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A model for a partially ionized, partially dissociated plasma
has been formulated using known theoretical concepts to describe
both bound and free electron states, internal molecular degrees
of freedom and Coulomb interactions. It has been applied to a
system of particles arising from the hydrogen molecule. The
Coulomb interaction is treated in the classical Debye approxima-
tion. However, a distance of closest approach between ions and
electrons depending on the kinetic energy of the electrons is in-
cluded to avoid the short-range divergence of the Coulomb po-
tential. The kinetic energy of the free electrons is calculated from
the partition function for a perfect Fermi gas. The vibrational
and rotational motion are treated in the harmonic oscillator and
rigid rotor approximation with the number of energy levels
counted for a given electronic state depending on the dissociation
energy of the state. A volume dependence of the bound electronic
energy eigenvalues is included by considering the effect of sur-

rounding particles as a confinement of a given particle to a spheri-
cal box of variable size. For the counting of the bound electronic
states, a given state is bound until its energy increases to zero due
to confinement. From the partition function for the entire system,
the free energy is calculated. By a minimization of the free energy
of the system, the equilibrium composition as a function of tem-
perature and volume is obtained. Then not only can thermo-
dynamic quantities be calculated, but it is believed that a reasona-
ble approximation to the correct balance of molecular, ionic and
free electronic states is achieved over a wide range of »-T" space.
Consequently, regions where incomplete ionization and dissocia-
tion are important are delineated. In addition, for different regions
of v-T space, the relative contributions of charged particle inter-
action of the nonclassical behavior of electrons, of internal degrees
of freedom and of translation to the total energy of the system can
be determined.

INTRODUCTION

CON SIDERABLE progress has been made in using
diagram methods to derive the equilibrium prop-
erties of systems of charged particles.! This approach
is of particular interest theoretically for its rigor and
generality. In principle one proceeds from fundamental
laws to exact expressions for the macroscopic properties
of arbitrary systems. These expressions ideally take the
form of rapidly converging infinite series whose terms
are tractable definite integrals. However, this ideal has
not yet been attained even for a two-component plasma
of electrons and protons. To calculate the properties of
multicomponent systems, we have therefore adopted
" another procedure, a ‘“model” approach, involving
many ad hoc assumptions based on physical intuition.

In this model a multicomponent system is a collection
of subsystems which are molecules, atoms, ions and
free electrons. The interactions of electrons and nuclei
within these subsystems is taken into account in their
internal electronic, vibrational, and rotational partition
functions. Electronic eigenvalues are made functions of
the volume per subsystem. The functional dependence
is based on that of the eigenvalues of a hydrogen atom
in a spherical box.? The free electrons are treated as a
perfect Fermi gas. Electrostatic interactions among
charged particles are calculated in the Debye?® approxi-
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mation, modified to distinguish between bound and free
electrons. For this purpose, ions are regarded as single
particles with an effective net charge; the free electron
cloud around any positive charge center has zero density
within a sphere whose radius depends on the average
kinetic energy of the free electrons.

Interactions within the subsystems contribute terms
to the partition function which are analogous to classes
of localized interactions in the diagram formalism which
have not yet been evaluated. Their inclusion in this
model extends the applicability of the calculation to the
dilute, low-temperature region. In addition, the inclu-
sion of pressure ionization, i.e., the disappearance of
bound states with increasing density, assures reasonable
behavior in regions of intermediate densities and tem-
peratures. Thus this method allows the calculation of
equilibrium properties over a different range than the
more rigorous approaches now being studied.

With this model there is a direct indication of the
relative importance of various interactions in different
density-temperature regions. For example, regions
where the concentration of multiparticle subsystems is
important can be determined. Also the relative contri-
butions to the free energy from Coulomb interactions,
electron degeneracy, and internal degrees of freedom
can be ascertained. Such information is very helpful in
deciding which aspects of the model need most to be
improved. Thus an analysis of the results from a set
of assumed interactions serves as a guide to an improved
model.# It is important that new results can be obtained
from an improved model with relatively little additional
effort. It thereby becomes feasible to test one’s intuitive
ideas of the relative importance of various physical
effects and particle groupings. Ultimately, the quan-

4In thls sense, the model described here is in part an improved
version of an earlier model. See G. M. Harris, J. Chem. Phys. 31,
1211 (1959).
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titative utility of this method of calculating the prop-
erties of multicomponent systems will rest on agreement
with experiment.

In the next section is presented a more detailed de-
scription and a brief general discussion of the model
which is currently incorporated in a working computer
program. It is followed by a presentation and discussion
of some of the results obtained when the method is
applied to a system of particles arising from the hydro-
gen molecule.

II. MODEL AND METHOD OF CALCULATION

The system considered is an equilibrium distribution
of atomic, ionic, and molecular species arising from one
mole of original molecular substance. The ad hoc as-
sumptions of the model are all contained in the approxi-
mations used to calculate the free energy of the system.
The free energy is calculated as the sum of the contri-
butions from the translation of the classical nuclear
subsystems, from the translational motion of perfect
Fermi electrons, from the internal degrees of freedom of
the subsystems, and from a modified classical electro-
static interaction between charged particles. Inter-
actions between neutral particles are neglected, and we
consider only small molecules. The calculated Helmholz
free energy is minimized with respect to the concentra-
tion of each independent component. The equilibrium
distribution of the species so obtained is then used to
calculate all thermodynamic quantities of interest.

