states of common ionization and configuration
type. Of the three important types of states the neutral
atom 3d" '4s' was chosen for two reasons. First, it serves
as a sort of bound on the eGect of 4s electrons on the 3d
and core electrons. Secondly, the 3d" '4s' configuration
does not have the o6-diagonal Lagrange multiplier
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II. CALCULATIONS

The calculations have been done using the Roothaan'
procedure as modified by Nesbet. ' Normalized ana-
lytic one-electron radial functions LU;(r)'sj are ob-
tained as solutions of Hartree-Pock equations. ' The
U;(r)'s have the form:

U;(r) =Qt C;;R;(r),

their normalization condition is

) U, (r) t'dr=1, (2)

and the basis functions (R,'s) are of the form,

R .(r ) +yt+Ai+te z, jr— (3)

The / is the one-electron angular momentum appro-
priate for the one-electron function of which U;(r) is the
radial part. The S; is a normalization constant and is
expressible in terms of the other parameters, i.e.,

(2g,)2l+2Aq +s —-', '

. (2l+2A, +2)!

It shouM be noted that here the combining coe%cients
(C;,'s) are defined in terms of normalized R s. This is
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R. E. Watson, Ann, Phys. 9, 260 (1960).' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

6 R. K. Nesbet, Quarterly Progress Reports: No. 15, January,
1955, p. 10;No. 16, April, 1955,p. 38, p. 41; No. 18, October, 1955,
p. 4, Solid-State and Molecular Theory Group, Massachusetts
Institute of Technology (unpublished). See also references 2 and 3.
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problem'' which is associated with the conventional
application of the Hartree-Fock formalism to the 3d" '4s

type of configuration.
While the form and behavior of the 4s electrons is of

interest, of perhaps greater interest is the eGect of the 4s
electron on the inner shells. We will see that the 4s
electrons have almost no effect. In other words, the 3d
and core electron wave functions of the neutral atom
3d" '4s' states are very like those obtained earlier for the
doubly ionized (III) 3d" ' ions.

j.934
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TABLE I. Parameters (A; and Z,. l which de6ne the basis functions (R s}.

8 s used for the
construction of

s functions (1=0) 1

3

5
6
7
8
9

10

22.8311
19.5333
9.5229
8.7148
4,7037
3.3252
3.6914
1.8028
1 ~ 1090
0.7610

23.9091
20.5950
10.1666
9.3319
5.1562
3.5078
3.8742
1.8764
1.1462
0.7800

Cr

24.9871
21.6567
10.8103
9.9490
5.6087
3.6904
4.0573
1.9500
1 ~ 1834
0.7990

26.0651
22.7184
11.4540
10.5661
6.0612
3.8730
4.2404
2.0236
1.2206
0.8180

Z)'s for
Fe

27.1431
23.7801
12.0977
11.1832
6,5137
4.0556
4.4235
2.0972
1.2578
0.8370

28.2211
24.8418
12.7414
11.8003
6.9662
4.2382
4.6066
2.1708
1.2950
0.8560

29.2991
25.9035
13.3851
12.4174
7,4187
4.4208
4.7897
2.2444
1.3322
0.8750

CU

30.3771
26.9652
14.0288
13.0345
7.8712
4.6034
4.9728
2.3180
1.3694
0.8940

Zn

31.4551
28.0269
14.6725
13.6516
8.3237
4.7860
5.1559
2.3916
1.4066
0.9130

p functions (l=1) 11
12
13
14
15

13.9277
7.9588
7.3333
3.8066
2.4344

14.6347
8.4757
7.8012
4.1909
2.6477

15.3617
8.9926
8.2691
4.5752
2.8610

16.0787
9.5095
8.7370
4.9595
3.0743

16.7957
10.0264
9.2049
5.3438
3.2876

17,5127
10.5433
9.6728
5.728i
3.5009

18.2297 18.9467
11.0602 11.5771
10.1407 10.6086
6.1124 6.4967
3.7142 3.9275

19.6637
12.0940
11.0765
6.8810
4.1408

d functions (l=2) 16
17
18
19

i.7316 1.8289 1.9262
3.4276 3.6102 3.7928
6.4619 6.8020 7.1421

11.9171 12.4322 12.9473

2.0235
3.9754
7.4822

13.4624

2.1208 2.2181 2.3154 2.4127
4.1580 4,3406 4.5232 4.7058
7.8223 8.1624 8.5025 8.8426

13.9775 14.4926 15.0077 15.5228

2.5100
4.8884
9.1827

16.0379

not the case with the earlier series of calculations' '
where the X s are incorporated into the C,, 's. A set of
8,'s is supplied for each / value for which Hartree-Fock
solutions are to be obtained. U, (r)'s of common t value
are constructed from a common set of E s.

