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The present paper presents a derivation of the “master” or
Boltzmann ‘“‘gain-loss” equation from the Schrédinger equation,
i.e., a derivation of the equation for the evolution in time of the
probabilities of finding a physical system in its various states
from the equation for the corresponding probability amplitudes.
The ‘“master” equation is derived for an, in effect completely
self-enclosed, ‘“‘supersystem,” [A-+B], consisting of a “system
of interest,” [4], and a “surroundings,” [B], in relatively weak
mutual interaction: A discussion is given of the range of validity
of the “master” equation for [4+4B] and it is shown that the
random phase assumption is required for the state vector of
[4+4B] at the initial time only. The normally microcanonical
character of the equilibrium statistical configuration of [4-+B]
is demonstrated and a treatment is given of exceptional, ‘‘ex-
tremely quantal-coherent,” initial statistical distributions of
[4+B] which may evolve away from equilibrium. Derivations
are also presented of the “master” equation for [A] and of the
“master” equation for an individual particle or quasi-particle [¢],
within [47; a discussion of the range of validity of these “master”
equations is given and the normally canonical character of the
equilibrium statistical configuration of [4] is deduced. General
solutions of the “master” equations for [4+4B], [4], and [¢]

are worked out and the relation between the principles of “micro-
scopic reversibility”” and “detailed balance” and the nonoscil-
latory character of the approach to equilibrium are exhibited. A
theorem is presented regarding the time variation of the entropy
of [4].

As illustrations of the general methods developed two important
processes in magnetic resonance—the time variation of the
longitudinal magnetization, (u);, and the time variation of the
transverse magnetization, (u');—are discussed in some detail. It
is shown that the variation of (u); with ¢ and of (u’); with ¢ for a
“nonrigid” lattice can be described by means of the “master”
equation for an individual spin [¢] and several special cases are
discussed on the basis of the evaluation of the appropriate transi-
tion probabilities; a comparison with the “spin-temperature”
procedure is also appended. On the other hand, it is demonstrated
that for a “rigid” lattice no description of the variation of (u’):
with ¢ can be given on the basis of a “master” equation; in this
case, quantal coherence effects neglected in the derivation of the
“master”” equation from the Schrédinger equation are vital and
{u’)e must be evaluated by a rigorous calculation of Trace {[appro-
priate time dependent density matrix] u’}.

A. INTRODUCTION

NE of the major problems in quantum statistical

mechanics entails the derivation of the ‘“master”
or Boltzmann ‘“‘gain-loss” equation from the Schrédinger
equation, i.e., the derivation of the equation for the
evolution in time of the probabilities of finding a
physical system in its various states from the equation
for the corresponding probability amplitudes. The
attack on this problem was initiated by Pauli’ and
recently very important progress has been effected by
Van Hove.2 The discussion below presents a derivation
of the “master” equation from the Schrédinger equation
using elementary methods and applies the general
theory to several magnetic resonance situations.

In brief outline, the subjects treated in the present
paper are:

(1) The “master” equation for the “supersystem”:
derivation from the Schrodinger equation and dis-
cussion of range of validity—random phase assumption
required for the state vector at the initial time only;
deduction of the microcanonical character of the equi-
librium statistical configuration of the supersystem;
average values of “diagonal” and ‘“nondiagonal” dy-
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VW. Pauli, Festschrift zum 60 Geburtsiag A. Sommerfeld (8.
Hirzel, Leipzig, 1928), p. 30.

2 L. Van Hove, Physica 25, 268 (1959); 23, 441 (1957); 21, 517
(1955); see also the instructive papers of W. Kohn and J. M.
Luttinger, Phys. Rev. 108, 590 (1957); 109, 1892 (1958).

namical variables; quantal coherence and possible
evolution of the supersystem away from equilibrium.

(2) The “master” equation for the ‘“system of
interest”: derivation from the “master” equation for
the supersystem and discussion of range of validity;
deduction of the canonical character of the equilibrium
statistical configuration of the system of interest;
detailed balance and microscopic reversibility; time
variation of the entropy of the system of interest.

(3) The “master” equation for an individual particle
or quasi-particle of the system of interest: derivation
from the “master” equation for the (whole) system of
interest and discussion of range of validity.

(4) The solution of the “master” equation for the
supersystem, the system of interest, and the individual
particle: spectrum of real relaxation times and non-
oscillatory approach to equilibrium; comparison with
“spin-temperature” procedure.

(5) Magnetic resonance: time variation of longitud-
inal magnetization; treatment by means of the indi-
vidual particle “master” equation; evaluation of
appropriate transition probabilities and discussion of
several special cases.

(6) Magnetic resonance: time variation of transverse
magnetization; case of “rigid” lattice: inapplicability of
any “master” equation and discussion of crucial im-
portance of quantal coherence effects neglected in the
derivation of the ‘“master” equation from the Schro-
dinger equation; case of the “nonrigid” lattice: treat-
ment by means of the individual particle “master”
equation.
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EQUILIBRIUM

B. THE “MASTER” OR BOLTZMANN “GAIN-LOSS”
EQUATION FOR THE SUPERSYSTEM

We contemplate a ‘“system of interest,” [4], con-
sidered imbedded in another, in general, larger system,
[B], called the “surroundings”; the in effect com-
pletely self-enclosed combination: system of interest
and surroundings, [A+ B], will be called the “super-
system.” The Hamiltonian of the supersystem [A+ B],
3¢, can then be decomposed as:

J= 31O+ 35 O+ 0= 35"+, ©

where 3Ci41®, 3@ are, respectively, the Hamil-
tonians of [4 ] when isolated, and of [ B]] when isolated,
and where U is the interaction Hamiltonian between
[4] and [B]. In circumstances where [47] and [B]
are both macroscopically large, the ratio of U to
O is ~Nay/ (N +Ns)<K1 (here N4, Nys; are
the number of atoms in [47], [B], respectively) so
that U can be treated as a relatively small perturbation.

We now choose the complete set of 3C© eigenstates
VYn, OY,=E,OY,; E,© effectively continuous—as
basic states for the description of the density matrix
operator of [4-+ B, p(f). The matrix elements of p(¢),
(@nlp(®) |¥m)=(n|p(?) | m), are given by

(nlp()) [m)=22;al ¥ P )PP @) [¥m| s
=2 5| exp[— (i/7) (1—1o) 3C] P (t0) )
X (exp[ — (i/7) (t— 1) W P (to) [¥m)p;
= Wnlexp[— (/%) (1—10) 3T 4P (b))
XD (lo)p expl (i/7) (1—to) 3| ¥rm)
= (n|{exp[— (&/#) (t—t0) 3o (1)
Xexp[ (/%) (t—to) 31} | m);  (2)
p(8) = exp[— (i/#) (1—to) 3¢ Jp (to) exp[ (é/%) (1—10) 3¢]
in a physical situation where at the initial time #, there
is an (incoherent) probability p; that [4-+B] is found

in the state ¢(? (¢p) and where the state ¥ () evolves
in time according to the Schrédinger equation:

YO () =exp[— (i/B) (1—t) WP (L)
=exp[— (i/%) (t—10) (O +V) W2 (o) ;
i—4=0. (3)
Equations (2), (3) yields for P(%;{), the probability
that [4+B] is found at time ¢ in the state ¥x,}?

