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Lorenz Number for High-Purity Copper
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Following a recent report that the Lorenz number, L=X/oT, does not approximate to the theoretical
value of 2.45&10 '8" ohm deg ' for very pure copper at the lowest temperatures, measurements have been
made of thermal and electrical conductivities on copper of similar purity. Between 2 and 4'K, values of I,
are observed lying in the range 2.54 to 2.40)&10 8' ohm deg~.

1. INTRODUCTION equation expresses the equilibrium situation and may
yield the solutions5KCENTLY Powell et al.' reported observations of

the low-temperature transport properties of pure
copper in both the annealed and cold-drawn conditions;
this followed extensive earlier work by them' on com-
mercial grades of copper. Their work on 99.999% pure
copper (from the Central Research Laboratories of the
American Smelting and Refining Company) generally
confirmed the behavior of the electrical resistivity and
thermal conductivity observed by Herman and Mac-
Donald' and by White4 on slightly less pure samples.
However, a most striking feature of their work was the
observation that as the temperature approached 0 K
(where impurity scattering becomes dominant) the
value of the Wiedemann-Franz ratio or I.orenz number
did not approach its theoretical value but a value about
25% lower. Denoting thermal and electrical conduc-
tivities, respectively, by X and 0-, and the corresponding
resistivities by W and p, this ratio X/oT=I. =p/WT—
approached the value of about 1.85X10 'W ohm deg '
for (volt/deg)' if preferredj rather than 2.45X10 '.
This is in sharp contrast to previous experimental obser-
vations on pure metals and to the theoretical predictions
of electronic transport theory (see reviews of Klemens'
and Blatt and discussion below), so that we have felt
obliged to extend our earlier work on copper to samples
of the same high degree of purity as those used by
Powell et al. '
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where dS is an element of the Fermi surface (E=f) in
k space, s is the electron velocity and k is the Boltzmann
constant. Obviously, if the relaxation time is the same
for both the electric and thermal transport, then
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This limiting value of I. which is due to Sommerfeld
(see, e.g., Froehlich') is thus a constant independent of
band structure or relaxation time.

Regarding relaxation, Froehlich' has pointed out that
equilibrium can be reached in two ways: either by
processes changing the direction of motion of an electron
but not changing its energy significantly, or by processes
changing energy but not direction —the so-called "hori-
zontal" or "vertical" movements on the Fermi sur-
face.""Vertical" movement is, however, ineffective in
producing electrical resistance. Hence the relaxation
times for electrical and thermal conduction are strictly
equal only if "vertical" movement is absent. The
effective scattering by lattice waves at high tempera-
tures and by impurities at low temperatures is large-
angle and elastic, so that 7 is the same for the diGerent
transport processes; therefore we expect

2. BACKGROUND

In a metal an electric field or a temperature gradient
causes an electron drift which is restricted only by the
collisions which the electrons make with imperfections
in the lattice, whether they be static defects or lattice
vibrations. When the electron distribution function is
disturbed from its equilibrium value, the rate of return
to equilibrium —by collision processes —may be ex-
pressed in terms of a relaxation time v-. The Boltzmann
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for T&8 and for T«8.

Turning to the experimental picture, what has
low temperature research revealed? Observations on
copper, ' sodium, ' the alkali metals, ' magnesium, " the
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transition elements"" have all seemed to confirm this
theoretical prediction. For some specimens of rather
limited purity, it has been evident that )/oT) 2.45
&(10 ' at liquid helium temperatures, but this finds a
ready explanation in the presence of an appreciable
component of heat conduction due to the lattice. Such
a component only becomes appreciable when conduction

by electrons is reduced far below that for a pure metal,
by the presence of impurities. Thus prior to the report
of Powell et cl.' no evidence had been presented suggest-
ing that as T ~ 0, L shouM have a value less tham its
theoretical value, and for the relatively pure samples of
good metallic conductors it has appeared that L does
approximate closely to this value.