The strength of the Roothaan procedure lies in the
fact that the necessary integrals are obtained analyti-
cally and the Hartree-Fock self-consistent procedure be-
comes a process of matrix manipulation and diago-
nalization. This process can be more rapidly and accu-
rately carried out on a computer than can the
conventional numerical methods of solving Hartree-
Fock equations. The limitation of the analytic approach
lies in the fact that we must use less than complete sets
of basis functions. Thus we cannot obtain exact solu-
tions. Currently good analytic calculations appear' to
yield results which are as accurate as or more accurate
than the best numerical results. One wouM like to
compare the total energies of the two types of solutions
but accurately evaluated total energies generally do not
exist for numerical solutions. There are great advantages
to having wave functions of analytic form for many
quantities, such as expectation values of powers of r, can
be easily, accurately, and analytically obtained.

The Roothaan procedure has associated with it the
problem of choosing sets of basis functions. The sets
used in these calculations were obtained in the following
way. Earlier" it was noted that the free atom experi-

While my iron series calculations appear to be as good as or
better than numerical results, calculations for small atoms, with
comparatively larger basis sets, better indicate the power of the
analytic approach (see reference 4 and C. C. J. Roothaan, L. M.
Sachs, and A. W. Weiss, Revs. Modern Phys. 32, 186(1960)j.The iron
series calculations represent an uneasy compromise between large
basis sets for accurate solution of the Hartree-Vock equations and
small sets so that the analytic form of the functions may be easily
exploited. Having chosen the size of my basis sets, I believe that
the actual sets represent good choices (see p. 24 of reference 2).

mental spectra suggested that the 3d electrons (and
hence also the core electrons) of the neutral atom
3d" '4s' states behave very like the electrons of the
doubly ionized 3d" ' states. This suggested that the
basis sets used in the earlier series of calculations for III
states would be appropriate for the construction of all
but the 4s one-electron functions of the current calcula-
tions, The earlier set, for any one particular element,
has been supplemented by four s-like basis functions
which contribute to the construction of the outer loop
of the 4s function and the s-like basis functions already
present for the is, 2s, and 3s are relied on for the
construction of the inner loops of the 4s function, The V
atom was taken and successive Hartree-Fock calcula-
tions were done, varying the Z,.'s of the four additional
s-like basis functions, until, with the total atom energy
as a criterion, and optimum choice of these Z s was
reached. Similar variations were not done with the other
basis functions (based on the earlier 3d" 'III ion calcula-
tions). The same treatment was done with Ni and the
Z, 's for the remaining atoms were obtained by having
them vary linearly across the iron series. In the earlier
calculations' it was observed that the Z, 's were linear to
within the accuracy that they were established and it is
reasonable to assume the same linearity for the "4s"Z, 's.
The A, 's and Z s are to be found in Table I. The basis
function normalization constants (E,) are not listed but
may be obtained by use of Eq. (4). We see that ten s-like
E,'s are given for the construction of the 1s, 2s, 3s, and
4s one-electron functions and there are five E s for the
2p and 3p and four for the 3d. Due to limiting the basis
function variation to E~ through R~o one would expect
the current calculations to be somewhat less accurate
than the earlier set. The poorer ability of the E s to
construct the 3d and inner electron U, (r)'s for the atoms
here rather than for the 3d" 'III ions produces a small



1936 gr ATSON

p ( ) $ ee Fig I for an ri]ustlatlon of a +4s( )3
demand the four s-like U;(r)'s to be orthogonal. The
eGect of this is harder to estimate. It might produce an
error contribution of as muc as 0.03 a.u. out of total
energies of 1000 to 2000 a.u.