P(n; () =25 @aly @ @) |2pi= (n|p()) | n)
=(n| exp[— (i/%) (t—1t5) 3¢]p(to)
Xexp[ (i/%) (t—to) 51| n); (4)
2aP(n;)=2"; p;=1=Trace {p(?)},

the totality of the P(n; ) values describing the statis-
tical configuration of [44B] at time ¢. The average

8 Approximate calculations of {n|p(£)|m), (#]|e(t)|n) from Eqs.
(2)-(4) or the equivalent Eq. (12) below have been given in a
magnetic resonance context by R. K. Wangsness and F. Bloch,
Phys. Rev. 89, 728 (1953); U. Fano, Phys. Rev. 96, 869 (1954);
R. Kubo and K. Tomita, J. Phys. Soc. (Japan) 9, 888 (1954);
F. Bloch, Phys. Rev. 102, 104 (1956); A. G. Redfield, IBM ]J.
Research Develop. 1, 19 (1957).
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value at time {, (D), of any dynamical variable D
associated with [A4+ B is then:

(D)= @O0 DY V)
= 5 WO n) ] DY) 0D ()5

7,n,m

" (] (1) m)om| ] )= Trace{p()D}
=Z P(”; t)<”l 5Di%>+z (l_amn>

X (n|p(&)[m)(m| D]n). (5)

Thus, if the matrix of D with respect to the ¥, is
diagonal :
(m| D[ n)=(n| D|n)3nn,
the P(n;t)=(n|p({)|n) completely describe the de-
pendence of (D), on ¢ and Eq. (5) becomes:
(Dline) =3 P(n; 1) (n| D% ). (6)
In what follows we shall in general study ‘“‘diagonal”
dynamical variables D& with (m | Dee| 1) =(n | | 7)0mn
and we note that all such D?2¢ will necessarily commute
with 3¢©,
We now consider further the dependence of P(#n;¢)
on {. We have from Eq. (4), with 7=0:

P(n;t+7)
= (n|p(t+7)|n)=(n| exp[— (3/%) (t—to+7) 5o (to)
Xexp[ (i/%) ({—to+7) 3¢] | n)
= (n|exp[— (i/%)75C]o(¢) exp[ (3/%)73C]|n) (7
= ™Wan(r)P(m; )+ 7V o(7; t—1o),
where
Wam(r)= (1/7)|(n|exp[— (/B)r5C] | m)|?*;
2 ™Wam(7)= (m|exp[ (i/h)73C]
Xexp[— (i/h)r3C]|m)=1; (8)
22 Wam(7)=(n| exp[— (i/h)73C]
Xexp[ (¢/h)73C]|n)=1,
V(r; t—to)E(l/T)kZ (1—8xm)(n| exp[— (i/B)7 3¢]|m)

X {n|expl— (i/h)r5C]| kY (m|p (1) | k)
= WT)kZ Z(1—6:cm)<nl exp[— (i/%)75¢] | m)

X (n|exp[— (i/B)r3C]| k)*

X (m|exp[— (i/#) (t—to0) €] |1)

X (k| exp[— (i/ 1) (t—10) 3| I)*P(I; to)’
+1/7) X (1=8km)(1—01)

X (n|exp[— (i/B)r5C]| m)

X (n|exp[— (i/B)75C]| k)*

X (m|exp[ — (i/B) (t—to) 5¢]|2)

X (k| exp[ — (i/%) (t—to) 3¢]| g)*(| p(t0) | @)
=Y. *(r; t—to), (9)
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with
exp[ — (i/ﬁ)rﬁc:l:exp[— (i/B)T(30940)]
=exp[— (i/h) 73V ](1+8(r)),
14+8(r) =exp[(¢/A) T3] exp[ — (¢/h) 7(5©+40)]
=1—(i/h)Vr—5(1/5) (V*+[0,5©])r24-- - -

:1+,§=1 {(iﬁ)—f fo " dro(r)

% fo " () - fo o dT;o(f,)}

El—l—é 8;(1); (10)
0V (rq)=expl (/)73 JO exp[ = (i/h) 7,5 "].
Equations (7) and (8) yield
P(n;t+7)—P(n;t)
=2 [Wam(r)P (m; )= Wn(7)P(n; )]

which is the basic equation for the subsequent develop-
ment.

It will be seen that the quantities W,.(7) of Egs.
(8), (7), and (11) are (for z>4m) the probabilities per
unit time for “transition” of [4+ B] during the time
interval 7 from an “initial”’ state y¥., to a “final” state
¥, under the influence of the interaction V—this follows
since any “initial” state ¥m evolves in time as
exp[— (4/7)73C J¥m. It should also be noted that, using
Egs. (8) and (9), lim,0 Wan(r)=0 (n5%m), and

lim, 0 YVaul(7; i—to) = (i/%)(n|[o(2),5] | n),
so that, from Eq. (11),
dP(n; 0)/di=(d/dl)(n|p(t)| n)
=] G/Wp(0),5]|n);
dp(1)/di= (i/B)[p(1),5C]

a relation which is usually obtained by direct differen-
tiation with respect to ¢ of Eq. (4) for P(n;{)
=(n|p(#) |n) or of Eq. (2) for {(n|p(t)|m).
We now assume that p(#) is a “diagonal” dynamical
variable
p(t0)={p(to) } Hioe;

(p(t) | @)= o(to) | D)1= P(I; 10)b1q,
so that, substituting into Eq. (9),

(12)

(13)
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YVo(ryt—to)=(1/ r)kZ l(l_aka”[ exp[— (¢/h)r3]|m)
X (n|exp[— (i/h)T5C]| k)*
X (m|exp[— (i/ k) (t—to) ]| 1)
X (k| exp[— (i/5) (t—10) 5] | Ly*P (I5t0), ”
Vu(r;0)=(1/7) X (1—8km){n|exp[— (i/h)rm]ﬁ m)

k,m,1

X <1Z[ exp[— (i/ﬁ)TﬁC:” k>*5m15klP(l, to) =0.

The assumption p(to)={o(f)}4*8 implies that the
initial statistical distribution of (the ensemble of)
[A+B] over the states ¢ (4) involves no specification
of any definite phase relations among the y,; this
assumption therefore permits identification of the
YD (ty), p; with the ¥n, P(n; ). Thus the assumption
p(to)={p(to)}**¢ implies that quantal interference or
coherence effects associated with non-vanishing off-
diagonal (¢|p(%)|g) are absent in the nitial time evolu-
tion of [4 4 B and is equivalent to the so-called random
or incoherent phase assumption 12 regarding the initial
statistical distribution of [A+B] over the ¥, i.e.,
equivalent to the assumption that the state vector of
[A-+B] at t=to, ¥(lo), is given by

Y(to) =22 n{ [P (15 to) T2e™}ip

with the 8, random. The validity of the assumption
p(t)) ={p(to)}¥*¢ is ensured, in most cases of practical
interest, by the preparation of the initial physical
situation of [4 - B] (see Sec. G below for an example).

