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Statistical Mechanics of Liquid He'f*
RYOICHI KIEIICHI, f. HARRY H. DENHAN, AND CHARLEs L. SCHREIBERIl

Department of Physics, 8'ayne State Un& ersity, Detroit, Michigan

(Received May 4, 1960)

The partition function proposed by Feynman for liquid He, based on his path integral method, is
evaluated for a simple cubic lattice considering long-range permutations as well as nearest-neighbor
permutations (to which the previous analysis by one of the authors was restricted). The result indicates a
second-order phase transition at the X point. The marked improvements over the previous treatment are:
(1) the specihc heat behaves as T' near absolute zero, (2) the specific heat peak is more pronounced at
the X point, and (3) when triangles are added as possible finite polygons above T&, the specific heat just above
Tz increases over the previous result, showing an improvement. Equating the theoretical A. point with the
experimental, a value for the effective mass of a helium atom about 1.6 times the normal mass is obtained.

1. INTRODUCTION

A PPLYING his path-integral approach' to quantum
statistical mechanics, Feynman' ' has shown that

the partition function of a system of He4 atoms can
be written in a form equivalent to that for a group of
atoms of effective mass m' in fictitious motion between
various permutations of the helium atoms. Using
certain experimentally known characteristics of liquid
He4, he derived a third-order phase transition between
two liquid phases, and succeeded in obtaining some
other qualitative features of the specific heat curve.
Experimentally, however, the transition at the A,

point is not of third order, and also many properties
of the observed specific heat remained to be explained.

Adopting Feynman's expression for the partition
function and assuming a simple cubic lattice structure
for the liquid, one of the authors, 4 applying techniques
developed earlier for cooperative phenomena, considered
in detail correlation effects between nearest-neighboring
atoms, and found a second-order phase change at the
) point.

The specific heat, as obtained in (I), was based on
the part q of the partition function Q given by Eq. (7)
of reference 3:

Q=q(Ep/1V!)(m'kT/2~5')' ". (1.1)

In (I), the factors following q were omitted in calculat-
ing the specific heat because the main interest was
whether the transition would be of the second or the

, third order, and these factors were believed to be
continuous functions of temperature and to have no
eGect on the order of the transition. If one ignores the

temperature dependence of Es (see Sec. 6), but includes
the effect of T'N~', the specific heat curve of (I) becomes
as shown with the dashed curve in Fig. 6.

Qualitatively, this curve does not behave properly
as T approaches O'K and also just above Tz, since
experimentally the specific heat approaches zero as
T' near O'K, and decreases monotonically as T increases
above the transition point. The present paper treats
correlations between the atoms of the lattice model
more accurately, and derives an expression for the
specific heat which has the correct qualitative behavior
as T approaches O'K and which has improved behavior
above Tq, while preserving the second-order phase
transition.

2. NECESSITY FOR LONG-SIDED POLYGONS

When one applies Feynman's path integral approach
to quantum statistical mechanics, the essential math-
ematical problem is to sum Soltzmann factors over all
possible configurations of polygons in space. ' 4 A
polygon, as will be explained in detail below, is defined
as a closed chain of permutations among atoms of the
lattice. In (I), it was assumed that a side of a polygon
linked only nearest-neighbor lattice points, as shown in
Fig. 1. We call this side, whose length is that of the
lattice constant, a short side. This assumption on the
length of a side was based on mathematical convenience.
Polygons with longer sides are as important as those
with short sides, but were omitted in (I) only because
the inclusion of them was imagined to make calculation
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FIG. 1. Examples
of short-sided poly-
gons in the lattice
model of liquid He4
treated in (I).
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Fio. 2. First set of
pair probability pa-
rameters (simple
cubic lattice treat-
ment) used in (I).

nearest-neighbor distance between atoms in liquid He .
This means the Boltzmann factor becomes much smaller
than unity as the length of a side increases beyond the
nearest-neighbor distance of the atoms, which is
approximately the lattice constant in the lattice model
of Feynman.

However, for a temperature much 1ower than the
observed )t point, eP of (2.1) decreases and the Boltz-
mann factor exp( —eq*/kT) approaches unity even for
large values of l. For this reason the approximation of
(I) becomes poor as T approaches absolute zero. Then
it is clear that the result may be expected to improve
as one includes long-sided polygons in the calculation.
(In this paper a side longer than the nearest-neighbor
lattice distance will be called a long side. )

intractable, and also because the emphasis in (I) was
on the existence of a second order transition point.