In practice the calculations have been carried to the
oint where the total energy is stabilized to 0.0001 a.u.

The eigenvectors (C, s) and the various one- and two-
eec ron

'

e uni uel
established to the third nonzero digit. The one- and
t - lectron integrals and one-electron energies whichwo-e ec
will be reported have been accurately evaluate
f'mal U;(r)'s to as many or more digits than wiH be
repor e . et d The one-electron energies lie wit in approxi-
mately 0.01 a.u. of the true values. This is due to
limited basis sets.

~ ~

Before leaving this section, I would like to point out
to the reader that these are "conventional" Hartree-
Focl» ca cu ations in e senI i

' '
th sense that the three restrictions

, 7

.6

a 4

I . I I
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r In Atarnic Units

Fro. 1. Calculated 3d and 4s radial wave functions LV(r)'s] as a
function of r for several states of atomic V.

error contribution of 0.001 a.u. (1 a.u. =2 ry) or &e».
ore serious

'

1 o s of thefor t nstruction of the three inner .oops ohe co

(U 's, in terms of the basis functions (R,'s).(
' ) dehnin the Hartree-I'ock radial functions; s in erTABLE II. The eigenvectors &C;; s~ e ning

V cr CoFe C11 ZI1

i=1s 1
2
3

5
6
7
8
9

10

0 =2$ 1
2
3

5
6
7
8
9

10

f =3$ 1
2
3

5
6
7
8
9

10

i =4s 1
2
3
4
5
6
7
8
9

10

t =2P

0.42635360
0.53254284
0.19148700
0.00291818

t =3d

MnTl

152229 . . 86 0.91715694 0.91626600 0.91543924
0 00896 Q 0 10 51104 0 102070420.09863051 0.09946303 o. 002 o3—0.00311760 —0.00249126 —0.00189259 —0.0013

79550 0.00220845 0.00169418 0.00121451—0.00032341 0'.00015486 0.00050214 0
263 —0.00053900 -0.00135820 -0.00187408 —0.001

0.00051805 0.00106818 0.00141961
.00006884 —0.00007872 -0.00009045

0.00005173 0.00005769 0.000064960..00006986 0.00004114 0.00004267—0.00002805 —0.00001 734 —0,00001825 —0.00002 19

1313 —0.28057440 —0.28146591 -0.28229729-0.27743642 -0.27857079 -0,2796131 -0.16378101 -0.16257869 -0.161336120 —0.16675505 —0.16590205 —0.16489727 —0.1
0.75879582 0.73199046 0.70741223
0 38999564 0 41438741 0 43573467
0.01232114 0.01705462 0.02258262
0.03023658 0.02579648 0.02053685 0.0

034 —0.02359647 —0.02050309 —0.01675300 0,0132 4
Q.Q0159765 0.00163453 0.00158306

15189 —0.00117378 —0.00113270 —0.001
048194 —0 00049236 0 00047551 0 000449940.00025613 0.00036911 0.00044550 0.0004819

1708 0.10533365 0.10615378 0.1068917S
0 05883479 0 05780579 0 056697870.06130461 0.06064672 0.05980181 0.0—0.2 8510578 —0.2 7369636 —0.2625 7991—0.30543152 —0.32131696 —0.33582523 .—0.3491

27334487 0.24844592 0.23215177 0.2
1.1384088 1.21036 3 1.25 349—0,26216834 —0.31Q95634 —Q.34Q63747
.0229/385 0.02400116 0.0253901—0.01232595 —Q.01317665 —0.014174070.01366745 0.01160526 0.011659

0.00526820 0.00448393 0.00454126 0.00483

45 —0.02139245 —0.02113253 —0.02084909—0 01209688 —0 01171079 —0 0113023260171 —0.01318160 —0.0 870 —0.0 4 83
0.06141911 0.05812634 0.05484490
0.07107415 0.07237351 0.07330565

625998 —0 04561736 —Q.03902859 —0.034 4
0.33751142 —0.36116049 —0.37103106 —0.374001

3 0.11794874 0.14035277 0.15238676
0.36731683 0.37133716 Q.37164519 0.3
0.60067753 0.59660660 0.5939 0
0 15102187 0 15142512 0 15424094 0 150.15200055 0.14868524 0.14847761 0.151