It is now worth mentioning that p(f)= {p(fo)}%ire—
Eq. (13)—together with Eqs. (2), (10), yield,

(n|p(t) |m)
=2 (n|exp[— (i/) (t—10) 5] | k)
X (m|exp[— (i/#) (t—to) 3¢]| &)*P (k; to)
=exp[— (i/%) (B, — En®) (i—10) ]
X{8umP (m; to)+(n| S (t— to) [m)P (m; o)
+(m|8(t—to) | n)*P(n; t)
+2k(n| S(t—to) | k)(m | S(t—to) | k)*P (k; 1)},
which is, in general, different from zero for #=m and

1>1y; thus for >4, p(#) is a “nondiagonal” dynamical
variable. For m=#n, Eq. (15) gives

(nlp())|ny="2 k| (nlexp[— (i/h) (t—to) 5] | k) |2P (k; 1)

which, in view of Egs. (8) and (4), is equivalent to Eq.
(17) below.

We proceed to examine Eq. (11) or Eq. (7), together
with Eq. (14), for the dependence of P(n;{) on ¢;
setting ¢=1{, and writing {+r=1¢>/y, we have,

P(n;t')—P(n;t)

't'—'to

(15)

= Z[an(t/— tO)P (ﬂl 3 Ifo)

_I/an(tl'—[o)P(%; Ifo)], (16)
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or, using Eq. (8), .
P )= n{ (' = t)Wam(' —t0) P(m; t)}.  (17)

Equation (16) is of the general form of a “master” or
Boltzmann ‘gain-loss” equation for the probability,
P(n;t), that [A+B]is found at time ¢ in the state .
However the corresponding transition probabilities per
unit time, W,.(#—t), are here dependent on #—t,
and in fact essentially describe the whole actual de-
pendence of P(n;{) on #—this is best seen from Eq.
(17). We should also emphasize that our whole develop-
ment in Egs. (2)-(17) [in particular in Eq. (11) and
Eq. (16)] is valid with the y, any complete set of states,
not necessarily the set of 3C©® eigenstates. The F©®
eigenstate property of the ¢, is, however, used to obtain
explicit expressions for W, (7) and V,(r;t—t) [see
Egs. (20), (23)-(25), (27)—(34), below].

Equation (16) or Eq. (17) can be conveniently
employed to find an explicit form for P(x;¢) vs ¢ for
small #'—fo, 1.e., for

!~ 1K) | (n]| 0|\ m)| =t/ tn=t/bm, (18)
where :

£n=(EnO—E®)/(Nia1+Nz1);

tn=(En©—E)/(N1a1+N(5) (19)

are the excitation energies per atom when [4+B] is
in the states ¥, ¥m.* In fact from Egs. (8) and (10)

(V=) <n

O —to)
><(1——-—~
j/

Woam (' —to) =

exp[— (i/ /) (' —40) 3@ ]

—3(0V4[0,3@])

<))

2

(20)
1 5 .(t’-tu)/ [’U] )
= nm ™ m
-
i

2

+ (En® = B 0 m) T+ |

so that, introducing Eq. (20) into Eq. (16)

4 The approximate equality in Eq. (18) of (#|U|m) and ., &n
is a consequence of the fact that

V=% Z;1714] Z; V8] o(|R; 141 -R;[B1])

with a short range v(|R;[41—R;[B1]) so that the nonvanishing
[(n|0|m)| are =|(n|v|m)| ~|{(n|v|n)| ~& or &m, the last
approximate equality following from the virial theorem. It is to
be noted that (s |v|#) will be considerably smaller than £, for Case
(II) of Sec. G below [see Eq. (180)].
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(¢’ —to)?
ﬁ2
(' —1t0)? (' —10)*
-+terms in , - , e
7 7
X[P(m; te)—P(n; to) ]
=P(n; ) {1—[(/ = 1)*/ B¥][(n| V*| m)
= ((n]0[n))"]+- - -}
+2m P(m; t){[ (¢ — 1)/ 1]
X [(n]O[m) P+ -} (1—8mn).
The initial relaxation of the P(n;!’) from the P(n; to)
is thus seen to be quadratic in (¥ —f)2. However the
series expansions in Eq. (21) converge rapidly only for
U'—t&t/ |(n|V|m) | =%/bn=%/tm [ Eq. (18) ]and when
{'—ty=%/%, another method is required to find P(%; ')
vs ¢’ from Egs. (16), (8) or Egs. (11), (8), and (14).

To describe this other method we consider the Egs.
(11), (8), and (14) under the restrictions:

P(n;t')=P(n; to)+2 [{n[O]m)

7/ L St—to, (22)
7/ e L[ m(27/%)6 (Bt @ — E, ®)
X [(m|O+0GO+- - - |[n) [H(1—bma) T
= [Zm Wann(7) (1_5mn)]_15 Ta; (23)

GC=0[4(EnO+E,©)— 5O
| — imd[3 (En @+ E, ) — 50T,

the equality of
Q2r/1)8(En®@— E®) [{m| O+VGO+-- - - |n) |2
and
Wana(7) = (1/7) [{m|exp[— (i/2) 7 (5O +0) ][ ) [,

for 7 subject to the inequalities of Eq. (23) (and m %)

is a consequence of the application of standard pro-

cedures of time dependent perturbation theory® to’
Eqgs. (8) and (10) while the quantity 7', is obviously

the mean life of [4+ B in the state y,. Equation (23)

itself is only possible, of course, if [44B] is of such a

character that

1/ L[ (2w /1) (En @ — E,,®)
X [{m| O+VGO+ - - - | n) P(1—bmn) T
=Tw=n/AE,©,
(AE,®=energy width of state ¢.,,),

(24)

and the inequality of Eq. (24): (excitation energy per
particle in state ¥.)>>(energy width of state ¥,), is one
of the two basic restrictions on the character of [4+ B]
that must be made to deduce a “master” or Boltzmann

5See, e.g., W. Heitler, The Quanium Theory of Radiation
(Oxford University Press, Oxford, 1954), third edition, Chap. 4.
@ in Eq. (23) denotes the Cauchy principal value.
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“gain-loss” equation for P(n;f) vs t for t—t>>h/t,
[see (¢), (@) after Eq. (35) below].

We now remark that the relation already set down
in Eq. (23), viz.,

W onn(7) = (27/1)0 (En® — E, @)
X (| V+0GU+- - - |n) 2

implies that this W,n(7) is actually independent of =
for all 7 subject to the inequalities of Eq. (23); we
shall also prove below that the ¥V ,(7;t—t) of Eq. (14)
vanishes up to terms = (0/3C®)? if {—¢o, 7 are subject
to the inequalities of Eq. (22). Hence, up to terms
= (0/3C©®) 3 the right-hand side of Eq. (11) is effectively
independent of 7 for all 7, t—1¢, satisfying Eqgs. (23)
and (22) so that the left-hand side of Eq. (11),

P(n;t+7)—P(n; i)

(25)

T

.