This limitation on the length of a side is tolerable
near and above Tq for the following reason. A side
(of a p'olygon) of length I contributes a virtual energy
of3

CONFII3URATION PROSASII ITY WKISHT +.
I
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3. DEFINITION OF PARAMETERS

For the pair approximation treatment used in (I)
the probability parameters shown in Fig. 2 were used.

e)* m'(lk——T)'/2A' (2.1)
SO

or a Boltzmann factor exp( —m'PkT/2h'). Here the
effective mass m' is of the order of twice the actual
mass of a He' atom. It can be seen that el*/kT is about
unity when T is the observed Tz and l is the average 0
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Fro. 4. Point probability parameters (simple cubic lattice).

In order to take into account polygons with longer
sides, the additional parameters defined in Fig. 3 are
introduced, where a broken line indicates a long side.
In these figures, an arrow indicates the direction of
permutation. At a triangle lattice point Q a long side
meets a short side. An open circle O is a lattice point
where two long sides meet. In counting P, in Fig. 3,
the two different directions for a long side (when
there is no arrow attached to it) are not counted.
For long sides, ————or ———~, neither lengths nor
spatial directions are specified. The configurations for
one lattice point are shown in Fig. 4. Only x& x2, and
xs were used in (I).

I.et g~ be the total number of long sides of length /

in the system. It satisfies the following relation

"iS

20
&max

X(6x4+ms) =8, —— (3.1)

VIS

Fxo. 3. Second set of pair probability parameters. —+ is a short
side. ——-- or ————+ is a long side. & connects a long side
with a short side. Q is a lattice point between two long sides.

where c is the lattice constant of the simple cubic
lattice and X the total number of lattice points (atoms)
in the system. Since the need arises 1ater, the quantity
N, which is the total number of long sides, is dehned in
(3.1). The factor 6x4+xs comes from the consideration
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that a con6guration in which a long side comes into
a triangle point and a short side goes out has the
probability x4 and weight 6, and a circle lattice point
has the probability x~ and weight unity.

Using these parameters, the virtual energy E* of
the system becomes

E*=3Ne,*(2y4+50ys+20yr, +2y,s)+ Q eg*Ng. (3.2)
l&c

(o)
~ p ~ ~ ~

1i

~ ~ 6 ~ && ~ ~ ~

p ~ ~ ~ 6 ~ ~ ~

e Q o o ~ ~ ~ ~

~ Z. = 3 ' ~ ~

Here the erst term comes from the short sides and the
second from the long sides.

Brush' has emphasized that the virtual energy for a
double-sided polygon is different from twice the value
for a single side. This difference is not taken into account
in the present paper, however, in order not to complicate
unduly the mathematics, since the main object of the
present work is to discover the effect of adding the
long-sided polygons.

4. COMBINATOMAL FACTOR

Using Pigs. 2 through 4, one may extend the com-
binational g factor of Eq. (5) of (I) and write for a
system of X lattice points:

g=LII (*'N) '3'I II 6*N)"'j 'N' ' (41)

Pro. 5. Methods
of constructing poly-
gons of long and
short sides. (a) Short
sides only. (h) Long
sides added. (c) Al-
ternative pattern for
the added long sides.
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G=gF, (4 3)

where F comes from distributions of long sides over a
pattern like Fig. 5(a).

The factor I' is calculated in terms of X~ in the
following way. I.et N& be the total number of lattice
points of the type Q or 0 which can be reached by an
arrow of length l starting from a lattice point Q or Q
in Fig. 4. (As is seen in Fig. 4, either A or Q can be a
starting point for a long side. ) In actuality, N& varies
from point to point, but it is assumed that X~ is the
same for every point & or O. Then, on the average,

Ng ——(6x4+xs)Ngi", (4.4)

where E~&" is the number of lattice points which lie at
a distance l from a certain lattice point. E~&'& is a

~ S. G. Brush, Proc. Roy. Soc. (I,ondon) A242, 544 (j.957);
A247, 225 (1958).

