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sample of Powell et al. ' This difference is also reflected in
the maximum value of heat conductivity (see inset
figure), which is about 190W cm ' deg ' for our sample
and about 135'' cm ' deg ' for their annealed sample.

The important factor is, however, the comparison of
the thermal and electrical resistivities. The values of
I.=p/WT are shown in Fig. 1, together with curves ob-
tained by Herman and MacDonald' and by Powell
et a/. ' The third curve shown is that calculated from
existing data on the "ideal" resistivities for copper, "and
from the known residual resistivity of our specimen,
i.e., from the equation I.= (po+ p;)/(Wo+ W,)T, assum-
ing po=0.87)&10 ' ohm cm, Wo ——p /02. 45&&10 'T. The
experimental points below about 4'K indicate that at
the lowest temperatures L lies between 2.4 and
2.5)& 10 'W ohm deg ', not differing more than 2% from
the theoretica] Sommerfeld value of 2.45&10 '.

Note that only at very low and at high temperatures
should L approach the Sommerfeld value. At inter-

mediate temperatures, where scattering is not elastic,
and hence where relaxation times are not the same for
thermal and electrical resistivity, L will fall below this
value. The temperature at which L is a minimum, and
hence the minimum value of L, decrease with increase in
purity. Allowing for the di8ering purity of our sample
and that of Berman and MacDonald, the temperature
variation of L is consistent.

5. CONCLUSION

In agreement with the theory, it appears that this
specimen of high purity copper exhibits the same value
of the Wiedemann-Franz-Lorenz ratio at liquid helium
temperatures as do less pure copper samples, and as do
many specimens of other metallic elements, namely
L 2.45~0.05)&10 '5' ohm deg '. The reason for a
departure from this pattern in the experiments of Powell
et al. ' seems obscure; perhaps it arises from spurious
heating eGects.
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It is concluded that two moving dislocations of the same sign and on the same slip plane can sometimes
attract rather than repel one another (and two of unlike sign repel rather than attract each other). This
reversal over the usual behavior will occur at velocities where the kinetic energy in the displacement 6eld
of an isolated moving dislocation is larger than the strain energy in the same field.

' T is usually considered that dislocations of like sign
~ ~ repel each other and those of unlike sign attract
each other. We wish to point out that, at high disloca-
tion velocities, the reverse situation may occur. A con-
sideration of the energy of a moving dislocation shows
under what circumstances like dislocations can attract
and unlike repel. The energy of a uniformly moving
dislocation can be divided into two parts, a potential
energy associated with the strains existing in the elastic
displacement field and a kinetic energy associated with
the velocity of these elastic displacements. Let E& and
F2 represent these two energies. In general the values of
E& and E& will increase monotonically as the velocity
of the dislocation increases. Now consider the following
thought experiment. Let two dislocations which origi-
nally are widely separated each be given a velocity Vo
with respect to the crystal lattice and set into motion to-
wards each other so that ultimately they will meet. If it
is assumed that energy is conserved, the dislocations will

pass through each other and eventually regain the
original velocity Vo when they again are widely sepa-
rated. The criterion as to whether the forces between

these dislocations are attractive or repulsive simply is
the following: If at the moment of meeting the velocity
V1 of the dislocations is greater than the original veloc-
ity Vo, the forces must be attractive. If the velocity
Vi is smaller, the forces are repulsive. (We assume, of
course, that the initial energy is sufficiently great that
the two dislocations can meet in the repulsive case.)

If linear elasticity theory is applicable and energy
loss by the radiation of sound waves neglected, the
solution of the displacement field of two moving dis-
locations is simply the sum of the displacements of each
dislocation considered alone. Hence when two unlike
dislocations collide, the displacements and stresses go
to zero and the potential energy at the moment of
impact is zero. The velocity of the displacements does
not go to zero for unlike dislocations, but is double the
velocity of the displacements of an isolated, uniformly
moving dislocation with the velocity Vi. Since kinetic
energy goes as the square of the displacement velocity
one has

4&2(vi) = 23&i(i'0)+&2(l'o) j,
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if it is assumed that energy is conserved. Under ordinary
circumstances the potential energy Ej of an isolated
dislocation moving at an arbitrary velocity is larger
than the kinetic energy Es. Hence, if Eq. (1) is to be
valid, V~ has to be larger than Vo provided that the
energies are increasing functions of the velocity. How-
ever, should the kinetic energy E2 be larger than E&

Eq. (1) wouM apply only if Vi is less than Ve. Jf Vi is
less than Vo, there is a repulsive force between two
unlike dislocations.