A. Model—The Free Energy Contributions
1. Translation of Perfect Classical Particles:
This free energy, Fi, is given exactly by

F1=kTY:N:InN;—ET[ (2) InkT+6.974-+InMW+Inv]

where N;=number of molecules of species 7 per mole-
cule, M;=atomic weight of ith species, v=volume
(cc/g), kT is in electron volts, and MW =molecular
weight of the original nuclear species.

2. The Electronic, Vibrational, and Rotational
Partition Function

Experimental data, referred to a common zero of
energy, was used to obtain energy eigenvalues for the
bound electronic states of each component. For the H
atom, the electronic energies were made functions of the
volume by assuming each atom to be in a spherical box
of a size equal to the average volume per particle in the
system.? For more complicated components, approxi-
mate expressions were formulated, based on the results
for the hydrogen atom. Appendix I describes the details
of the analytic expression used for each species. When
the size of the box was such that the energy of a given
bound state was zero, that state was no longer counted.
Hence, in addition to the energy eigenvalues, the num-
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ber of bound electronic states for each component is also
a function of the volume and is finite for any finite
volume. The harmonic oscillator and rigid rotor ap-
proximations were used for the vibrational and rota-
tional partition functions. The number of these states
was determined from the dissociation energy of the
given electronic state. Thus the total internal partition
function for a given component is given by

kmax (@) Imax (k%) Fmax (1)

Qi= X EO 2) (2j+1)grigri(R)

k=1
Xexp{—[Ex:(0) X Wil X Brij j+1)1/kT},

where E;(v)=energy of kth eigenstate of species 7 at
volume v, gi;=degeneracy of kth electronic state, Wi,
=vibrational frequency of kth electronic state, /=vi-
brational quantum number, Bi;=rotational constant
of kth electronic state, j=rotational quantum number,
and g, (R)=fractional weighing factor used to avoid
discontinuity in Q as a function of volume; gz;(R)#1
only for the last state counted, which is the one of highest
negative energy. The cutoff of the vibrational and ro-
tational states is determined by the relationship

Doyi=Wri+Brij(j+1),

where Do,; is the dissociation energy of kth electronic
state of the ith species, and lmax(§=0)= Do/ W, with
a jmax determined for each /. Then the total internal
free energy is

F2= -kTZJVl an,
3. Perfect Quantum Electron Gas
The free energy of a perfect Fermi gas is given by
Fy=N&T[v— 3 1;(0)/;(v) ],
where » is the chemical potential g/£T and

I.(v) =f x*dx/[1+exp(—rXx)].

The I; integrals are related to the electron density by
the normalization condition

e w

Iiv)= —,
V(kRT)? 4w (2m.)?

where IV, is the number of electrons.

Through this last equation the quantity (v) is im-
plicitly given in terms of the specified wvariables
(N, V, T). Hence given (N., V, T), we can find I;(»),
v, and I3(v). For this purpose we have used a four-term
asymptotic expansion for »>4, the published tables®
relating these quantities for 4>»> —4, and the classical
expression for »<—4. We thereby calculate F; to within
0.39, for all values of (NV,, V, T).

5J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A237, 67 (1938).
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4. Elecirostatic Free Energy (F4)

According to the Debye-Hiickel model, the contribu-
tion to the free energy due to electrostatic interactions
is

Fy=— ZW%eazi(Niz,z)*T(xa)/S (VkT) %,

where IV, is the number of particles of charge z;, a is the
distance of closest approach of the centers of 2 ions, and

(k@) =3[In(14+«a) —ka+3 (xa)*]/ (ka)?,
K2=4re?y N2/ VET.

This expression includes a contribution from the
interaction of positive ions with all electrons acting as
classical charged particles. As a result, if used with
arbitrary ¢ it would allow electronic states with a con-
tinuum of negative energies decreasing without bound
to minus infinity in the limit ¢ — 0. However, the free
energy contribution from the bound state interactions
of electrons and nuclei has already been included
quantum-mechanically and is in fact given by F. There-
fore we want to treat the interactions of free charged
particles only by the Debye-Hiickel method. Free elec-
trons are defined as those of positive total energy. The
total energy of a free electron is calculated assuming
that all free electrons have the same kinetic energy
E=FkT[I;(»)/I;(»)] which is the average energy per
particle in a perfect Fermi gas. It is also assumed that
the potential energy of an electron about a positive
charge center is due only to its interaction with that
center; although, to be more consistent, the Debye-
Hiickel potential ought to be used. Then the potential
energy of an electron at a distance 7; from a center of
charge z;is V (r;) =2.%/r;. The quantity « in the Debye
expression is interpreted as the distance between the
center of an electron and a stationary ion for which the
total energy of the electron is zero, i.e., E+V (a;)=0.
Thus we obtain @;=2*/E giving a dependence of the
potential energy of the electrons on their kinetic energy
through the variable distance a;(7,v).