7 0.14669353 0.14295312 0.13940445
0 84530003 0 84432092 0 843571684955079 0.84788172 0.84647611 0.84

0,00517974 0.01057 64 0.01542382
0.01960S39 0.01965743 0.01984658 0.02 10.01951532 0,0195448

4 — —0 33927654 —0.34034620 —0.341903929238 —0.33876045 —0.33873259 —0—0.01092733 —0.02530600 —0.03715640 —0.046966
0.62778671 0.60696303 0.58666591 Q.S0.7211190g 0.6g637253 0.655971
o. 7 2397 0.52841968 0.55720384

0 53160811 0 53162760 0 531365165 0.53460897 0.53112786 0.531
594570 0.13747322 0.151.29696 0o. 0026656 0.11312810 0.12

4 0.00528159 0.00545223 0.00533546 0.
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TAnr. E III. Hartree-Fock one-electron energies (e;), one-electron nuclear potential + kinetic energies (E;), total energies and assorted
Slater two-electron integrals (E&'~ and G~) for the iron series neutral atoms. All energies are in atomic units (1 a. u. =2 ry).

Element
State

mls

62s
t3s
L4e

62p
63p
E3d

KIe
E2s
K3s
K4s
X2p
Ksp
K3d

TI
4s23d»F

—183.2640—21.4147—2.8648—0,2189—17.7829—1.7870—0.4379

—241.8631—58.7985—22.1405—6.7477—58.1051—20.4905—16.1548

V
4s'3d3 4F

—201.4934—23.8663—3.1752—0,2288—20.0141—2.0117—0.5057

—264.3608—64.3982—24.4246—7.3686—63.7118—22.7167—18.2952

Cr
4s23d4 5D

—220.5827—26.4308—3.4911—0.2379—22.3569—2.2413—0.5634

—287.8587—70.2468—26.8006—7.9971—69.5662—25.0306—20.4729

Mn
4s23d»D

—240.5235—29.1005—3.8084—0.2461—24.8037—2.4719—0.6334

—312.3568—76.3441—29.2661—8.6242—75.6688—27.4305—22.7537

Fe
4s23d' 6D

—261.3544—31.9179—4.1541—0.2550—27.3962—2.7278—0.6359

—337.8549—82.6911—31.8503—9.2987—82.0204—29.9552—24.9512

Co
4s23d7 4F

—283.0401—34.8441—4.5033—0.2633—30.0961—2.9866—0.6595

—364.3532—89.2869—34.5254—9.9731
-88.6203—32.5690—27.2831

Ni
4s23dg 3F

—305.5911—37.8902—4.8624—0.2711—32.9144—3.2539—0.6868

—391.8517—96.1317—37,2968—10.6590—95.4685—35.2785—29.7024

Cll
4s'3d9 'D

—329.0036—41.0536—5.2306—0.2787—35.8483—3.5287—0.7155

—420.3502—103.2257—40.1669—11.3563—102.5656—38.0874—32.2123

Zn
4s23d

-353.2608—44.3189—5.5997—0.2855—38.8822—3,8035—0.7505

-449.8488—110.5693—43.1356—12.0596
-109.9120—40.9962—34.8422

Total energy —848.4011 —942.8803 —1043.3036 —1149.8620 —1262.4367 —1381.4045 —1506.8569 —1638.9310 —1777.8234

F0(3d,3d)
F'(3d, 3d)
F4(3d, 3d)
Fo(4s,3d)
62 (4s,3d)
F0(4s,4s)

0.644777
0.297950
0.185279
0.302562
0.035761
0.238268

0.706916
0.326784
0.203240
0.317390
0.034008
0.248546

0.765631
0.353965
0.220158
0.331172
0.032726
0.258125

0.824758
0.381624
0.237432
0.343815
0.031311
0.266818

0.873262
0.402854
0.250384
0.356952
0,031489
0.276207

0.924215
0.425674
0.264423
0,369179
0.031216
0.284804

0.974859
0,448408
0,278420
0.380946
0.030922
0.293062

1.025351
0.471119
0.292412
0.392287
0.030613
0.300982

1.077205
0.494694
0.306990
0.403105
0.030134
0.308459

which are commonly applied to the Hartree-Fock
formalism have been applied here. These restrictions
are (I) that the Hartree-Fock one-elect:ron functions
have an angular dependence which is a spherical
harmonic —this lets us turn the three-dimensional
Hartree-Fock equations into one-dimensional radial
equations, (2) that the U, (r)'s be independent of the
one-electron quantum number m&, and (3) that 'the