1 fmd dP(nt') dP(n;t) 7dP(n;1)
_—— tl B
+J, ar a2 dp

2 d*P(n;t)

6 dB

must be closely equal to dP(n;?)/dt if it is also to be
effectively independent of 7. This last approximation,
however, is well justified since for (—#>%/¢, [Eq.
(22)] we anticipate that

@P(n;t)| 1 |dP(n;t)

i | 1. a |
d’P(n;t) 1 |d?*P(n;t) 1 \2|dP(n;t)
i | 1| a %(E) Ta

etc. (see Sec. D below) and since 7/T.<<1 [Eq. (23)].
Thus Eq. (11) becomes, for i—to=7>%/4, To>7T
>t/ &,

dP(n;t)
dt

ZZ[anP(m; t)—WmnP(n; l)]
' +V.(r;t—t);
Wan=2n/h)s(E,©—E,,®)

X [n| V+0GU+- - |m) |2, (26)

where it is to be proven that ¥V, (r; {—2) is = (V/3C©)3
for t—to=7>%/%,. Equation (26) shows that the
dependence of P(xn;f) on {, for t—{>>%/%,, and ne-
glecting third and higher powers of V/3C©, is governed
by a ‘“‘master” or Boltzmann ‘“gain-loss” equation so
that completion of the derivation of this ‘“master”
equation from the Egs. (11), (8), and (14) now only
involves the demonstration that ¥, (7;i—1{) is.indeed
= (V/3®)3 for t—tlo= >0/ &,

SHER AND H.
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We proceed to give this last demonstration and write
Eq. (14), using Eq. (10) and with

vem= (1/7) (Ex® — En®),
in the form:

Yo(r;t—to)
= (1/7)k§l (1=8km) (Brmt(n| 8(7) | m))
X (6kn+,(n[ 8(7) | £)*) it (m|8(t—10) | 1))
X Gut(k | 8(t—to) | [)*)een = P(I; 1)
= (1/7')%(1—5"”‘)[(”‘ 8(7)|m)(m|8(t—to) |n)
Xetrmm (=t P(n; to)+(n|8(r) | m)
X (m| $(1— o) | mY*em =0 P (m; 1) J+-c.c.
+ (l/T)kZ%{ (1=0xkn)[ (| 8(¢—10) |I){n| 8(7)E)*
X (k] S(t;to) |L)*eirintt=t0 P(; ty)+-c.c.]
+(1—8i)[(n|8(7)|I)(n]8(7)| k)*
X (k| 8(t—to) | L) et = P(L; tg)4-c.c. ]}
+ (1/T)k%l (1=0rm) (| 8(7) | m)(n| 8(7) | R)*
X (] 5= t0) D 81—t [T =0 P13 1),
Further, from Eq. (10)

(27)

Si(r)= (iﬁ)*lf d7r10(71)

= (iﬁ)“lff dr1 exp[ (4/5)T130© ]V
Xexp[— (i/h)n5©]=V; (28)

82() = (i#)~2 fo i fo " g0 (r)0 () =02

and
(] 81(7) [m)y=L(1 =€)/ hvym (0| O |m);
so that Eq. (27) becomes, neglecting terms =~ (V/3C©)3,

('O/GC«»)", T
1— eivnm‘r 1 — gil’nm( t—to0)
#Vnm )( Vnm )

X | (n|0|m)|*[P(n; to)—P(m; to) J+c.c.,

1
Va(ryi—t)=-%
T m

(29)

and it only remains to prove that ¥ ,(r;i—t) of Eq.
(29) vanishes when {—{o, T are subject to Eq. (22):
The proof that the ¥ .(7; t—1o) of Eq. (29) is actually
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zero when {—1,, 7 are subject to Eq. (22) can be given
as follows. We recall that

Sm= L F(Ea®an)= f B On(En®)

En©), apm

X {g(Em(ﬂ) 5 Olm)}av OoVer am
where 7(E,®) is the number of 3JC©® eigenstates
Yn=v%14+8](En®,an) with any a, and energy eigen-
values between E,©@ and E,©4dE,®, an denoting

all quantum numbers other than E,® which charac-
terize the state Y. We can then write Eq. (29) as

Valr;t—to)= de <o>[f(5m)( —e”""ﬂ)
Van

1— g vnm (t—to)
X (m)+c.c.], (30)

Bvum

where
JE)=n(En®){[(Es® an| V| En®,am)|*
X [:P(En(‘”,an 5 fo) —P(Em‘o’,am 5 lo)]}av over am

so that, remembering that vun= (1/%)(E.®—E.®)
=(1/7) (4n—Em) N a1+Nz1) [Eq. (19)] and setting

X=Vum7, YV o(7; t—1y) becomes

s [ af (a2 )
n\T30— =pt X n
' — (N +N )7

1—giry 11— eil(t—to)irlay -
X ( ) ( )J—{—c.c. (32)
® x

In Eq. (32), [(1—e®)/x][(1—eit—%In2) /5] is appreci-
able numerically only for | x| <77/ ({—f) 7. Since now
f(&m) is a comparatively slowly varying function of £,

ie. lnf(ém) (N[A]+N[B])(£m/<ém>av over m)+C0nSt we
have

f(g"‘ (N[A]jmm)r)
-/ (E")[ +(f(£n))(d];§n )
(v )]

h/En

T

€29)

%f(fn)[l— +] (33)

and this differs from f({,) by a negligible percent
amount since | %] is effectively not larger than mr/ (¢—to)

so that
|| 7/ En

A
T T

<7rﬁ/£n T
(1—to)

<1
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[Eq. (22)]. Thus Eq. (32) can be written to a very good
approximation as

Y,,('r; t—lo)

) 1—eie 1 — gil(t—=to) I7]z
s wo(=5) (=)
—to)
(34)

and the integral I([t—to]/7) is zero for all (positive)
(t—to)/7 since [(1—e)/a ][ (1—exp{i[ (t—to)/7]x}) /]
has no poles on the real «x axis or in the upper half of the
complex « plane and vanishes ~1/|x|2 as |x|—o.