We have applied the electron-positive ion cutoff
radius (@) to all pairwise interactions. However, the
distance of closest approach of like particles should be
zero, since the total energy is always positive for re-
pulsive Coulomb interactions. By thus underestimating
the repulsive interactions, we obtain a larger net attrac-
tive Coulomb energy than we should.

5. Consistency of the Free Energy Formulation

In this model two different kinds of distances have
been defined which should be consistent. They are the
average radius per particle, R, used to calculate the
energy of the bound electronic state in a spherical box
and the ionic radius, @, used in the electrostatic free
energy Fs. The condition ¢<R means that the system
is dilute enough for the free electron to be the required
distance away from any one particle and still be within
the particle volume. However, for a>R an electron
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cannot be outside the excluded volume of any one par-
ticle without being within that volume for another. The
quantity ¢ has meaning only for positive ion-electron
interactions. Defining R’ to be an average radius per
positive ion, in a volume-temperature region where
a/R’>1, the assignment of bound electrons to one or the
other of a few small subsystems becomes a questionable
approximation. In such a region larger interacting
clusters must be considered. By calculating the quantity
a/R’ as well as I, and the four contributions to the free
energy at every point in a specified temperature-volume
grid, the general area of applicability of this model can
be determined.

B. Method of Calculation

At each temperature and volume the free energy is
minimized with respect to the relative concentrations
of all the independent species assumed to be present in
the system. The conditions of charge neutrality and con-
servation of each kind of nucleus reduces the number of
independent particle concentrations to X=N—(4+1),
where IV is the total number of species assumed present
and 4 is the number of different nuclei. In the electronic
partition function, the energies and the number of states
are dependent on the average volume per particle. Also,
in the electrostatic free energy the ionic radii are volume
dependent through the dependence of the kinetic energy
of a Fermi gas on particle density. Thus, the free energy
has a complicated concentration dependence. For this
reason the minimum value of F is found most con-
veniently by a direct search in a finite grid of the in-
dependent concentration variables. A 704 code was
developed to do this for specified temperature-volume
points. A systematic search over each grid size is made
by varying 1 through X concentrations simultaneously
in turn. Then, by repeatedly decreasing the grid size,
a minimum value of F with an accuracy of 1 part in 10°
is obtained together with the composition corresponding
to this minimum. This, then, is the equilibrium compo-
sition of the system.

Once the free energy and equilibrium composition of
the system are obtained for a given temperature and
volume, the pressure and entropy of the system are cal-
culated to a precision of 0.19, in the same code by a
three-point numerical differentiation from the
relationships

oF oF
P=—(—) and S=—(— )
aV Ny T aT NV

where the NV; are the equilibrium concentrations of the
N species present. Then the internal energy, E=F4TS,
the Gibbs free energy, 4 =F4PV, and the enthalpy,
H=E+-PV, are all directly calculated.

C. Specific Application of Model

The model just described has been applied to the cal-
culation of the properties of a multicomponent system
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arising from a hydrogen molecule. Six species were as-
sumed to be present: Hy, Hy*, H, H-, H*, and free elec-
trons. In the calculation of F the energies of the two
stable states of both Hyt and H~ were used. Of the infi-
nite set of bound states possible for an isolated H atom,
only 37 states are bound in the maximum size spherical
box considered in this calculation, i.e., a specific volume
of 4X10~2 cc/molecule. For Hy we included the two
Rydberg series of singly excited states which terminate
in the two stable states of Hy*. In addition, all doubly
excited states with energies between the ground states
of these two series were included.

As noted previously, the energy of a hydrogen-like
orbital is known exactly as a function of the volume
of a confining sphere. For the other species an ap-
proximate relationship between bound state energies
and volume was used. The electronic energy of each
state was represented as a sum of the energies of one-
electron hydrogen-like orbitals with different effective
nuclear charges. These were chosen to reproduce the
excitation and ionization energies of the isolated species
when these were known. In the remaining instances,
the energies of the isolated molecules were estimated by
interpolation. For many excited states, molecular con-
stants used in the rotational and vibrational energies
were also estimated by interpolation. Appendix IT gives
the details of these procedures.

For the electrostatic free energy, F4, the ions, protons,
and electrons were all treated as single particle charges
with the same pairwise distance of closest approach.
The total free energy was minimized in a grid of four
independent concentration variables for a given set of
temperature-volume points. The calculations cover the
temperature range 0.025<7<100 ev; and the volume
range 0.1 to 12 000 cc/g.
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T16. 1. Schematic representation of the behavior of H, system.
kT is given in ev, and V in cc/g. The normal solid density of H.
is 12 cc/g.

III. RESULTS

A. Regions of Importance of the
Partial Free Energies

Figure 1 is a schematic representation of the behavior
of the H, system over the entire v-T region considered.
Table I explains and defines the meaning of the Roman-
numeral designations of the figure. To define the regions
of Fig. 1, we arbitrarily label free energy contributions
of less than 19, as negligible, and greater than 109 as
strong. If a quantity other than the free energy had
been used as a basis for comparison, somewhat different
definitions would apply. It should be noted that there
is no region of a perfect quantum gas and in all regions
except the one that is called metallic, Coulomb inter-
actions are more important than electron degeneracy.