3. EXPERIMENTAL METHOD

Details of the cryostat, in which electrical and
thermal conductivities can be measured on the one
specimen down to 2'K, have been given before. "The
copper specimen used was from a ~3-in. diameter rod
from the same source as that of Powell et a/. , namely the
American Smelting and Refining Company; their spec-
trographic analysis showed less than 1 ppm each of Fe,

"G.K. White and S. B.Woods, Phil. Trans. Roy. Soc, London
A251, 273 (1959).

"G. K. White, Experimerltal Techniques im Iom-Ternperatlre
I'hyszcs (Oxford University Press, New York, 1959), p. 158.
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FIG. 1. The Lorenz number, I=p /W T, for pure annealed
copper. Inset shows thermal conductivity, 'A. Dashed curve,
Berman and MacDonald (see reference 3); dotted curve, Powell,
Roder, and Hall (see reference 1); Q experimental points; solid
curve, a curve calculated assuming i.= (pp+ p;)/(Wp+Ws)T with
p0=0.87X10~ ohm cm; 8'0= pp /2. 45X 10 T p' and 5"; from
earlier work (see references 3 and 11).

Sb, Se, and less than 2 ppm of Te, As. For our purposes,
0.030-in. diameter wire was rolled and drawn from this
rod and then annealed at 530'C in vacgo for some hours.
Care was taken to avoid contamination and the
residual resistivity of pp 0.87X10 ' ohm cm (see value
of ps~~1.01X10 ' ohm cm reported by Powell et aL')
confirms the purity of the resulting wire. The annealed
wire was cut into three parts, the center part of about
8 cm being mounted in the cryostat with nonsuper-
conducting solder and with a thin glass frame (of very
low heat conductivity) assisting to support the rather
thin and soft specimen. The electrical resistivities of the
two end pieces, each about 1 meter long, were also
measured in liquid helium in order to test for uniformity
in the case of any contamination. Their residual resis-
tivities differed by less than 3%, each being close to
0.8)&10 ' ohm cm. This latter value of po corresponds to
a residual resistance ratio, R4/R994 of about 5X10 '.

The total electrical resistance, at liquid helium tem-
peratures, of each of these wires was only about 12' 10 '
ohm, and of the actual sample in the cryostat was only
2)&10 ' ohm. To measure this, a galvanometer ampli-
fier" with a maximum sensitivity of 60 cm/its and
random error of about +1/~ was used. However, a
rather high-measuring current (~&100 ma at liquid
helium temperatures) is still required and this may
produce undesirable heating eGects. Later, as a check,
the outer brass and copper jackets were removed from
the cryostat so that the sample could be immersed
directly into liquid helium and its resistivity determined
with a reasonably heavy (500 ma) measuring current
under completely isothermal conditions. It then showed
a resistivity of 0.865+0.01)&10 ' ohm cm, compared
with values in the range 0.88+0.02&&10 ' ohm cm
determined earlier.

4. RESULTS

No detailed study of the temperature dependence of
the ideal electrical resistivity was made, as the speci-
mens were of too low a total resistance for an accurate
investigation. However, at temperatures near 30, 55, 90,
and 294'K values agreed quite well with earlier deter-
minations. '" For example, at 294'K and 90'K, re-
spectively, the measured resistivity was 1.675 and
0.275)(10 ohm cm.

As discussed in the earlier work on copper, the
thermal resistivity 8" may be expressed as a sum of
impurity and ideal resistivities, 8'0 and 8";,respectively.
Analysis of our results indicated that the thermal re-
sistivity could be expressed as W=A/T+BT where
e 2.3 for T&40'K. The magnitude of the second term
in this equation, which we call the ideal thermal
resistivity, agrees quite well with that obtained pre-
viously for annealed samples. ''4 Our sample was of
slightly higher purity than in previous work; A was
0.035~ cm deg H/' ' as compared with 0.059 for the

"D.K. C. MacDonald, J. Sci. Instr. 24, 232 (1947).
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sample of Powell et al. ' This difference is also reflected in
the maximum value of heat conductivity (see inset
figure), which is about 190W cm ' deg ' for our sample
and about 135'' cm ' deg ' for their annealed sample.