One can use similar reasoning to consider two dis-
locations of like sign which are set into a collision motion.
At the moment of meeting, the displacement velocities
now cancel one another and the kinetic energy will go
to zero. The stresses in the displacement field are double
those of an isolated dislocation moving at the velocity
V&. Since potential energy goes as the square of the
strain, one has

4~i(Vr) = 2L~r (Ve)+~s(Vo) j (2)

If at any given velocity E& is larger than E&, V& must
be larger than Vo. Under this circumstance an attractive
force exists between the two like dislocations, whereas
if E~ is greater than E2, the force is repulsive.

In our arguments we have considered that the energy
is constant and have allowed the dislocation velocity
to vary. Our model can also be used for the situation
where the dislocation velocity is kept constant and the
total dislocation energy allowed to vary. If a force is
applied to the two colliding dislocations which is always
equal and opposite to the force of interaction between
them, their velocity would remain unchanged but their
total energy would change. This force could be applied

by, say, allowing the dislocations to run in an alloy
in which the short-range order on the slip plane varies
as an appropriate function of distance to give the desired
magnitude and direction of the force. If V is the disloca-
tion velocity, the initial energy will be 2L Ei(V)+Es(U)]
and the energy upon meeting will be either 4E&(U) or

4Es(V), depending on whether the dislocations are of
the same or opposite sign. If the energy at collision is
greater than the initial energy, the force between dis-
locations must have been repulsive, and if the energy
is less the force must have been attractive. If we repeat
our argument when either E& or E2 is the larger energy
of an isolated moving dislocation, one sees that we come

up with the same conclusions as before.
The potential energy of a moving screw dislocation

always is greater than its kinetic energy except when

the velocity of the dislocation is that of the slowest
sound velocity, in which case the two energies are equal
and infinite. Hence screw dislocations are always well

behaved. Like screw dislocations repel each other and
unlike attract.

In the case of edge dislocations a calculation' shows
that above the Rayleigh wave velocity (approximately
0.9 times the slow sound velocity) the kinetic energy
becomes greater than the potential energy. Thus at
high velocities edge dislocations of like sign can attract
each other and unlike repel, in contrast to the usual
situation. This result also can be shown directly' by
calculating the shear stress on the slip plane around a
moving edge dislocation from the exact solution of the
displacement field of an edge dislocation given by
Eshelby. ' The shear stress goes to zero as the Rayleigh
wave velocity is approached and reverses its sign and
increases monotonically its magnitude above this
velocity.

It has been claimed by Eshelby that the Rayleigh
wave velocity actually is a limiting velocity for edge
dislocations because the "width" of a dislocation goes
to zero at this speed. However since the energy of a
moving edge dislocation does not go to infinity at this
speed there really is no physical reason for this velocity
to be an upper limit. The reason the "width" of the
dislocation goes to zero arises from the fact that the
shear stress on the slip plane of the dislocation ap-
proaches zero as the Rayleigh wave velocity is ap-
proached. The width, which simply is a measure of this
shear stress, thus will decrease, reach zero, and then
increase as the velocity is increased beyond the Ray-
leigh wave velocity. The sign of the width becomes
negative rather than positive above the Rayleigh wave
velocity because the shear stress reverses itself. (The ve-
locity at which the width of a screw dislocation goes to
zero is truly a limiting velocity because the width be-
comes a complex number at higher speeds. This velocity
is identical to the one at which the energy of the screw
dislocation becomes infinite. )

In conclusion, dislocations of like sign can be attracted
to each other, and unlike repel if the kinetic energy in
the displacement field of an isolated dislocation is greater
than the potential energy. If the potential energy is
the greater the dislocations behave normally.
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