TaBLE 1. Interaction regions of Fig. 1.

Region Description Definition
I Perfect classical gas of point |AF:| 2 |AFs| P | Fy] <0.01| Fy|
particles
II Classical gas of interacting 10> | F4| >1°; | Fs|, | AF;| negligibled
point particles
I Classical interacting gas with 10> | F4|, | AF:| >1; AF; negligible
internal degrees of freedom
v Quantum gas of interacting point 10> | F4|, |AF3| >1; AF; negligible
charges
\% Quantum gas of strongly inter- |F4| >10; 10> |AF3| >1; AF; negligible
acting point charges
VI Highly degenerate gas of strongly | Fs|, |AF3| >10; AF; negligible
interacting point charges
VII Metallic. Comparable potential | F3|=2| F4| ; F1, AF: negligible
and kinetic free energy
VIII Molecular solid | AF,|largest; F1, Fy, AF; negligible
IX Perfect classical gas with internal 10> | AF,| >1; F4, AF; negligible

degrees of freedom

a Included in F: is a factor 15.833 N1 which is just a correction for the zero of energy from isolated protons and electrons to the ground state of the Hz
molecule. In calculating the contribution of the electronic vibrational and rotational states to the free energy, this factor is subtracted.

b F3 is the total kinetic free energy of the electrons. To determine the effect of the quantum statistics only the difference in the value of F3 for classical
electrons and the calculated value is significant, i.e., AFs=F3 —F3 (classical). It is the magnitude of AF3relative to F1 which is used to determine the degree
of degeneracy of the electrons. The spin degeneracy of the electron remains in the classical limit and is hence not included in the quantum effect.

¢ The range of value of the F’s are given in percent relative to |F1], the classical kinetic free energy.

d Negligible means <1%, of |F1]|.
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TF16. 2. Schematic representation of composition variation.
“Ions” refers to protons and electrons. “All atoms+molecules”
refers to He, H, Hy™, and H~.

B. Composition Variation

Figure 2 illustrates the composition variation with
volume and temperature. The most striking result of
this model is the effect of particle density on the degree
of ionization. The system is completely ionized for all
temperatures at infinite volume. If the bound state
electronic energies were independent of volume, then
the number of free electrons would decrease mono-
tonically as a function of density. This would occur
since the free electron translational energy increases
and the number of states per energy interval decreases
as the density increases. However, with this model, the
bound state energies also increase with density and the
number of bound states decreases due to the confine-
ment distortion of the bound state electronic wave
functions. Thus, at some density, free electron states can
once again be favored relative to bound states and the
percent ionization can increase with density. We do
indeed find this behavior characteristic of “pressure
ionization”. The percent ionization increases from in-
finite volume to a minimum at some finite density where
it then increases to complete ionization at large density.
The present model for the volume dependence of the
bound electronic eigenvalues predicts that there can
be no bound states at any temperature for volumes
smaller than fifteen-fold liquid density (0.8 cc/g). At
higher densities, we have a totally ionized plasma. For
low temperatures, i.e., T<7 ev, total ionization occurs
as a nearly discontinuous increase in the degree of
ionization with increasing density. This is most extreme
for T=1 ev where we have nothing but H, molecules
and H atoms up to almost fifteen-fold liquid density
and complete ionization at slightly greater density. For
the range T'=1.5-5 ev there is a gradual decrease in
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ionization to zero with a nearly discontinuous rise from
zero to complete ionization. At T=6 and 7 ev, there is
a gradual decrease in ionization but the minimum per-
cent ionization is not zero. The rise from the minimum
to complete ionization is still almost discontinuous.
Finally at 7> 8 ev, there is a smooth decrease in ioniza-
tion to a minimum with a smooth increase to complete
ionization. The higher the temperature the larger the
minimum amount of ionization and the lower the
volume at which complete ionization occurs. Finally at
T> 350 ev there is complete ionization for all densities
studied.

Figure 3 illustrates the effect of density on the degree
of ionization in these various temperature regions. It
is believed that the discontinuity which occurs at the
lower temperatures is the result of the omission of larger
clusters of subsystems. With the present model an elec-
tron is either free in the entire system or it is bound in
a 2, 3, or 4 particle sybsystem. Forced to maintain one
or the other of these rather extreme distributions, the
system as a whole has no way of freeing electrons in a
continuous manner. The presence of pseudoparticles of
the type: H,** with »>3 and #>2>0 which free one
electron per fraction of nucleus and in which bound
electrons are not severely localized, would allow a more
gradual transition from molecules to ions. At higher
temperatures, due to ionization and dissociation, the
presence of such large systems would be negligible. This
fact accounts for the smooth variation of the number
of free electrons with density, obtained for 7> 8 with the
present system. .