We have thus deduced from Eq. (11) [or Eq. (26)]
the “master” or Boltzmann “gain-loss” equation with
time-independent transition probabilities per unit time,
an,

Eﬁ‘lf(fn)l(t

dP(n;t)

. =3[ WP (m; )= WonP(n;1)];

(35)
W pm= 2w/ 1)8(E, @ — E, @)
X [ {(n|0+VGU+- - - [m)[?,

under the restrictions:

(@) p(to)={p(t)}¥, [Eq. (13)]

®) #/E.Lt—ty, [Eq. (22)]

() #/taKH/AE,O=T =3 (2n/1)

Xﬁ(Em“’)—En(“)) | (m[’O—{—’OG‘(H—- .. [n)[2

x(1_5mﬂ)]—1’ [EqS (24)) (23)]7
(d) neglect of terms ==(V/3C®)?, (V/3CO)4, ---.
in the Y.(r;i—1o) of Eq. (14) [Eq. (27)-(34)]. It
should also be mentioned that with neglect of
VGV - - compared to U in the expression for Wam
[Eq. (35)] we obtain Wam=Wma, i.e., “microscopic
reversibility,” so that Eq. (35) becomes

dP(n;t
7 )=Zm
dt

W am= 2/ 1) (Ea®— En®) [(n|0[m)
= (2r/M)8(En® = E, @) [(m| 0| m) P =W

W am[ P (m; )—P(n;1)];

(36)

However the validity of “microscopic reversibility,”
i.e., of the neglect of VGU+--+ compared to U in
the expression for Wm, is not necessary for the deriva-
tion of an equation for dP(n;£)/dt of the form of Eq.
(36). In fact, in view of the third of the equalities of
Eq. (8), we can write Eq. (11) in the form

P(n;t+71)—P(n;t)

T

S W (DLP(m; )= P )+ Valrs i—10),  (37)
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whence, by use of the arguments of Eqs. (22)-(34), we
can obtain the analog of Eq. (35):
dP(n;t) ‘
at
W um= 2w/ B)5(E, @ — E,©)
X [{n] 04+0GV+- - -

which has the form of Eq. (36).

The solution of Eq. (36) or Eq. (38) is given in Sec.
D [Egs. (75)-(88), (95), (100), (104)-(107)] where it
is demonstrated that for {—£>T (max)=largest of the
Tof{Tw=[2"% Win(1—8rn) I},

=2 Wan[P(m;)—P(n;1)];
(38)

lm) %,

dP(n;t)
J =0, (39)
dt t —to >>T (max)
[see especially Eqgs. (84), (88), (100)] so that
0=20n Wounl P(m; )|t —tr>>1 (max) .
—P(n; ) {tﬁn >>T(maX):]' (40)

Equations (39) and (40) show that the various P(%; {)
ultimately approach time-persistent values which are
quite independent of the corresponding initial values,
P(n;ty).%5 This follows since the quantum numbers
n=E, 9, an;m=E,9, an; E,O=E,®, can be chosen
so that: P(#; 1) i —t>>T(max) = P (m; 1) Jt —ty >> T (max) for
fixed # and all m, whence Eq. (40) implies that actually,

P(m;8)|t—t>>Tmax) =P #;8) | t—to>>T (max)
=1/ Pk;t)=1/2, (41)

where 9T is the number of mutually accessible 3C©
eigenstates of [4+B.” Equation (41) states that in the
ultimate and time-persistent, i.e., equilibrium, statis-
tical configuration of [4+ B] all mutually accessible
30O eigenstates are occupied with equal probability.

We now wish to emphasize that the equality of the
equilibrium values of the diagonal matrix elements of
p(1) [Egs. (41), )] by no means implies that
(nlp@)|m)|i—r>>Tmaxy vanishes; in fact, such an
ultimate vanishing of the off-diagonal matrix elements
of p(t) would not only contradict the explicit expression
for (n|p(t)|m) given in Eq. (15) [and in Eq. (42) just
below ] but would also yield

p(to) = exp[ (i/%) (1—10) 3¢ Jo (1)
Xexp[— (&/%) (t—10) 3] |t —to>> 7 (max)
=exp[(¢/7) (t—10) 3¢ J{ (1/90)1}
Xexp[— (i/%) (t—10) ]| t—to >> 7 (mary = (1/I)1
contradicting, in addition, the choice originally made

8Tt will also be seen in Sec. D that the P(#;¢) approach their
ultimate and time-persistent, i.e., equilibrium, values in a non-
oscillatory fashion.

7Since Wam <8(E,O—E,®) [Egs. (38) or (36)] all such
mutually accessible JC© eigenstates have approximately equal
eigenvalues: E,O=~FE,,©,
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in Eq. (13) for p(to)={p(fo) 32 (1/90)1.8 It should
also be mentioned that use of Eqgs. (10) and (28) in
Eq. (15) for (n|p(¢) | m) yields (for m=~n)

<nlp(t)lm>=(——*1_;::7"0_10))

X {(n|V|m)(P(n; to)—P(m; o))
+terms = (V/3C©)2, (V/3®)3 - (42)

which last equation can be employed to estimate those
terms in Eq. (5) for (D), which are associated with the
off-diagonal matrix elements (m|®D|n) of the now
assumed ‘‘nondiagonal” dynamical variable, . Equa-
tions (5) and (42) give, for {— >/, 71/ Em, and with
use of Egs. (36), (18), (24)

Z(1~5mn)<nlp(l) |m)(m| D|n)

— g~ ivnm (t—to)
Y

X (P(n;to)—P(m; to))(m| D|n)
03 (1—8mn)[ 27/ 1)8(E, © — E,, @)

><I<n!°<>lm>l2](l>(n-t)—P(mt>>< ke In)ﬁ
’ "m0 |n>2

=IZ P(m; t){(m| D|n)}av over n(fi/ En)/Tm|

~|{(m| @[ﬂ)}av over 7, ml{ h/sm)/Tm}aV over m

)<,n|W>

=2 (1—
nm hVnm

< '{(ml 3)| %)}av over n,m I (43)
Thus, provided that
| {{n| D|n)}ay over | >{(m| D|1)}av over n, m |
X { (h/ém)/Tm} av over my (44)
which, in view of Eq. (24), is certainly satisfied if
[{{n]| D]n)}av over ol 2 [{(m| D|n)}av over n,m|, (45)
we have from Eqs. (43) and (5)
(D)= (Drniie) 95, P(n; 1) ] Dront | )
(— 1>/t (46)
whence, using Eq. (41),
()= (i) 2 (1/T) T (| Donie )
—t>>T (max)>h/t,, (47)
while, from Egs. (41), (6)
(D)= (D)= (1/T) L n(n| D28 | ) ;
t—t>>T (max)>h/E,.  (48)

8 It should be particularly noted that however p(f) is taken,
e.g., with arbitrary (n|p(to)|m) (ms£n), p(t)=exp[— (z/h)
X (t—19) 3C]p(to) exp[ (i/%)(¢t—1to) 3¢] cannot ever become (1/97)1
gxcepl} in the special case p(fo) = (1/90)1 when p (¢) is also (1/ 9U)1

or all £=1¢,.
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Equations (47), (48) indicate that, in the equilibrium
statistical configuration of [4+ B, average values of
“nondiagonal” as well as “diagonal” dynamical vari-
ables D are obtained by averaging the expectation
value of D in a particular 3¢ eigenstate, ¥, over all
mutually accessible ¥, with the same weight, 1/,
attached to each ¥, This mode of averaging is pre-
cisely that which would be adopted if a microcanonical
ensemble were assigned to [4-+B] and our demon-
stration of Eqs. (47), (48) is therefore equivalent to a
justification of the assignment of such a microcanonical
ensemble to the supersystem [4+4B] in its ultimate
and time-persistent equilibrium statistical configura-
tion, i.e., equivalent to a demonstration [under the
restrictions (e)-(d) above and the further restrictions
(e), (f) below] of the quantal ergodic character of the
supersystem.