U;(r) 's be independent of the one-electron spin quantum
number m, . Abandonment of any or all of these re-
strictions causes the collapse of the conventional elec-
tron shell description of atoms. While many of the
properties of the many-electron, total atom wave func-
tion are little aGected by these restrictions, their
relaxation has interesting effects on theoretical predic-
tions concerning such phenomena as hyper6ne eGects
and the magnetic scattering in neutron diGraction. "

III. RESULTS

The eigenvectors (C; s) appear in Table II, and
Table III contains the eigenvalues of the one-electron
Hartree-Pock equations otherwise known as the one-
electron energies (e~), the one-electron nuclear potential
plus kinetic energy integrals (E,), the atom total ener-

gies, and some Slater two-electron integrals. "Due to
space considerations, the two-electron integrals have
been restricted to those involving the 3d and 4s one-
electron functions. A Slater F~ integral is defined to be:

goo
cO

F"(m, ts) = ' LU„(r)]'LU„(r')$' drdr'& (5)
0 0

0+1

' See Chap. II of reference 3 and also C. C. J. Roothaan, Revs.
Modern Phys. 32, 179 (1960), for an extension of the analytic
method for cases where the restrictions introduce difliculties in the
formalism.

"G.W. Pratt, Phys. Rev. 102, 1303 (1956);L. M. Sachs (to be
published); and reference 14.

' E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectrc (Cambridge University Press, New York, 1953) (in
particular Chap. VI).

and the Slater exchange integral is:

G"(m, ts) =
J, ~,

fg
&& drdr'. (6)

&+1

TAsLK IV. The one-electron nuclear potential + kinetic energy
integrals (E,'s) for several states of V, in atomic units.

EI,
E2,
E3S
IC4s
E2y
E3„
E3d

Neutral (I)
3d34s2 4'

—264.3608—64.3982—24.4246—7.3686—63.7118—22.7167—18.2952

Doubly
ionized (III)

3d' 4'
—264.3608—64.3968—24.4276

~ ~ ~

—63.7127—22.7465—18.5264

Singly
ionized (II)

3d4 5D

—264.3610—64.3975—24.2771
~ ~ ~

—63.7130—22.5460—17.1873

~ While the energy expressions for the un61led d shell multiplet
spectra had been obtained previously the classic papers are those
of G. Racah, Phys. Rev. 6I, 186 (1942); 62, 438 (1942); 63, 367
(1943).

Complex conjugate signs do not appear here since the
U, (r)'s are real. These integrals are ot interest since the
Racah parameterization" of the multiplet spectra is in
terms of these.

Comparison with the few existing numerical Hartree-
I'ock solutions for these states will not be made. A
comparison of total energies is the true test of wave
function superiority but the lack of accurate estimates
of the total energies for the numerical solutions makes
this impossible. This leaves one with the comparison of
one- and two-electron integrals (except for one-electron
energies these are rare) and the one-electron wave
functions themselves. Such comparisons are rather unin-
formative but it has been my experience that my
functions and their one-electron energies agree most



Theo- Theo-
retical retical
I 3dn II 3dn I

Ti 0.193018 0.256680
V 0.231686 0.287822
Cr 0.258094 0.318443
Mn 0.286019 0.340879
Fe 0.311244 0.364548
Co 0.338938 0.386988
Ni 0.363110 0.410765

Theo- Theo-
retical retical

III 3d" I 3d" '4s2

0.306864
0.334714
0.361688
0.388705
0.409388
0,431936
0.454481

0.297950
0.326784
0.352965
0.381624
0.402854
0.425674
0.448408

Experimental
I 3dn 24g2

0, 18391, 0.20093
0.22600, 0.23804
0.28164, 0.29024
0.29498, 0.29917
0.31486, 0.31576, 0.31926
0.33601, 0.33980, 0.32150
0.36906, 0.33464, 0.38611

closely with the best of the numerical solutions. "A
review of the existing iron series numerical solutions and
some comparisons of numerical solutions with the earlier
set of calculations may be found in reference 2.