The degree of ionization as a function of temperature
is also affected by the description of the bound states.
The number and energy of the bound states depends
not only on total volume, but also, through particle
density, on temperature. Since the number of particles
increases with temperature, the energy of the bound
states increases and the number of bound states de-
creases as the temperature is increased at constant
volume. Thus the ordinary temperature effect on ioni-
zation is enhanced. This takes place continuously for
compressions below four-fold liquid density, where the

T T T T U

i 1 1 1 1
104 ’ 10° 10" 10°

10
Vice/g)

F16. 3. Volume dependence of the degree of ionization.
N.=2 corresponds to 100%, ionization.
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degree of ionization is a smoothly increasing function
of the temperature. At two-fold liquid density the last
of the bound states for H~ disappears, but since this is
always present in trivial amounts it has little effect on
the rate of ionization. At four-fold liquid density, the
ground state of the H atom disappears at 7=8 ev. At
T=9 ev, the last bound states of H, and Hs* disappear,
giving complete ionization. This leads to a rapid, con-
tinuous rise in the number of free electrons from 259
of all electrons at T'=7, to 729, at T=38, to 1009, at
T=09. At eight-fold liquid density, the last bound states
of all species disappear together at T'=5 where the
number of free electrons rises abruptly to 1009, from
a negligible 0.759, of all electrons at 7'=4.5. For higher
densities there is complete ionization at all temperatures.
These rapid changes are the coincidental results of the
increase in particle density with temperature and the
increase with particle density of the bound state
electronic energies. The resulting abrupt composition
changes resemble phase transitions, but no physical
meaning can be attached to them on the basis of this
calculation.

C. Discussion and Evaluation of Results

At all volumes and temperatures for which the com-
position and free energy were calculated, the entropy,
internal energy, enthalpy, Gibbs free energy and pres-
sure were also obtained. The reliability of these results
is better measured by the accuracy of the pressure than
the free energy, since the volume derivative is more
sensitive to the deficiencies of the model and does not
contain the arbitrary constants of the free energy. Our
estimate of the accuracy of the calculated pressure is
summarized schematically in Fig. 4. This estimate was
made by a qualitative theoretical analysis of the limi-
tations of the model and by comparisons with both ex-
perimental data and other theoretical calculations.
Qualitative information concerning the limitations of
the calculation was obtained by comparing our approxi-
mate model with the more exact considerations provided
by quantum statistical theory. This information was
used together with the numerical results to define
regions of reliability of the model. For example, com-
parison with exact theory might indicate that Coulomb
interactions are poorly represented by our model. The
results delineate regions of strong Coulomb interactions
thereby allowing us to define regions of questionable
accuracy. Because of the lack of other independent
data, it happens that for a large portion of v-T" space
this process affords the only available means of evaluat-
ing the results obtained.

1. Limitations of the Model

In a rigorous derivation of the equilibrium properties
of a hydrogen plasma, one considers a two-component
system of electrons and protons which experience only
Coulomb interactions. All possible combinations of
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simultaneous interactions among them would be evalu-
ated. Because an exact solution of this problem is ex-
tremely difficult, much effort has been spent in develop-
ing approximate methods involving various expansions
of the potential. In these expansions an attempt is made
to find systematic groupings of the interactions between
the particles based on the kinds of particle groups one
expects to be important. One convenient classification
of these groups is into bound or unbound systems. A
group of particles is considered bound if there is a high
probability that the distance between any two particles
in the group is small compared to the radius of a sphere
containing a mole of such groups. A group is unbound
if any two particles in it have a high probability of
being separated by a distance comparable to the radius
of such a sphere. If we do not restrict the number of
particles in these groups then we get a complete de-
scription of the system, in which Coulomb interactions
alone occur. However, in this calculation we consider
only the groups symbolized by H,, Hst, H-, H, H*,
and ¢, in the hope that these groups represent the most
important bound state systems. By including the elec-
tronic, vibrational and rotational energies of these
species, we are considering to some approximation the
Coulomb interactions between the fundamental par-
ticles which resulted in the formation of these systems.
In order to describe the unbound states of these groups
and to account for the interactions of larger groups of
fundamental particles, we have introduced several
further approximations, some of which involve non-
Coulomb interactions. There are also approximations
in our description of the bound states of Hy and Hyt.
We assume the separability of electronic, vibrational
and rotational energies, we use the cutoff harmonic
oscillator and rigid rotor models for molecular vibration
and rotation, and we use only approximate electronic
energies for the excited states of Hy. These approxima-
tions are most significant in regions VIII and IX of
Fig. 1, where mostly atoms and molecules are present.



