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CONCLUSIONS

It has been experimentally demonstrated that there
is a transition from impurity band conduction to con-
ventional conduction via the conduction band in rutile
as the oxygen vacancy density is decreased. Tempera-
ture versus resistivity measurements in the "a"and "c"
crystal directions of rutile have been made over a wide
variation in nonstoichiometric compositions of titanium
and oxygen. An anisotropy of conduction greater than
1000 to 1 was observed at room temperature, increasing
to more than 10 000 to 1 at —60'C. The results of this
study indicate that associated with each crystal direc-
tion there is a continuous transition from impurity band
conduction to conventional conduction via the conduc-
tion band, which is determined by the oxygen vacancy

density. However, the nature of this dependency on the
oxygen vacancy density divers in the "a" and "c"
crystal directions, allowing large anistropies in the
intermediate region of the transition. It is hoped that
much of the published experimental data can now be
reinterpreted with respect to the crystal directions and
more unanimity of understanding achieved.
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In view of a discrepancy between results available in the literature, the problem of 6nding the different
irreducible representations for points on the surface of the Brillouin zone in NaCl and CsCl type lattices is
re-examined for particular points of high symmetry. The lattice harmonics to be included in cellular-type
calculations are listed up to and including /= 10 for two points on the surface of the Brillouin zone in each
case. Our results conhrm the earlier work of Bell up to 1=6, and extend her tables somewhat. The present
findings however are at variance with Behringer's work on LiH for one of the points (W) which he considers.

l. INTRODUCTION

EHRINGER' has recently reported a theoretical
investigation designed to predict the pressure at

which a metallic transition might occur in the ionic
crystal LiH. independently, two of us (M. F. and
N. H. M.) have been working on the general problem of
metallic transitions in ionic crystals, but with two
essential differences from Behringer's work. Firstly, we
have been considering the CsCl structure, rather than
the NaC1 structure adopted by Behringer. Although
Behringer comments in his paper that the CsCl struc-
ture may be an important feature in discussing the
metallic transitions, he does not deal quantitatively
with this case. Secondly, from the point of view of the
methods used in the band structure calculation,
Behringer uses expansions in symmetrized plane waves,
whereas so far all our work has made use of the cellular
method.

However, both methods utilize the symmetry of the
wave functions; in Behringer's calculation the form of
the appropriate symmetrized plane waves is thereby
fixed, whereas in our cellular treatment we determine in
this way the allowed spherical harmonics in the expan-

' R. E. Behringer, Phys. Rev. 113, 787 (1959).

sion of the wave function for a given k within each cell.
It is this group theoretical aspect of the problem on
which we focus attention in this note. The compelling
reason for a re-examination of existing work resides in
the discrepancy which we find between the results of
Behringer for the point W (see Sec. 2) and those given
by Bel12 on which our work is based. Behringer states
that for the representation Wi (W, in the notation of
Howarth and Jones), the wave function is s-like around
both the nuclei in the I,iH crystal, assuming the NaC1
structure. On the other hand, Bell's tables indicate that
the function is p-like around the second nucleus for this
point in the Brillouin zone, if s-like around the first. It
is the main purpose of this note to resolve the dis-
crepancy, and then to extend the available results in
certain directions.

2. NaC1 STRUCTURE

(a) Point W. k= (~/2tr) (2,1,0)

To avoid repetition, we shall refer the reader to
Behringer's notation. However, it is convenient for the
purposes of the present argument to reproduce the

s D. G. Bell, Revs. Modern Phys. 26, 311 (1954).



i886 FLOWER, MARCH, AN D MURRAY

TABLE I. Character table for point W. k= (~/2a)(&2, %1,0).

w, (w, )
w, (w&)
w, '(w, )
w, '(w„)
w, (w„)

C2

1

1
1—2

2S4

1
1—1

0

2C2'

1—1
1—1
0

20"g

1

—1

0

(x) (x)

Ez) &z)
(x ls.
kz) E~x)
(x) &x)

kz) ~z)

(x) (—x'l

Ez) E —z)
(x) (az1

Cz
& ) (~*)

character table for the point t/t/", and this is shown in
Table I.