But in the present case this is not the correct weight
factor, because con6gurations of long sides have not
been included. This point will be clari6ed by the follow-
following illustration. Equation (4.1) counts only the
skeletons like Fig. 5(a). When one draws the long
sides on it, there are many possible configurations;
two of these are shown in Figs. 5(b) and (c). In other
words, when the factor q of (1.1) is written in the form

V=G((x'} (r') P~))
XexpI —E*({x) (y } (N~))/kT j (4.2)

the weight factor G is now given by

N)~—1

I'tr= (Nir!) ' II (N v)'NEg/N. —(4.6)

The division by E~& I arises because the anal con6gura-
tion is independent of the choice of the order of Et~
sides.

purely geometrical quantity and a few examples for a
simple cubic lattice are N~&') = 12 for /=&2c, and
N~i') =8 for f=v3c.

Suppose a distribution such as is shown in Fig. 5(a)
has been completed and now the long-sided polygons
are to be filled in. The total number of long sides to
be drawn is N. We may draw the long sides in the
following way. First we draw Sr& long sides of the
length /~, then E&2 sides of the length /2, etc. The
number of ways, I't~, of drawing Xi~ long sides of the
length l~ is counted as follows. The number of ways of
drawing the first long side is NNE~, because there are
N lattice points from which the side can begin and for
each of these points there are Nit points where it may
end. For the next long side, the number of available
lattice points where it may begin is now N—1 and for
each of these points there are Ntr(1 —1/N) possible
end points on the average, so that the number of ways
of drawing the second long side of length /t is (N 1)—
XNi&(1—1/N). Similarly, for the (v+1)th long side
of length /&, the number of ways of drawing it is

(N—v)Nip(1 —v/N). (45)

Thus I'&~ becomes
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Fis=(Nis!) '
V=N )1

(N u) 'N—is/N. (4 &)

The total number of ways of drawing all the long sides
can be obtained by multiplying together the factors I'l;:

i l&c

For the number of ways Fl& of the drawing Sl2
sides of the length /2, the available number of lattice
points to start with is X—El1 so that

N l,+N ~,—1

is a dimensionless quantity proportional to the tempera-
ture. X in the last term of (5.4) is the Lagrange multiplier
for the condition (3.1). This F in (5.3) is a function of
the probability parameters (x;), (y;), and (Ni), and
will be minimized with respect to these parameters.

F is separated in (5.3) so that N& appears only in F'.
First F or F is minimized with respect to El, with the
result

Ni Ni e——xpf —rP/c' —(X+1)j. (5.6)

The multiplier X is determined from Eq. (3.1) and (4.4)
as

lmax

lmax

&&exp( —N InN) II (Ni) '. (4.8)
l&c

e~+'=N ' P Nile& exp( —rP/c').
l&c

(5.7)

e"+'=N '( P P P expL —(eis+Nss+n ')rj
n1, n2, n8=—co

1V iiei was defined below Eq. (4.4). Its meaning allows
This expression multiplied by g of (4.1) gives the desired one to transform (5.7) into
G factor as shown in (4.3). Using Stirling's formula
and taking the logarithm, it follows from (4.8) that

lmax

InF =N InN —N+ P Ni(lnNi —Indi). (4.9)
l&c

5. FREE ENERGY

—1—6e '} (5.8)

where mr, res, and es are integers. (Notice that a simple
cubic lattice is assumed for this expression. ) Using the
de6nition of the 83 function':

For the lattice model treated here, the free energy is
expressed as follows: 6s(x; e ') = P exp( e'r+27—riex), (5.9)

F= kT In(ICslV—! '(m'kT/2vrh')'~ (Is

+E*—kT lnG, (5.1)

where the erst term is due to the coeKcient of g in
Eq. (1.1), E* is given in Eq. (3.2) and G in (43).
Ep is a function of temperature for which Feynman'
derived the relation

Xs——V"/Vs,

where V is the volume of the system and V~ is the
"free volume" for the E atoms in the system. As long
as the system remains liquid, it is expected that Ep
will not change much.