1838 HARRIS,

Another approximation in the calculation is the use
of the Debye-Hiickel model for the collective Coulomb
interactions of the four charged species assumed present.
As is well known, this approximation is accurate only
in the limit of low charge density and high temperature.
Moreover, when both the electron degeneracy and the
Coulomb interactions are significant, there are addi-
tional errors due to the breakdown of the classical sepa-~
ration of kinetic and potential energy, and the neglect
of quantum effects due to the wave nature of the elec-
trons and the Pauli exclusion principle. No attempt has
been made to include exchange effects. However, we
make a crude correction for the dependence of the po-
tential energy of the electrons on their kinetic energy,
and thereby for diffraction effects, through our inter-
pretation of the cutoff radius in the Debye expression.
Since the Debye result with zero ionic radius is re-
covered in the limit of infinite charge density, the
Coulomb interaction energy is given accurately only
when this energy and the electron degeneracy are both
small as in regions II, III, and IV of Fig. 1. It should
be progressively worse, the greater the charged particle
density at a given temperature and the lower the tem-
perature at a given density, i.e., the order of error in
the regions of Fig. 1is V<VI<VIL

In any model which, like the present one, includes
only a few of the possible bound state systems, it is
necessary to approximate in some way the Coulomb
interactions of the remaining groups of particles. Part
of this is accomplished by the use of the Debye model
for the simultaneous interaction of all the charged
groups present. To approximate the remaining inter-
actions among the subgroups to form larger groups,
one common method is to assume some form for the
potential of interaction which is a function of the con-
figuration of the subgroups considered as point parti-
cles. This approach is inexact since the energy of the
entire group is not uniquely defined by the configura-
tions of the centers of mass of the individual subgroups.
However, this should lead to a reasonable description
of the system in density-temperature regions where the
dimensions of the individual bound state systems are
small compared to their center-of-mass separations.
This method then can describe only weakly attractive
or repulsive forces, neglecting completely bound states
of the larger groups. The present calculation approxi-
mates the interactions between the small subgroups by
a density-dependent spherical confinement of the bound
electrons of each group, which leads to a perturbation
of their energy eigenvalues. We have, then, nothing in
our model which corresponds to weak attractive forces,
such as Van der Waals forces. In addition, we over-
estimate the repulsive interaction by the extreme con-
finement of the bound electrons in a hard-wall sphere
whose volume is equal to the volume per group. How-
ever, the model does give a qualitatively correct descrip-
tion of the effect of density on the electron distribution.
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As the individual subgroups approach one another,
they interact in such a way as to cause a redistribution
of electrons resulting in delocalization. The reason for
this is that a forced confinement of the electrons in-
creases their kinetic energy more rapidly than their
potential energy. Thus the minimum energy configura-
tion subject to the density constraint must be associated
with the maximum possible delocalization. This de-
localization is synonomous with the loss of identity of
the small subgroups. In the present model, we have
allowed for the disappearance of the subgroups by a
gradual decrease in the number of bound states. A
bound state is no longer counted when its energy has
increased to zero. This criterion is roughly equivalent
to the exclusion of a state when its average volume
exceeds the volume per group. While this gives us a
qualitatively correct description of the density effect
on the number of free electrons, our quantitative re-
sults are likely to have significant error due to our
crude approximation of the energy-volume dependence.
The approximation should be most reasonable when the
perturbation due to the surrounding groups is small.
Thus it should be valid over much of region VIII and
IX of Fig. 1 but becomes poorer as the density increases.

2. Comparison and Discussion of Results

(a) For a gas at normal volume down to a tenth of
liquid density, it is believed that the calculated pressure
is good to within a few percent in the entire temperature
range studied. This estimate is based on the following
considerations: .

(1) There is agreement with experimental heat ca-
pacities and pressures from the 7=0.025 points at these
volumes.® Since only H, molecules are present at this
temperature, this indicates that the model provides a
reasonable description of the rotational and vibrational
degrees of freedom. As a further test of the treatment
of vibration, the harmonic oscillator eigenvalues were
replaced by those obtained from a Morse potential.
This change had almost no effect on the pressure and
heat capacity, indicating that the detailed description
of the vibrational states is not a significant factor in
determining the results. This result, plus the fact that
a previous calculation* with no cutoff gives very differ-
ent answers shows that the counting of the vibrational
states is much more important than their exact eigen-
values. Also, since we find that H, dissociates mainly in
the ground electronic state, errors in our estimates of
the excited states of H can not lead to significant error.

(2) The electrostatic interactions never exceed 5%,
and the system is always classical in this region so that
the Debye approximation is likely to be fairly accurate.

It seems that at present this method gives the only
reasonable description of a multicomponent system in

§ Experimental values taken mainly from International Critical

Tables (McGraw-Hill Book Company, Inc., New York, 1928),
Vol. I11, p. 5.
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this region. The Thomas-Fermi statistical model” is in-
applicable for a dilute gas and the more rigorous dia-
gram expansion methods have not made much progress
as yet in regions where two-, three-, and four-particle
bound states make the most important contributions to
the properties of the system.! At temperatures where
the system is completely ionized, so that existing dia-
gram techniques can be applied, it is also a perfect
classical gas and hence of little interest.

(b) As the density is increased at T=0.025, from a
fifth of liquid density to twice liquid density, the cal-
culted pressures exceed the experimental values by an
amount which increases rapidly from 309, of the ex-
perimental pressure to a factor of 25. Only H, is present
under these conditions, which means that F3 and F, are
zero. Since F; is exact, the error in the pressure is due
entirely to (9Fy/dv), i.e., to the assumed relation be-
tween Fy and v.