It remains to discuss the possible effect of the neglect
of the terms = (V/3C©®)3 (V/3©®)4 .. in passing
from the ¥, (r;t—1) of Eq. (27) to the V,(r; t—1t) of
Eq. (29) [restriction (d) above]. Since V/3®
~Nu/(Nia1+Nis1) [see discussion after Eq. (1)]
this neglect is better and better justified for larger and
larger [A+B]; on the other hand, the Poincaré
recurrence time, 7(8), defined by

[ P(n; to+T(8))—P(n; to)|
P(n;to)

=é (49)

(for all »; 6, a preassigned arbitrarily small number,
say 1/100) approaches infinity as [4+ B] grows larger
and larger. It is thus reasonable to conjecture that the
terms =~ (V/3C©)3, (V/3®)4 --- in the V,(r;t—1t)
are associated with the actual quasiperiodicity of the
time evolution of [4+B], i.e., are associated with the
Poincaré recurrence phenomenon in [4+ B], and that
our neglect of these terms corresponds, among other
things, to the assumption that the 7°(8) of [4+B] is
effectively infinite. If this conjecture is correct another
pair of restrictions:

() (t—1)<KT (), () T(max)<L7T(),

must be added to the list of restrictions (a)-(d), above,
required for the validity of the “master”” or Boltzmann
“gain-loss” Egs. (35) or (38) or (36); as a consequence
Egs. (41), (47), (48) should, strictly speaking, be
written as:

P(m;t) I T() >>t—to>>T(max) =P (1; 1) l T'(8) >>t —to >>T (max)

=1/ 2% P(k; to))=1/2, (50)
(D)¢= (Drondiag) 22 (1/90) 3 u(m | Drondiag| ) ;
T(8)>>t—t>>T (max)>h/¢,,  (51)
(D)e=(Dding), = (1/90) 2" n(n| DU n) ;
T(0)Dt—te>T (max)>h/E,. (52)
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In concluding this section we wish to emphasize that
we have shown, subject to the restrictions (a)-(f), that
once the equilibrium statistical configuration is attained
it persists in time; thus it is impossible [at least during
time intervals <<7°(8)] for an equilibrium statistical
configuration to evolve into a nonequilibrium statistical
configuration. Since in addition, any nonequilibrium
statistical configuration evolves in a nonoscillatory way®
toward the equilibrium statistical configuration, we
have demonstrated, again subject to the restrictions
(@)-(f), the essential irreversibility of the time evolu-
tion of the statistical configuration of [A+B7]. The
reconciliation of this irreversibility with the reversi-
bility of the time evolution of exp[— (i/#%)(t—t0)3C]
Xy D (t) [Eq. (3)] which implies a corresponding
reversibility in the time evolution of

p(2) = exp[ — (/%) (1—1o) 5 Jp (to) exp[ (i/%) (t—10) 3]

[Eq. (2)] is effected by the observation that very
special, “‘extremely quantal-coherent,” initial statistical
distributions, associated at a minimum with a “non-
diagonal” p(#) and thus certainly violating restriction
(a), are required to produce processes which can be
appropriately described as the evolution of an initial
nonequilibrium statistical configuration of [4+ B] into
statistical configurations of [4-+ B] still further from
equilibrium (see Appendix A).

C. THE “MASTER” OR BOLTZMANN “GAIN-LOSS”
EQUATION FOR THE SYSTEM OF INTEREST
To deduce the “master” equation for the system of
interest we express the states ¥n=v(4y5](Er@,vn) of
the supersystem [A+B] in terms of the states
Va1 (e5,0;), Y181 (Mu,8.) of the system of interest [4 ] and
the surroundings [ B, as:

Yiar 51 (EaQyvn) =¥ 141 (65,0)¥ 181 (1,84,
Y 1415 (En®@yva)= {3141 O+ 3151 O W (ED ya)

=Y 18] (M,8) { 3141 OY 141 (€jp0;) }
F1a1(e5e) {351 OY 181 (Mu,B.)}  (53)

= (ej+n)¥ 141 (€5,0)¥ 181 (M,B0)
=E0 % 14+ (En@,yn),

where aj, Bu, Yn=a; and 3, are quantum numbers other
than the energy eigenvalues e€;, 74, E.O=¢41.
characterizing the states ¥ia;(e;; ), ¥151(Mu,84), and
Yiarp1 (En®v,). We next consider

P(nit)=Pray (€053 mu,Bu; t) (54)

as the joint probability that [47], [B] are found in the
states ¥4;(€,05), ¥ 151 (14,8.) at time £, equal identically
to the probability that [4+B] is found in the state
Yiars1 (Ea®va) [=yra(esa)¥ 81 (1,68.)] at time ¢,
and define
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Pray(esaj; )= 2 Prayi(ejes; nu,Bu; 1) equation for Prays(eja;;m4,84; 1), Eq. (35), together
Tubu with Eq. (55), then yields, with

=3 Praysi(ejaj; En @ —¢j, Bus )
Bu st A A anEW[A+B](ejyaj:"7mﬁu;Ek’akyﬂvaﬁv);

(55) Woan=W 144 B (€1,25,M0,80 5 €55035Mu,Bu),
P51 (1u,Bu; )= Eii Pray (€055 nusBus ) E 0= e4ne4n,=E,O=E,
=Z P[A+B] (EM(O)—nuaaj; NuBus t),
* —Pray(ea;; )= 2 [wia(e;a;; enan; )

as, respectively, the probability at time ¢ that [4] is d@¢ €k ok
found in the state y¥4;(ej;) for any probability dis-
tribution of [B] over the various states ¥()(1u4; By)
and the probability at time ¢ that [B] is found in the XPay(eje;;0)7],  (56)
state ¥ 51 (n4,8.) for any probability distribution of [4]
over the various states ¥(4)(e;;;). The “master” where

X Praj(erars; 1) —wiay(eror; €055 1)