Table IV lists the one-electron El integrals for the V
solution and compares them v ith the solutions obtained
for the II 3d" ' and III 3d" ' states of the atom from the
earlier set of calculations. It should be noted that the
E,'s oGer a rather sensitive way to compare one-electron
wave functions. The table indicates that the 3d and core
electron E,'s of the neutral V ground state (3d'4s' 'Ii)
differ from the doubly (III) ionized 3d' 'Ii E,'s by less
than one fifth of the diGerences observed for going be-
tween 3d" states of adjacent stages of ionization. The
apparent tendency of the 2s and 2p not to follow this
rule very likely follows from the fact that the 2s is to be
orthogonal to the 4s and this perturbs the 2s and in turn
the 2p functions by small amounts (note that the E,
pertubations are of opposite signs). The Us~(r)'s for the
V I 3d'4s', I 3d', and III 3d' calculations are graphed in
Fig. 1. This emphasizes how very little the 4s electrons
have perturbed the 3d and core electrons. The V4, (r) has
been graphed on the same Ggure. The results we see here
for V are typical of similar comparisons which can be
made for the other atoms.

The Ii "(3d,3d)'s are of interest since they also give
evidence of 3d functional behavior. The F'(3d, 3d) is of
particular interest since it plays the prominent role in
the unfilled 3d shell multiplet spectra as predicted by the
Racah type of formalism. The calculated neutral atom
3d" '4s'F'(3d, 3d)'s are listed for Ti through Ni in
Table V. The theoretical values for the earlier d I, II,
and III states and the values obtained by fitting the
experimental multiplet spectra are also listed. In each
case more than one experimental value is given. The
collection of experimental values represents fits by
Slater and the author and the published values already
in the literature. We see that the "experimental"
F'(3d, 3d) values are rather dependent on who does the
fitting, and what way it was done. Comparing the
theoretical 3d" '4s' values with the others we see that
again the 3d function is most like that for the ion ob-
tained by removing the two 4s electrons. We also see
that the experimental F'(3d, 3d)'s are systematically
smaller than the theoretical ones. Similar deviations
were earlier observed for the 3d" solutions. These devia-

TaaLE V. F'(3d,3d)'s for Ti through Ni. Theoretical and experi-
mental 3d '4s2 neutral atom values and theoretical values for
neutral, singly ionized, and doubly ionized 3d" configurations are
given, in atomic units.

TABLE VI. Theoretical and experimental neutral atom lowest
d3 '4s' state to doubly ionized 3d ' ground-state ionization
energies and the differences between theoretical and experimental
values for Ti through Cu E(III 3d~ )—E(3d" 4s'), in atomic
units.

Tl
V
Cr
Mn
I'e
Co
Ni
Cu'

Theoretical

0.6749
0.7043
0.7295
0.7571
0.7848
0.8107
0.8358
0.8604

Experimental

0.7497
0.7864
0.8196
0.8480
0.8851
0.9086
0.9387
0.9711

Experimental-
theoretical

0.0748
0.0821
0.0902
0.0909
0.1003
0.0980
0.1029
0,1108

In these two cases the lowest I 3dn 24s state is not the neutral atom
ground state.

r' A. J. Freeman and R. E. Watson, Acta Cryst. (to be pub-
lished).

tions are not due to the Hartree-Pock. 3d functions
having different radial behavior than some "true" 3d
one-electron functions but are instead due to the fact
that the experimental F'(3d, 3d)'s are not true Ii'(3d, 3d)
integrals but in fact are aGected by many-electron
(correlation) effects which are outside of the scope of the
Hartree-Fock, F~ type of description of an atom.