The F in (5.1) may be written as

F/kT

=—I nELsN!'(m'kT/2mb')' "j
+3Nr (2y4+50ys+20y»+2yis)

one can write (5.8) as

B=Nc"+'=(8s(0; c '))'—1—6s ' (5.10)

+ (6x4+xs)L —In(6x4+xs)+1 —lnBj. (5.13)

When (5.6) is satisfied, one can write (5.4) as

F'/kT = —N InN —XN. (5.11)

Equations (3.1) and (5.10) transform this into

F'/kT= N (6x4+xs)(—ln(6x4+xs)+ 1—lnBj. (5.12)

Then (5.3) becomes

F/Nk T= —InL (Es/1V ~)"~(m'k T/2W') &$

+3r (2y4+SQys+20yi, +2y, s)

5 19—5 P n;x; lnx, +3 P P,y; lny;

6 18—SN Q a;x, Inx~+3N Q P,y, Iny, +F'/kT,

where
lmax

F'/kT= Q rNiP/cs —NlnN+N
l&c

lmax lmax

—Q 1Vi(lnNi —InlVi) —X(N—Q Ngj, (5.4)
Cs(x; e ') = (rr/r)1 Q expL —s'(x+e)'/r j, (5.14)

This is a function of x; and y; only, since X& has been
(53) eliminated. The next step is to minimize F in (5.13)

with respect to the independent x; and y;. Before doing
this, it is worthwhile to write another form of the
function B. Using an alternative expression for the
3 function':

l&c

r=m'c'kT/2A'

l&c
6 See, for instance, E. T. Whittaker and G. N. Watson, Modern

Agalyss~s (Cambridge University Press, Cambridge and the
McMillan Company, New York, 1946), Chap. 21.
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one transforms (5.10) into

B= (gr/r)&{L Q exp( —gr2722/r) js

(s.1s)

This expression is particularly important when one
discusses the behavior of the system near O'K.

0. MINIMIZATION OF FREE ENERGY

The next procedure is the minimization of F, Eq.
(5.13), with respect to the independent probability
parameters. Among the parameters x; and y; defined in
Figs. 2, 3, and 4, there are the following relations:

sg (&5&10)

sip ——ss(a —5)',

Z11 Z2Z9)

Z12 Z2S1P)

Z13 SSZQ)

Z] 4 Z5S1P)

S1$ S9 )

S16—Z9Z] p)

si7= (sssio)'*~ ',

S1s=zipe

S19 S1P ~

1=xi+6xg+30xs+12xs+xs,

xi=yi+syg+ 20ys+ 10yg+yio,

xg y2+Sys+2oys+ My»+ylg ys,

xs=ys+sys+20y7+ 10yls+yis sys+yi7,

ys=yg+Sy»+20yis+1oyis+yis= Sy17+yi8,

xs= yip+sy»+ 20yi4+ 10yis+yig.

When these results are substituted in (5.13), F
becomes

ap J"
8= — = +kT—B—lnKp/BT+2Nk

BT T
Out of the 24 quantities x; and y;, 15 are independent.

Choosing a set of 15 parameters as independent, one
can minimize the free energy, obtaining 15 higher order
algebraic equations which are then solved simulta-
neously. The details of this mathematical procedure
will be omitted here, but the final equation is the
following for a variable n ..

—3Nkr (2ys+50yg+20y»+2y»)

+NkT(6xs+xs)8 lnB/BT. (6.7)
The energy E is

F.=F+TS
= kT28 lnKp/BT+28NkT

6NkTr(ys+—25ys+ 10yi7+yls)
+NkT'(6xs+xs)8 inB/sIT. (6.8)

ns n4(Be'+3) —ns(Be'+ 14+—2e~)

+sa'(Be~+2+2e~)+5a(Be~+9)+25 0 (6 2

Here n is defined by

(61) F=NkT( —inc (Ktg/N!)" ( 77skT/2 77772)&$

—5 lnxi+3 lnyi+6xs+xs). (6.6)

The entropy 8 is derived from (5.13) by differentiation7:

where
n —=5+ (sip/ss) &,

z, =y;/yi for i= 2,3, ,19.

(63)

(6.4)

ss ——(a' t: ' n se ')/—(a—(a' —5)—)—
S6 Z2S5)

Z7 Zs )

ss=sse ',
(6.5)

After n is obtained from (6.2) the probability param-
eters x; and y; are found from the following relations:

xi= (n —5)/$B(n+1) j,
$2 Z2X] )

$3—SsÃ] )

$4—S9S1)

$5 S1P$1)

y, = (n —5)e'/[Bn(n+1)],
sg ——e—'/n,

Z3 Z2
2

s4=e ")

It should be noted that this is the true energy of a
system, whereas E* of (3.2) is a virtual energy.