2 Wiarsi(ej, aj, E—e¢j, Bu; €k, ax, E—ek, 8,)Prayn)(ex, ar; E—ex, Bo; 1)
ﬂ’lh ﬁ"l

wia) (65,055 ey 1) =

22 Praypi(er, ar; E—er, Bo; 1)
By

2 Wiarsi(er, ak, E—ex, Bo; €j, 5, E—¢j, Bu)Praypi(ej, 3 E—e€j, Bu; 1)

Bul ﬁ")
wia) (er,ar; €5,055 1)= ) (87)
2= Prarvmi(ej, aj; E—€j5 845 1)
Ba
and p
d_P 81 (nusBus )= 22 [w1B) (10,83 10,80 1) P [Bl("?v,ﬁw: 1) = w51 (00,85 1,84 ; £) P 181 (Mu,Bu; 1) ], (58)
Ny Bv
where
2 WiarB1(E=1u, @53 My Bus E—10, atky Moy Bo) Pras 81 (E—n, ai; Mo, By3 1)
aj, af
wW(B] (ﬂu,BMQ 7711;611; t)E
2= PrarBi(E—ny, ax;m0, Bo; 1)
@ (59)
2 WiarB1(E—my, ak, Moy B E—1u, @5, 1w Bu) Pray 3y (E—nu, a5 Mu, Bus )
aj, ok

w[B]("lv Bo5 MNusBus t)E
T 2= Prar i (E—nu,055 Mu,Bu; )

aj
Equations (56)—(59) for Piaj(eja;j;8), Pipi(nu,8.; 1) are of the “master” or Boltzmann “gain-loss” type with,
however, time-dependent transition probabilities per unit time:
wia) (€505 €@k £), 5 WiB1 (M080; NusBus )-
We first consider the ultimate and time-persistent equilibrium statistical configuration of [4+BJ]. In this case
T(8)>t—1t>T (max) (see Sec. B above) and from Egs. (41), (50), and (54):
Pray 51 (er0r; 10,805 1) = Prai51(€;,07; 1u,Bu; 1) =1/ (ej+n.Zertn.=E),
so that, using Egs. (55), (57), and (59), and with 9741 (e;), 9 (7.) the numbers of [A], [B] energy eigenstates
with energy eigenvalues e;, 14,
Prarei(e;; aj; 1) =5 (E—e;)/9N,
2 P e, 0)= 2 Ns(E—e)/=(1/)L Nrar(e) Nz (E—e;)=1,
€, aj €, aj &
. (60)
Pp1e® 8 (nu,B8u; 1) =T 1a1 (E—14)/N,

2 P il(ng,Bu; )= 2 Npa)(E—n.)/N= (1/91)2 M ia1 ()N a1 (E—nu) =1,

7u.Bu Nu.Bu

2 Wiars (eja, E—¢j, Bu; er, ar, E—ex, 8,)
Bu, By

wiar* ™ (e,055 ey ; 1) =
N s (E—er)
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Z W[A-!—B] (éka A, E—ék; 611: €5, Aj, E_eja :Bu)

Bu, By

wa1P " (ep 085 €5,055 1) =

Mz (E—e¢;) , (61)

2= Wiarsi(E—nu, ajy Nuy Bu; E—10, ak, 1, By)

ajy ok

w[B]equn (nuaﬂu; N0yB0 t) =

H

Na1(E—n)

Z W[A+B] (E-"Iv, Ay Moy Bv: E—ﬂu, Qjy Muy 6u)

ajy af

WiB1P N (10,80 5 NuyBu; 1) =

N a1 (E—1u)

Equations (61), (60) and the “microscopic reversibility” of the Wiay+5; [Eq. (36)] imply the principle of

“detailed balance”:

wia1* (65,055 er,an s 1) P 1412 (ex,ox 5 £) = 141708 (eg,0n 5 €505 O P rarr®(ej055 1),

w(B1° ™ (DuyBu; 10,805 D) P 1817 (10,805 ) =0 151° (10,80 ; NuslBu; ©) P 151° (usBu; £)
which result is sufficient for these time-persistent and ultimate Paj®il(e;,a;;2), Pipi® ! (n4,04;2) of Eq. (60)

to satisfy identically the “master” Egs. (56), (58).
We may also write, in view of Eq. (60)

Mz (E—ej)

N 51 (E—e;)

(62)

e—ei/@

Prareil(eja;; )=

S N ()N s (E—e) 3 Nip(E—e) 3 e@
€k

d
O = (kT)'=— In9;5,(E),
dE

€k, ak €k, ak
(63)
p e s D M ia1(E—1n) M a1 (E—n4) 1 N (E—m.) 1
B1° " (w005 1) = = = = )
2 N1 (1) N a1 (E—10) Z}s Nar(E—m) Nim(E) X Nay(E—n) Nim(E)
Mo M,Pv M
provided that the system of interest [A] is so much  wa;%(ex,x; €a5;2) of Egs. (61) and (62). The
smaller than the surroundings [B] (N4 <<N(s)) “master” equation for Paj(esa;;t), Eq. (56), then
that the various states Y(a;(e;;) with appreciable assumes the form:
Prarevil(e;a;; t) are characterized by d
d In9;5(E)/dE d(Ecorst) /dE EP ta1(ei; ;5 0)
€; =~ = E=n, =,
@ In9 (5 (E)/dE? d*(Econst) [dF? .
n3t (E)/ ( % = 3 [wrarre(e;pa;; ex, ar; ) Pray(ersar; )
Equation (63) corresponds to the assignment of a st )
canonical ensemble to the system of interest [4 ] and —wa)* M (ex,r 5 €5, ;3 ) Pray(es, ;3 1)1, (64)

of a microcanonical ensemble to the surroundings [ B]
in the ultimate and time-persistent equilibrium statis-
tical configuration of the supersystem [4+B].

We now consider the case of the system of interest
[47 in nonequilibrium and the surroundings [B] in
equilibrium; physically this is possible only if [A4] is
much smaller than [B]. Quantitatively, the assertion
that [ B]is in equilibrium while [ 4 ]is not, is equivalent
to the statement that Ppaypi(e,a;;74,84;2) has the
same numerical value for all 8, : 8.(1), B.(2), - -+, Bu(n),
-+, Bu[9p1(n,)]; this implies, using Eq. (55), that
P51(n4,B4;t) also has the same numerical value for
all 8,, consistent with the expression in Eq. (63) for
Ppyevil(n,,B8,;t). With the Pra;ri(e;,aj;nu,Bu;?t) the
same for all B, these Praipy(ei,a;j; Mu,B4; £) cancel from
numerator and denominator in the expressions on the
right-hand side of Eq. (57) and the (in general, time-
dependent) wiaj(e;,a;;5 enan; 1), wiar(enr; €555 t) are
equal to the time-independent wp4;°® i (ej,a;; ex,x; £),

with [see Egs. (61), (60), (63), (62)]
Wia1* T (e5,005 5 €x,005 £)

2 Wiasni(ej, a5 E—€;, Bu; €k, ar, E—ek, 8,)
BuBo
~J

E)’l(e—ék/@/ Z e—ezl@)

€l,al

=ﬂzﬁ W s+ 81(€j, aj, E—€j, Bu; €k, ar, E—ex, 8))
Xe‘(E—ﬂc)/@/ Z e"'ﬂw/@ (65)

Mw,Bw

= X WiarBi(€,05,mu8u;5 €x,0k,m0,8)

Ny Bur v, By
Xg-"h:/@/ Z e“ﬂwle’