We cannot compare the total energies with experi-
mental total energies since the latter do not exist for
atoms of this size. We can compare ionization energies
and in Table VI we list both the theoretical and experi-
mental values for the transition from the neutral
3d" '4s' atom to the doubly ionized 3d" ' ion. The
theoretical ionization is obtained by taking the difference
in calculated total energies, i.e., E(3d" )—E(3d" 4s')
The former energy is obtained from the earlier set of
calculations. In the third column are listed the diGer-
ences between the theoretical and experimental values.
The differences are an estimate of the 4s "correlation
energy" or energy error associated with the 4s electrons,
in a Hartree-Fock rather than exact description of an
atom. It shouM. be noted that we believe the 3d" '4s'
solutions to be less accurate than the 3d" ' solutions.
Improved 3d" '4s' solutions would lower E(3d" '4s'),
increase the theoretical ionization energy and decrease
the estimated 4s "correlation energy. " Thus the esti-
mates of Table VI are, at best, upper bounds on the
"correlation energies. "These estimates are roughly one-
half those observed for the two 3d electrons involved in
the neutral 3d" atom to 3d" ' ion transition (observe the
final figure of references 1 or 2). The structure in the 4s
"correlation energies" is typical of what has been seen
for the 3d" case.

IV. CONCLUSIONS

The primary purpose of these calculations was to
provide wave functions which could be used for further
purposes. X-ray scattering factors have already been
calculated using these functions. " Concerning the re-
sults themselves, of interest is the fact that the 4s
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electrons have almost no effect on the inner electrons.
This result is not unexpected. Less expected is the fact
that the 4s perturbation on the 3d and inner electrons is
less than that suGered by an iron series ion when i.t is
inserted into a crystalline environment. ""

'4 A. J.Freeman and R. E.Watson, Phys. Rev. 118, 1168 (1960)."R.E. Watson and A. J. Freeman (to be published).
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Collisions of Electrons with Hydrogen Atoms. V. Excitation of
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Ground-state hydrogen atoms produced by the~mal dissociation in a tungsten furnace were excited by
collision with electrons having energies up to 600 ev. Those atoms which were excited to the metastable 2S
state were subsequently quenched in an electrostatic field, and the resulting Lyman-alpha radiation was
detected with an iodine-vapor-filled photon counter. In order to assign absolute cross-section values to the
excitation function obtained in this way, the ratio of the 2S to the 2P excitation cross sections was deter-
mined. From previously obtained knowledge of the cross section for excitation to the 2I' state, the absolute
2S cross section was evaluated. Agreement with the Born approximation was observed at high energies. The
angular distribution of the scattered 2S atoms was also investigated for electron energies up to 600 ev.

I. INTRODUCTION

HE cross section for excitation of ground-state
hydrogen atoms to the metastable 2S state on

electron impact has been the subject of extensive
theoretical investigation. ' ' The fact that both the
initial and final states have zero angular momentum, so
that the wave functions are extremely simple in addition
to being precisely known, makes this inelastic collision

process particularly amenable to a variety of scattering-
theory approximations.

However, the predictions of the various scattering-
theory approximations diGer quite widely, and it is

difficult, on theoretical grounds, to select with any confi-

dence the approximation that most closely describes
the transition. It seems possible, therefore, that insight
into the problem may be gained more directly from a

*This research was supported in part by the Advanced Research
Projects Agency through the OfFice of Naval Research, and in
part under a joint General Atomic —Texas Atomic Energy Re-
search Foundation program on controlled thermonuclear reactions.

f Present address: Department of Physics, University College,
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laboratory study of this process and that preference for
a particular approximation may be indicated by the
results of an accurate experiment. Prior to the present
work, experimental evidence on the form of this cross
section near threshold was provided by the relative
measurements of Lamb and Retherford' and by the
more recent work of Lichten and Schultz, ' who used
energies up to 40 ev. In the present measurements, the
use of modulated-atomic-beam techniques enabled the
range of measurements to be extended to considerably
higher values of the electron energy.

II. APPARATUS AND PROCEDURE

A schematic view of the apparatus which was em-
ployed in the present work is shown in Fig. 1. Atomic
hydrogen Qowing from a tungsten furnace in the erst
of three di6erentially pumped vacuum chambers was
modulated at 100 cps by a motor-driven, toothed
chopper wheel located in the second chamber. The
hydrogen atoms were then excited by a beam of elec-
trons from a gun that was placed in the third chamber
with its axis normal to the direction of the atomic beam.
After passing through the gun, the atoms entered a
"quench" region throughout which an electrostatic
field couM be established. An iodine-vapor-filled ultra-
violet photon counter'" was mounted on a movable
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