In the expression for the energy, the first term
depends on the temperature gradient of Ep. This
quantity Ep has not been fully analyzed, but Feynman
has written it in terms of VN Lsee (5.2)7, which in
turn is defined in Eq. (10) of reference 3 as

p N t p (sN)dNs (6.9)

Here s~ represents the coordinates of the E atoms and
p(sN) is the weight function corresponding to a spatial
configuration s~. In so far as the system stays liquid,
the weight function p(sN) will not depend strongly on
the temperature, resulting in small temperature
dependence for Ep. Because of this presumption and
also because of the lack of detailed knowledge of Ep,
the 6rst term of (6.8) will be neglected hereafter.

The expression (6.6) is not convenient to use here, because if
one uses it, one has to differentiate x1, y1, x4, and x5 with respect
to T also. Equation (5.13) is convenient because it is known that
derivatives of (5.13) with respect to the independent variables
vanish.
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8. ASYMPTOTIC RESULTS NEAR O'K

Using Eq. 515) the asymptotic expressions for
B and 8 lnB/Br near O'K become

B= ( / )'—1—6 "+o( xp( —'/ ))

3
r »B—= ——

C
—,'+—9e-6-re-

Br 2 8

(8.1)

+0(exp (—tr'/r)). (8.2)

6.2 since 8 becomes in n'nite as r & as r(. ),
'

approaches zero, the asymptotic orm
region becomes

(8.3u =Be'+4+0(1/B).
se results into the expressions for x4,S bst gt

or 6.8 under these conditionsfor the energy E o . un er

E NkT=3(1+6e—"—4re ")/2B'+0(1/B'). 8.4

Usin (8.1), one obtains

0
0 r

erature. The solid curve: Sec. 9 of{). h do-d hthis paper. e as. Th d shed curve: previous paper
curve: Sec. 10 of this paper.

'7. THE 2 POINT
g

E/NkT = 21re/(2tr')+0 (r4).

l t T, E varies as T' nearSince is direct y p opo
O'K From (8.5), one obtains t e speci c

(8.5)

C„/Nk = (42/m') r'+0(r'). (8.6
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B is B of (5.15) with ri, replacing r When.
these equations are solve numerica

rg =1.886,

n), = 7.278.

(7.3)

(7 4)

rg = 1.386.
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9. THE SPECIFIC HEAT BELOW' TTHE 2 POINT

the energy and specific heatIn order to obtain the energy eat
between anO'K d the ) point, first 8 of Eq.

D. C. Pearce, R. G. Netze,el and . D.
the Fifth Internateonal Conference on
dlt d h J.D. Dilly (U l

Wisconsin Press, Madison, 19,p.
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FiG. 7. Small Gnite
polygons assumed to
exist above Tq. a:
double-bond, b:
square, and c: tri-
angle.
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calculated for a given value of s., and then (6.2) is solved
for 0,. The probability parameters are calculated from
(6.5). The factor cI 1nB/Br is also evaluated by means
of the expansion (5.15) in the form (1/B)BB/87.
When these results are substituted into (6.8) and the
first term involving E~ is neglected as mentioned before,
the energy E is obtained as a function of the tempera-
ture T. Numerical differentiation of this energy yielded
the curve for the specihc heat at constant volume C„,
which is shown by the solid line between 0 and rz in
Fig. 6. This numerical work was done on the IBM-650
digital computer at the Wayne State University
Computation Center.

io. ABOVE THE 2 POINT

~ Owe

CONFI GURATION
OF A BOND

W6 l6O

256

w SO

SO

W o

PROBABILITY WEIGHT 3;
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(a

As was pointed out in Sec. 7, above the ) point the
preceding treatment leads to exactly the same results
as those of the previous calculation (I), since in both
cases the only polygons assumed to exist above Tz are
the double-sided ones. The larger value of v), found in
this work Lcompared with that of (I)j removes most of
the rapidly ascending portion of the specific heat curve
of (I) just above Tz, as is seen in Fig. 6. Nevertheless a
slight rise in C„above the new Tq still remains. This
result does not agree with the experimental observation
(and the conclusion derived by Feynman') that the
specific heat decreases monotonically above the ) point.