In order to elucidate the point at issue, namely the
nature of the wave function about diRerent sites in the
NaCl crystal, we shall begin by an argument based on
an empty lattice assumption. Into this we will insert the
correct symmetry of the lattice, and then discuss
directly the form of the wave function about a nucleus of
the second type. Since we are dealing with the basic
plane wave

exp(ilr r) = exp[(in/2a) {2x+y}], (1)

we see from the character table that for the non-
degenerate representation t/t/~, the linear combination
of plane waves with the correct symmetry is

e px[i(m/2a) 2{x+y ]}+exp[(im 2/a){ 2x+y—}]
+exp[(i~/2a) {2s —y}]

+exp[(im/2a) {—2s —y}]. (2)

We now consider this wave function centered on a Na
nucleus, and enquire what the nature of this function
will be when it is viewed from a Cl site. To be definite,
the origin will be transferred to the Cl nucleus sitting at
the point (a,0,0), and introducing the new co-ordinate
X=x—u we see that the wave function (2) becomes

—exp[(i~/2a) {2X+y}]—exp[(i7r/2a) {—2X+y}]
+exp[(im/2u) {2z—y}]

+exp[(iver/2a) {—2z —y}]. (3)

We see then immediately that the wave function in (3)
is zero when evaluated at the point (X=O, y=0, z=0)
and cannot therefore be s-like around the Cl nucleus.
This argument is sufhcient then to reveal that Behr-
inger's result is at variance with the basic character
table, and in fact it may now be seen from Table I that
the appropriate irreducible representation correspond-
ing to (3) is Wz'(—=W„'),in essential agreement with
Bell's work.

In the cellular calculations now in progress, it is of
considerable value to have available all the lattice
harmonics which occur up to high values of / in the
general case when the empty lattice approximation is
transcended. We show below how these harmonics may
be obtained by a fairly straightforward generalization
of the above plane wave argument. We write, instead of
the basic plane wave exp[(im. /2a) {2x+y}],the function

f(x,y,z) and the properly symmetrized wave function
corresponding to the irreducible representation t/V~ is

4=f(x,y,z)+f( *,y, z)—+f(z, —y—,
—x)

+f( z, —y, x)+ f—(z, —
y, x)+f(—z, —y, —x)

+f(x, y, z)+f( *—, y, z) —(4)

We now expand f(x,y, z) in the form adopted in cellular

TABLE II. Lattice harmonica for point W (NaCI lattice). k= (z/2a) (2,1,0).

w,

4 ~ ~

d = 2y2 —x2 —z2

f=y(*' z')—
g =g(r, )
g2 = 2y4 —x4 —s4 —6d/7
h =y'(x' z') f/3— —

6 i&=i(r, )
i2 = 2y6 —x —z —15g2/11 —5d/7

7 j&——y5 (x2—z~) —10h/13 —(5/33)f
Jt2=y(x2 —z )(x +z —14x z )

8 k, =k(r)
2ys xs zs 28i2/15 —210g2/143 —(20/33)d

k3 x y z (2y —x —z )—(8/31 )k2+i2/15+2g2/143 —d/231
9 l& =y7 (x2—s2) —(21/17) j&—(7/13)h —(35/429) f

1z = y3 (x2 —zz) (x4+z4 —14xzzz) —(3/1 7)y z

10 mI. As for F,.
m2 = 2y'0 —x'0 —z'o —(45/19) k 2

—(42/17)i2 —(210/143)g2 —(75/143)d

m3= x y z~ {2y4—x4—z4) —(2/29)m2 —(89/589)k2 —(15/19)k3
+ (14/255)i2+ g2/143 —10d/3003

P=y
d=x —z

g = x4 —s4 —6d/7

h =y'- (10/9)f- (3/7)P
h, =y(x4 —6es2+z4)
i1——xs —s6 —15g/11 —(5/7)d
zz = (x2 y8) (y2 z2) (z2 x2)
j& ——yr —(21/13)h& —(35/33)f P/3—
g2 ——y3 (x —6x'z'+z') —(3/13)h2
k1 =xs zs (28/15)i1 —210g/143 —20d/33
h z =x'ymz' (x' —z') —(8/31) h &+zi/15+ 2g/143 8/231—
1,= y& —(36/17)j,—(126/65)h, —(140/143)f (3/11)P—
l2 =y (x4+s —6x'z') —(10/17)g2 (1/13)h
l3 ——y(xs+zs —28x s (x +s )+70x z )

m1= x'0 —s'0 —(45/19)k1 —{42/17)i1—210g/143 —75d/1. 43
m2 =x~y z~ (x4—z4) —(2/29)m1 —(89/589)kq —(15/19)k2