It will be recalled that the energy of a hydrogen-like
orbital in a spherical box is almost unperturbed by a
change in the radius of the box, down to a small radius.
The energy then increases rapidly over a very short
interval, producing a similar increase in the magnitude
of Fs. Since the population of excited states is always
small, this contribution to Fs is due almost entirely to
the volume dependence of the energies of the /s orbitals.
Furthermore the contribution to F, from the ground
states of Hy, Hyt, H-, and H is proportional to the
number of bound groups, being otherwise independent
of temperature. Therefore, since the number of bound
groups decreases with increasing temperature and other
contributions to the pressure increase, both the relative
and absolute magnitude of the error in the pressure
caused by this aspect of the model goes down as the
temperature rises.

At these densities and 7'=0.25, the experimental
evidence indicates that the interactions of bound groups
strongly affect the pressure. However, in the same way
that the effect of F5 on the calculated pressure becomes
small, the relative contribution of other molecular inter-
actions to the pressure must also decrease with tempera-
ture. Furthermore, when the system consists mainly of
ions, the contribution of Coulomb interactions to F is
found to be moderate and the system is classical. As a
result of this analysis, a temperature region for this
volume range, i.e., ¥=3—120 cc/g can be estimated
where the error in pressure is less than 109, and another
where the error is further reduced to less than 5%, as
indicated in Fig. 4.

Unfortunately, except for the low-temperature ex-
perimental data and the normal density Thomas-
Fermi-Dirac calculation of Cowan and Kirkwood,?

"N. H. March, Advances in Physics, edited by N. F. Mott

(Taylor and Franc1s, Ltd., London, 1957), Vol. 6, No. 21,
N. Metropolis and J. R. Reltz, J. Chem. Phys. 19 555 (1951),
R. P. Feyman, N. Metropolis, and E. Teller, Phys. Rev. 75, 1561
(1949); R. Latter, Phys. Rev. 99, 510 (1935); 99, 1554 (1955);
J. Chem. Phys. 24, 280 (1956).

SR.) D. Cowan and J. G. Kirkwood, J. Chem. Phys. 29, 264
(1958).
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TaBLE II. Comparison of Cowan-Kirkwood (CK) and present
calculation H; at normal liquid density.

AT
PV/RTN_ 100 70 50 30 20 10

CK 20 190 1.80
Present 2.0 198 1.96

5
1.40
1.9

[9X)

there is nothing with which to compare our results on
these regions. A comparison with the Cowan-Kirkwood
results in Table II show that our pressures are too high
at the lower temperatures. That the use of orbitals in
a spherical box would lead to excessive pressures was
obvious from the outset. While we were interested to
discover quantitatively the error incurred, the model
was used mainly to achieve pressure ionization in a
simple way, and for correct physical reasons.

(c) Four- and eight-fold liquid density are special
volumes in this calculation since complete ionization
occurs as the temperature increases due to the increase
in particle density beyond a critical value. These are
abrupt changes similar to phase transitions and give a
discontinuity in the pressure. At temperatures lower
than those required for ionization, the pressures are
much too high, due again to the erroneously large de-
pendence of the bound state energies on volume. After
ionization, the contribution to the pressure from the
Coulomb interactions increases drastically. This is the
only region where the quantity @/R’ becomes greater
than one. The results at these volumes are not to be
trusted until the potential energy has again become a
moderate fraction of the kinetic energy. For v=3 this
means a minimum temperature of 10 ev and for v=1.5
a minimum temperature of 15 ev. The results of a
Thomas-Fermi’ (TF) calculation are better than ours
at the lower temperatures for these volumes. Their
pressures at zero temperature are still higher than ex-
periment, but lower than ours. The TF results continue
to be lower until 5 ev when ours become lower and stay
lower even at 100 ev. This latter comparison indicates
that our estimate of the interaction pressure is larger
than that in the TF model.

(d) In the region of complete pressure ionization,
v<0.8 cc/g, the results are very poor at lowand moderate
temperatures. This is a region of extreme degeneracy
and large interactions. Hence the neglect of quantum
diffraction and exchange effects and the use of only the
Debye term, with a cutoff ineffective for complete
ionization, severely limit the applicability of the model.
Table III gives a comparison for v<0.4 and zero tem-
perature of the results of Gell-Mann and Brueckner,®
the present calculation, and a TF calculation. If the
more rigorous Gell-Mann and Brueckner results are to
be taken as most accurate in the region of convergence
of their series of terms, then it isapparent that our model
severely overestimates the electrostatic interaction

9 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).
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TaBLE III. Comparison of high-density zero-temperature results of Gell-Mann and Brueckner (GMB).

v(cc/g) =0.4(r,=1.0)2 2=0.24(r,=0.865) 2=0.1(r,=0.644)
Calculation K.EP P.EP Pe K.E. P.E. P K.E. P.E.
Present 28.86 —28.18 1.47 40 —39.5 3.6 72.5 —70.5 17.6
GMB 28.53 —10.89 9.21 40 —15.8 25.8 72.5 —20.0 120
TFD 21.97 59.4 306

a 75 =ro/a, where 7o is the volume per electron and g is the Bohr radius.
b Kinetic energy and potential energy in units of electron volts.
¢ Pressure in megabars.

while the TF model underestimates it. Any improve-
ment of our model in this region must come from a con-
sideration of quantum effects on the Coulomb inter-
actions in the completely ionized plasma. In this region
the usefulness of our model is extremely limited and the
more rigorous calculations have made the most progress.
At temperatures where the Coulomb interaction is
again a small part of the kinetic energy our results
should again become reasonable. In this high density-
high temperature region our accuracy is comparable to
that of the diagram calculations of DeWitt! on the
partially degenerate completely ionized plasma.