The unsatisfactory behavior of C, just above T&

obtained here is interpreted as due to the fact that all
of the 6nite-sized polygons which are suspected to
exist above Ty are excluded in the treatment except
the smallest ones, i.e., the double-sided polyogons
(which we shall call "double-bonds"). Following this
interpretation, a study of the possible existence of

CONF I GUR ATION
OF A POINT PROBABILITY WE IGHT 7;

V2

FIG. 8. Point probability parameters including point, double-
bonds and triangles only. A dotted line is the hypotenuse (of
length v2c) of an isosceles right triangle.
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Fzo. 9. Pair probability parameters including points,
double-bonds and triangles only.

finite polygons other than the double-bonds was made
for temperatures above T~. In order to secure math-
ematical simplicity, only square and triangular polygons
like those shown in Fig. 7 were introduced. Since the
virtual energies E* of these figures are lower than all
other finite polygons, except a double-sided polygon
between secured nearest-neighbors, their effects wouM
be next in importance to those of the double-bonds at
temperatures above T),. The mathematical treatment
was formulated using a modification of the pair approxi-
niation of the previous sections.

A calculation showed that the square polygons could
Dot exist with thy double-bonds above the transition
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vs= ws+Swg+16w?+32wtg+6wts
=ws+Swg+16W?+32wtg+4w14

(10.1)

v4 =ws+ wg+ 4w to+ 16w1g+ 32wts+ 8w1s
=ws+wg+4wto+16wtg+32wts+6W1?

ws+wg+3wll+6wlg+4w14+gwlg+ 1gwl?+6w18
=ZOyg.

The total equivalent number of short sides of length
e (the lattice constant) is now given by 3X(2W4+32wtg)
since each m~g bound is related to one-half of the four
"equivalent sides" of a triangle. ' Therefore, correspond-

' The virtual energy associated with one triangle is (?a'kgP'/2')
X (2~g+ (v2c)') =4..'.

temperature. A possible explanation of this result is
that the virtual entropy S* associated with the com-
binatorial factor for this symmetrical figure is too low
compared to the virtual energy, and therefore minimiza-
tion of the free energy led to its disappearance.

A study of the system of double-bonds and triangles
was then made with the result that such a system was
found stable at temperatures above Tq. The lack of
symmetry in the triangle perhaps made the virtual
entropy contribution of the figure dominate over its
virtual energy (which equals the virtual energy of a
square). The effects of the existence of such triangles on
the specific heat curve in the high temperature region
will be discussed in this section.

A new set of configuration variables is defined in
Figs. 8 and 9. It should be noted that in this new
system the only existing polygons are double-bonds
and triangles, all larger polygons being excluded.
Although these figures have some configurations in
common with Figs. 2 to 4, the weight factors for the
same configurations are not necessarily equal. For
instance, the weight 24 for v3 in Fig. 8 counts only the
perpendicular arrows which form two sides of a triangle,
whereas the weight 30 for x3 in Fig. 4 includes the two
arrows pointing in the same direction. Because of the
existence of the dotted sides, which represent the
hypotenuses of the right triangles, subtle differences
appear among x», myo, and R]i, among mi2, zvi3, and
+~4, and among +~5, @~6, m~7, and zvi8. For instance, in
zv~o, the dotted side lies away from the bond, whereas
in zv~~ it lies towards the bond. In counting the weight
for zv~~ the configuration in which the double-bond
and the dotted side have a common lattice point must
be omitted.

Among the new variables the following relations exist.

1=vt+6vg+24vs+48v4,

v1=w1+ 5wg+ 16ws+40ws,

vg ——wg+ 5ws+ 16wg+40wg
=wg+ Sws+16ws+32w 1g+6w11

ing to (5.3), the free energy in this case is written as

F/k T= —1nPEeX! ' (??g'k T/2?rh')'~"]

+3/V?(2W4+32wtg) SX—Q y,v; lnv;

+3% P 8,w, lnw;. (10.2)

8=uts~/us,

A = 1+Sug+16us+40us,

E= (48/5+38 '/20)"',

b=40(1—E),
p =40—328—(2/3) &6/84,

d=5 —IC—oE 'I'

f=16(1—8),

g=40—328'—(3/4)g~ 8/8g,

ug= (1 9bus/A)e "—/A,

us —usL1 ugdA us(f+g e)A—

(10.5)

In deriving (10.3), the quantities of order (us/A)'
are neglected with respect to unity. This is justified
since it can be shown that N8 is smaller than 10 '
above Tz, and A is always larger than unity.