+ (14/255)ig+g/143 —10d/3003
m3= (x —y ) (y —z ) (z —x ) (x +y +z4) —(11/17)z2
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TABLE III. Lattice harmonics for point L (NaCl lattice). k= (zr/2a) (1,1,1).

t
0 1
2 d =xy+yz+sx

4 gz=g(1'. )
gz =xys (x+y+s) —d/7

6 z =z(I', )
zz = (x'+y'+s')xys —6gz/11 —d/21
zz = [y'+z' —(10/3)y's'jys+ [s'+x' —(10/3)s'x'7sx

+[x'+y4 —(10/3)x'y'jxy
8 k, =k(r, )

kz ——(x'+y'+s')xys —zz —(45/143) gz —(5/231)d
kz ——[yz+s4 —(10/3)y's'jx'ys, etc., iz/—15

10 ml. As for F,.
ms = (xz+yz+sr)xyz —(28/19)kz —(14/17)zz (28—/143)gz
mz= [y'+s' —(10/3)yzzzgxzys, etc. , —(6/19)kz —zz/85
m4 = {y'+s' —12 (y'z'+s'y')+ (126/5) y's'}yz, etc.

l
1 p =x+y+s
3 f =x'+y'+s' —-'p

f2= xyz
5 hz =x'+y'+s' —(10/9) f& —3P/7

hz = (yz+sz —6y s )x+ (s'+x —6z x )y+ (x'+y' —6*'y')z
7 j I ——x'+y'+s' —(21/13)hl —(35/33)fl ——',pj,-xys(x4+y4+s4} —5f,/11

j3——(y4+ s4 —6y2s2)x'7 etc. )
—(3/13)h2

9 i& x'+——y'+z' (36—/17) j&—(126/65)h& —(140/143)f&—(3/11)p
iz x'y'z'——+3j z/34 3fz!1—43
l3 = (y4+z4 —6y's')x', etc. —(10/17)j3—(1/13)lz2
l4 {y'+s'———28 (y's'+y'z')+ 70y's4) x, etc.

calculations

f(x,y,s)=P Az~z(r)P& (cos9)e' & (5)

and to obtain P in a simple form we choose y as the polar
axis. Using the results'

exp(+) = ( +six)/(1 y')',—y= cosg

it is easily shown by direct analytical methods that the
terms appearing in the expansion of f have the form

(d /dy") &z(y) L(s+z*) + (s—ix)"],
where, for l odd, m=2, 6, 10, etc. , and for / even,
m=0, 4, 8, etc. Combinations of terms for a given / have
been found which lead to a completely symmetrical
function4 and orthogonal functions, and the results are
collected in Table II. By an obvious modification of the
above argument we have found the harmonics for t/1/ „',
and these are also listed in Table II. These functions
must be used in conjunction with one another in cellular
calculations: for the extension of (3), based on plane
waves, to Bloch functions, reference should be made to
the Appendix.

(b) Point I,. k = (zz/2a) (l,l, l)
Table III records similar results for the point I.,

which is the other case Behringer considers for NaCl.
In this case, the present symmetry arguments agree
with those used by Behringer, and the detailed har-
monics are in accordance with Bell's results, which
extend, however, only as far as l=6.

(a) Point r. k= (~/a) (l,l, l)

We consider erst the representation I', . All the har-
monics up to 1=10 are listed in Table IV. The form of
the correctly symmetrized wave function, by arguments
entirely analogous to those discussed earlier, shows that
with I', symmetry round one nucleus, say Cs, the wave
function must have I'f symmetry when viewed from a
Cl nucleus. All harmonics for l~&10 are listed for I'f in
Table IV.