In summary it is felt that progress has been made
in describing the equilibrium properties of a partially
ionized, partially dissociated, multicomponent plasma,
in regions of v-T" space where internal degrees of free-
dom and bound electronic states are important and
in regions of moderate interaction and moderate de-
generacy. Under conditions of complete pressure ioniza-
tion, i.e., high density, low and moderate temperatures,
this model is unsatisfactory. At higher temperatures
where the kinetic energy terms again dominate, our
model, the TF model, and the more rigorous approach
appear to be about equally accurate.

APPENDIX I

The Laguerre polynomials provide energies for each
hydrogenic state at a discrete set of radii of the con-
fining spherical box. These radii correspond to integral
values of the principal quantum number, #. For the
lowest energy states no energies can be obtained for
finite radii greater than a few angstroms. Nevertheless,
except for the ground states of each species, we have
used only the discrete data afforded by the Laguerre
polynomials together with the energy value at R= oo,
to determine a smooth variation of the energies with R:

Ei(R)=13.595(Z2/n?)
X {1—exp[ai(Roi/ ZriR—ZriR/Re:) 1},

where Ej;=energy of the ¢th bound state of the kth
species in spherical box of radius R, Z;;=effective
nuclear charge of the ith state of the kth species, Ry
=the radius at which the energy of ith state of the H
atom becomes zero, a;=a constant for the ith state
of the H atom, and #,;=principle quantum number of
the 7th state of the H atom. For the ground states,

zeros of the more general hypergeometric functions
were used? to determine more accurately the energy-
volume relationship for large radii. This leads to a dif-
ferent dependence of E on R:

Er1)=13.595Z; 3y2[1 — X~ (a+sX)7

where ¢ and b are constants, 2 and 1.16 respectively,
and X=Z;R/Ro:. This more exact expression for the
energy of an H atom in a box then gives a smaller
perturbation for large R, and a larger value of (dE/dR)
for box sizes near the region of applicability of the
Laguerre polynomials. The more exact relationship was
applied only to the ground states since it was thought
that before excited states became appreciably populated
atoms and molecules would no longer be a significant
part of the composition. This is certainly a good ap-
proximation for the molecular states and is least true
for the states of the hydrogen atom.

APPENDIX II

Each electronic energy was expressed as a sum of
atomic hydrogen-like terms having various effective
nuclear charges, with one term for each electron present
in the molecule:

Eni= - f(Zri,R) T f(Zi\R),
n; i

where the f’s represent the volume dependence de-
scribed in Appendix I. We now give some examples of
the procedure used to determine the values of the
effective nuclear charge Z;; for various states.

For the 1so state of Hy™ we set

—13.59522(Hs+, 150) /n1s2= e(Hyt, 150) = — 15.377,

where e(H,",150) is the known electronic energy of the
1so state of Hyt+ relative to the fundamental particles
at infinite separation.’® Since n,=1, we get

Z(Hs*,150) = (15.377/13.595)} = 1.0976.
For the (1s0)? of Hy we set

13.59522(Ha,150)
2[__“_*;___,,_4]: e(H,, (150)?) = —31.925
1

10 G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950), 2nd ed.
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and obtain
Z(Hs,1s0)=(31.925/27.190)%= 1.0830.

The calculation of Z(H™,1s%), etc., exactly parallels
these examples.

For the Rydberg series starting with the (1se,2s0)
state of H, and ending in the 150 state of Hy*, the eigen-
values were taken to be

E(Hz; 1so,n)=E(Hy", 1s0)+£(,n),

where 7 is the principal quantum number for any one-
electron excited state. Application of this expression to
the (lso,250) state of H, gives an electronic energy of
—19.78 ev, while the experimental value is —19.26 ev.
To obtain the corresponding vibrational and rotational
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constants we used the expressions

Do(Hy; 1so,m) = (1—n"2)Dy(Hyt, 1s0) 41 *Do(Hy, (155)?),
W (Hg; 1so,n) = (1—n2)W (Hyt, 1s0) +n2W (H,, (150)2),
B(H;; 1so,n)= (1—n"2) B(Hst,1s0)+n2B(Hz, (150)?).

These expressions give W=0.350 ev, B=4.66X10"% ev
for the (1so,2s0) state of H, in comparison with the
experimental values, W=0.321 ev, B=4.05X10"% ev.
The experimental value of Dy for this state is not
available.

As suggested by Teller’s work on Hyt," only one other
Rydberg series appears in the calculation. The series
begins with the (3do,4sc) state of H; and ends in the
3do state of Hyt. The calculation of electronic eigen-
values and vibrational and rotational constants for
these states follows exactly the procedure just given.

1L E. Teller, Z. Physik 61, 458 (1930).