The important factor is, however, the comparison of
the thermal and electrical resistivities. The values of
I.=p/WT are shown in Fig. 1, together with curves ob-
tained by Herman and MacDonald' and by Powell
et a/. ' The third curve shown is that calculated from
existing data on the "ideal" resistivities for copper, "and
from the known residual resistivity of our specimen,
i.e., from the equation I.= (po+ p;)/(Wo+ W,)T, assum-
ing po=0.87)&10 ' ohm cm, Wo ——p /02. 45&&10 'T. The
experimental points below about 4'K indicate that at
the lowest temperatures L lies between 2.4 and
2.5)& 10 'W ohm deg ', not differing more than 2% from
the theoretica] Sommerfeld value of 2.45&10 '.

Note that only at very low and at high temperatures
should L approach the Sommerfeld value. At inter-

mediate temperatures, where scattering is not elastic,
and hence where relaxation times are not the same for
thermal and electrical resistivity, L will fall below this
value. The temperature at which L is a minimum, and
hence the minimum value of L, decrease with increase in
purity. Allowing for the di8ering purity of our sample
and that of Berman and MacDonald, the temperature
variation of L is consistent.

5. CONCLUSION

In agreement with the theory, it appears that this
specimen of high purity copper exhibits the same value
of the Wiedemann-Franz-Lorenz ratio at liquid helium
temperatures as do less pure copper samples, and as do
many specimens of other metallic elements, namely
L 2.45~0.05)&10 '5' ohm deg '. The reason for a
departure from this pattern in the experiments of Powell
et al. ' seems obscure; perhaps it arises from spurious
heating eGects.
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It is concluded that two moving dislocations of the same sign and on the same slip plane can sometimes
attract rather than repel one another (and two of unlike sign repel rather than attract each other). This
reversal over the usual behavior will occur at velocities where the kinetic energy in the displacement 6eld
of an isolated moving dislocation is larger than the strain energy in the same field.

' T is usually considered that dislocations of like sign
~ ~ repel each other and those of unlike sign attract
each other. We wish to point out that, at high disloca-
tion velocities, the reverse situation may occur. A con-
sideration of the energy of a moving dislocation shows
under what circumstances like dislocations can attract
and unlike repel. The energy of a uniformly moving
dislocation can be divided into two parts, a potential
energy associated with the strains existing in the elastic
displacement field and a kinetic energy associated with
the velocity of these elastic displacements. Let E& and
F2 represent these two energies. In general the values of
E& and E& will increase monotonically as the velocity
of the dislocation increases. Now consider the following
thought experiment. Let two dislocations which origi-
nally are widely separated each be given a velocity Vo
with respect to the crystal lattice and set into motion to-
wards each other so that ultimately they will meet. If it
is assumed that energy is conserved, the dislocations will

pass through each other and eventually regain the
original velocity Vo when they again are widely sepa-
rated. The criterion as to whether the forces between

these dislocations are attractive or repulsive simply is
the following: If at the moment of meeting the velocity
V1 of the dislocations is greater than the original veloc-
ity Vo, the forces must be attractive. If the velocity
Vi is smaller, the forces are repulsive. (We assume, of
course, that the initial energy is sufficiently great that
the two dislocations can meet in the repulsive case.)

If linear elasticity theory is applicable and energy
loss by the radiation of sound waves neglected, the
solution of the displacement field of two moving dis-
locations is simply the sum of the displacements of each
dislocation considered alone. Hence when two unlike
dislocations collide, the displacements and stresses go
to zero and the potential energy at the moment of
impact is zero. The velocity of the displacements does
not go to zero for unlike dislocations, but is double the
velocity of the displacements of an isolated, uniformly
moving dislocation with the velocity Vi. Since kinetic
energy goes as the square of the displacement velocity
one has

4&2(vi) = 23&i(i'0)+&2(l'o) j,