(b) Point X. k= {zz/a) (1,0,0)

We consider the representation X, around one
nucleus; this corresponds to X„when viewed from a
nucleus of the second kind. Independent tables are not
in fact required for this case. The results may be ob-
tained from those for 8', in the case of X, by omitting
the odd I, values entirely, and by interchanging x and

y in the even l harmonics. The results for X„are
similarly obtained from Table II, by omitting the even
harmonics in 8'„'and interchanging x and y.

4. COMMENTS ON TABLES

Use of our tables in conjunction with those of Bell
will allow certain df her results to be immediately
extended. Thus, her representation A; (I', in the notation

TAnLE IV. Lattice harmonics for point I' (CsC1 lattice).
k= (zr/o) (1,1,1).

3. CSC1 STRUCTURE

Turning now to the CsCl lattice, we shall consider
here two wave vectors which are of interest in the
numerical calculations which are at present in progress.

From this point we shall use x, y, s as direction cosines, except
in the Appendix, where they again denote coordinates.

4 Actually this is the same as F„compare Sec. 3 and Table IV.

l
0 1

2 ~ ~ ~

4 g =x4+y4+z —s
6 i =x'ymz'+g/22 —1/105

k —xs+ys+zs 28i/5 210g/143
10 x10+y10 +z10 —45k/19 —126i/17

—210g/143 —3/11

l
1 ~ ~ ~

3 f =xyz
5 ~ ~ ~

7 q =xyz(x +y4+z4) —5f/11
9 xsyszs+3 j/34 —3f/143



FLOWER, MARCH, AND MURRAY

of this paper) may be seen by inspection of our Table II
to contain no eighth-order term, the next term of order
l= 10 being given by

(x2 y?) (y2 s2) (s2 x2) (x4+y4+s4 11/1 7) (7)

In addition, the following extensions of Bell's results
may readily be obtained from our Tables II and III:

As(1) and Af (x) from W„
Av(x) and Aq(2) from W„',
Ae (x) from I.,

J

S. FINAL REMARKS

The results for the CsCl structure are being utilized
in the detailed study at present in progress on the CsI
crystal, for which the experimental results of Alder and
Christian' indicate a metallic transition at about 250 000
atmospheres. We hope to report fully on these band
structure calculations at a later date.

We conclude by remarking here that for LiH assum-
ing the NaCl structure, Behringer's estimate of the
pressure at which a metallic transition might occur must
now be viewed with caution, in the light of the sym-
metry arguments for the point 8' presented in this work.

Note added in proof. Dr. Behring—er has now re-
examined his calculations and has kindly given us
permission to say that he agrees with our conclusions.

The revised energy calculation for the point 8" in the
LiH crystal is now being undertaken in this Department.
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APPENDIX

We show here how the argument based on plane
waves, and leading to Zq. (3) above may be generalized
to deal with Bloch functions. Equation (4) embodies the
symmetry requirements for the irreducible representa-
tion 8", and we can clearly rewrite this, about the point
(0,0,0) say, as

lt (x,y,s)
={u(xy s)+u(x y —s))e(' "'("+»

+{u(—x, y, s)+u( —x, y, —s) )e"'"' -'*+")

+{u(s, —y,x)+u(s, —
y,

—x))e """—"'

+{u(—s, —y, x)+u( —s, —y, —x)}e""" ' ")
(A.1)

where, utilizing Bloch's theorem, u(x, y, s) has the period
of the lattice. (A.1) reduces to (2) when we take the
free-electron limit, i.e., I—+constant. Following the
method of Sec. 2, we now transfer the origin to the
point (a,0,0). Using the periodicity of u(x, y,s), and
writing u(x —a, y, s) —=v(x,y,s) we have

P(x ~, y, s)
= —{v(x,y,s)+v(x, y, —s))e" " ) ('+»

—{v(—x& y, s)+v( —x, y, s))e((~no)( —'*+v)—
+{v(s, —y, x)+v(s, —

y, —x))e(' ne)('z»

+{v(—s, —
y, x)+v(—s, —y, —x))e(' "')(—'*—»

(A.2)
where we have used relations of the type

u(s, —y, x—a) =u(s —u, —y, x) = v(s, —y, x).

The function (A.2) is easily seen to have p symmetry
about the point (a,0,0). Similar arguments hold for the
points (O,a,O) and (0,0,g).