The numerical computation is done as follows.
When a set of test values of E, N2, N5 and Ns is chosen, "
(10.4) is solved for 8. Next (10.3) is solved for us.
New values of the parameters in (10.5) are calculated,
and this procedure is repeated iteratively until Ns is
determined to four significant figures.

After these equations are solved the specific heat is
derived as follows. By analogy to (6.8), the energy of
the system is expressible as

E=1VkT$-,' —3r(2w4+32wtg)],

1g The 6rst trial set is chosen by solving (10.3) with all the
terms of order 1/A dropped.

Because of the relations in (10.1), only 11 variables of
the four v's and 19 m's are independent. A set of eleven
of these variables is chosen appropriately, and the
free energy (10.2) is minimized. A set of nonlinear
simultaneous equations is obtained, which may be
written in the following form.

P6+ (9/2A) (f+g 2b+ 1—0d+4p/9 7dg/4—A
—9bd/A)]us&+LS+ (9/2A) (d+2be ")]us

+us&—2e "=0, (10.3)

8"+(»E '"/8+»/2)8'/us —(3/4)"'8'
—3t ugE '?4/32+ (2/3) lus]84/us —3/16= 0, (1().4)

where u, =w;/w1 for i = 2, , 19, and
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where
BJ4=wiug(1 —bugA ),

'Nig='Niug(1 —ugA ),
zo] ——1+6ug+24ug+48ug+6 (Sd—b)ugugA

The specific heat C„ is derived from 8 of (10.'7) by
numerical di6erentiation. The result is shown by the
dot-dash curve in Fig. 6. Although C„ is still slightly
ascending for r(2, the general shape of the new C,
curve is better than the solid curve of the previous
calculation. This indicates the correctness of the
interpretation that the specific heat curve above Tq
will approach the experimental behavior when more
finite polygons are added in this treatment.

It must be noted here that the calculation in this
section is only for the region above T)„and the value
of the ) point has not been calculated in the approxima-
tion corresponding to this section. In order to do this
the triangles of this section must be combined with the
long sides of the previous sections, which would require
considerable additional calculation.

Nevertheless, without expending more mathematical
eGort, based on what was found in this section and
also in previous sections, the shape of the specific heat
curve for a more accurate treatment of the model can
be inferred as follows. The solid curve in Fig. 6 for the
very low temperatures, probably below r= 1, will
remain practically the same in better approximations,
because near absolute zero the very long sides are
predominant and the approximation in this paper is
good. As the approximation is improved, the curve
right above Ty will increase as was shown in this section.
This will induce the lowering of the X point because the
total area below the C, curve must remain the same in
order to keep the same values of energy at O'K and at
temperatures well above Tz. It is a general tendency of
cooperative phenomena that the peak of the specidc

heat becomes higher as the approximation is improved,
and so this will probably be.the case in the present
model.

11. SUMMARY AND CONCLUSION

The partition function for liquid He4 proposed by
Feynman, Kq. (7) of reference 3, based on his path
integral method, was evaluated for a simple cubic
structure previously by Kikuchi, 4 considering only
nearest-neighbor permutations of the atoms. In this
paper the same partition function is evaluated consider-
ing long-range permutations as well. The result is
plotted in Fig. 6. It indicates a second order phase
transition, and the value for the effective mass of a
helium atom becomes about 1.6 times the normal mass,
if the theoretical Tz is equated with the experimental
point, The marked improvements of the present work
compared with the previous work' are (1) the specific
heat varies as T' near absolute zero, (2) the peak of C,
at Ti, is more pronounced than in (I), and (3) when
triangles are added as possible finite polygons above
Tq, the specific heat just above Tq increases over the
previous result, indicating an improvement.

It is now concluded that Feynman's partition
function calculated on a lattice gives a satisfactory
qualitative picture of the ) transition of liquid He4,
and also that the technique for handling the long-range
permutations of atoms developed in this paper is correct.
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