Mw, Bw

wrar* ™ (ej,055 enai; 1) Prar®(e;, a3 1) e4le

- - i — ’
wra1* ™ (erar; €055 1) Prar®(es, ag; 1) /@
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which can be employed to describe the approach of [ 4]
to equilibrium (see Sec. D). The “master” equation
for Pis1(n,B.(1);t), Eq. (58), becomes, using Eqgs.
(59), (36)

——I)[B] ("Iu;ﬁu(”’) > t):

2 [Prar s (B—nu, ax;m0, 8.(n) ;1)

Mv, @F, Ok

—Payn (E_ﬂuy g5 Nu, Bu<") 5 t)]

N (5] (n2)
X 2 Wi (E—nu,aj, M, Bu(n);

m=1
E—n4, atk, 1, Bo(m))

=3 [Prars(E—nu, aj; 10, Bu(n); 1)

aj,ak

—Praym (E_ﬂuy ;5 Nu,y Bu(”) > t)]

N &) (1)
X X Wiarn (E_nuy @y Ny Bu(12) 5

m=1 .
E—14, aiy Nu, Bu(m>)=0

Thus P5)(n,8.(n); ) is time-persistent as is required
by the circumstance that [ B]is in equilibrium (though
[47] is not).

We conclude this section with an illustration of the
use of the “master” equation for Pa;(eje;;?), Egs.
(64), (65), in the derivation of an entropy theorem for
the system of interest [47]. We define the entropy of a
system of interest [A4] whose statistical configuration
obeys such a “master” equation, as,

S()=—k > Pra(eja;; t) InPraj(ejaj;b),

€, af

(67)

and obtain from Eqs. (67), (64)
aSia(t)

=k/2) >

€], 05 ,€k, ak

[wra® i (e5055 €xan; 1)

X Paj(eron; £)—wa1°0 (er,on ; €505 )
X Pray(ej, 53 ) ]

XIn[Praj (e, ax; 1)/ Prai(ejas; )1, (68)
as the basic equation for the time rate of change of the
entropy of [A] arising from: (1) the approach of the
probabilities Paj(eja;;¢) towards their ultimate and
time-persistent equilibrium values P4;%9%(eja;; 1)
without any net flow of heat between [ B] and [ 4], and
(2) from any net flow of heat between [B] and [4],
dQray/dt. In this last connection, defining the internal
energy of [A] as

Uiai()= 22 Prai(ese;; be;,

6, 0

(69)
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we have [again using Eq. (64)]

aU ay(1) dPray(ejs;t)
- ¢
e dt
36: Viad\aV 4
- Z P[A](fnaw l)( )
€ i 6V[A] di
=5 2 [wurril(ee;; ernar; £)

i) cii e, ak
X P ay(ersoe; 1) —w1a1° (ex,on 5 €5,055 1)

(70
X Pray(ej, aj; 1) ](ej—ex)

de;(Via)\aV a1
- P[A](éncmf)(“—"J )

€ i V4 dt
dQra avia
= P41 )
dt di

where it is clear that dQ4;/dt may be either positive or
negative depending on the direction of the net flow
between [B] and [47], and in general, vanishes only in
equilibrium—see Egs. (62) or (65). These last equations,
used in Eq. (68), also ensure the vanishing of dS14;/dt
in equilibrium.

We now define

) Prai(ejyaz; ) — Prareail(e;,a;; 1)
A(f; 0= )

- (71)
Prayeil(e;a;; 1)

which represents, at time £, the relative deviation of the
probability Paj(eja;;¢) from its equilibrium value
P{A]eq““(ej, Qaj; t). EXpI‘eSSiOIl of dQ[A]/dL', dS[A]/dt in
terms of A(7;¢) and

Nir=wa1% (€5,07; €x,0 5 1) Prar®i (er,an; 1)
=wa1° 0 (er,an; €5,055 0 Prar® (5,055 £)

[see Egs. (62) or (65)] yields,

40 a1
O S AMAG; -G T, (72
dSia(t) k At
- Ak )=A(7;0) ] In{ ————
dt 2%3‘ [Alk;=AG50] (1+A(j;i))

k
F-2Z Mi[Alk; )—A(F;0)]
2 gk
Prayeril(eg o ; 1)
Xln(——w——[“ o ) (73)
Prayeail(ejo,; t)

9 V14 is the volume of [4 ] and p4; is the pressure exerted by
[4] on [B]. dV 4)/dt is sufficiently slow so as not to induce any
transitions between ¥4 (ej,c;) and ¥ 14 (er,az).
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whence, using Eq. (63),

dSiai(t) R
=-—2 MNa[A(k; )—A(750)]
di 25k
1+A(k; 8)
Xm( )+
1+a(j;0)
The first term on the right hand side of Eq. (74)
is (except in equilibrium) always positive and repre-
sents the time rate of increase of the entropy of [4]
associated with the establishment, without any net
heat flow between [B] and [A], of the ultimate
and time-persistent equilibrium probability distribution
Pra*0il(e;ia;; t) relative to the initial probability distri-
bution Ppaj(eje;;to). On the other hand, the second
term on the right hand side of Eq. (74) represents the
time rate of increase or decrease of the entropy of [4]
associated with the direction of the net flow of heat be-
tween [B] and [4]. Only under circumstances such

that dQpa(#)/dt>0 (net heat flow from [B] to [47]) is
dS'141(?)/dt necessarily >0.

1 dQa(t)
T da

(74)

D. THE SOLUTION OF THE ‘“MASTER” OR
BOLTZMANN “GAIN-LOSS” EQUATION

For simplicity we rewrite the “master” or Boltzmann
““gain-loss” equations (35), (64) in matrix form as:

%HPU)H= [wil-1P@1,e (75)
where
—(1/Tv) Wi Win
wi=| W T Wax s qr0)
Wy Wi —(1/T)
P(1;0)
IP@l="EY | v=m,
P(N; £)
with
Wan/Wna=1 [Eq. (36)];
(Y T)=2n Wun(1=8ma) [Eq. (23), (77
for the supersystem [ 4+ B], and,
:—;HQO) I=1Tl-le®l, (78)

0Tn the mathematics literature a ‘‘master’” equation of the
form of Eq. (75) is known as a “Markoff chain” equation in a
continuous variable. For a discussion of general methods of
solution of “Markoff chain” equations see J. S. Doob, Stochastic
Processes (John Wiley & Sons, New York, 1953); W. Feller,
Introduction to Probability Theory (John Wiley & Sons, New York,
1957); W. Ledermann, Proc. Cambridge Phil. Soc. 46, 581 (1950);
47, 626 (1951). The solution of ‘“‘master” type equations is
worked out for various special cases in the physics literature,
e.g., N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.
Rev. 73, 679 (1948); J. P. Lloyd and G. E. Pake, Phys. Rev. 94,
579 (1954); F. Lurcat, Compt. rend. 238, 1386 (1954); 238, 2517
(1954); 1. Solomon, Phys. Rev. 99, 559 (1955).
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wherel!
—(1/Ty) Ui Ui
”U“E U;21 "‘(1:/T2) U:2N ;
Unt Uno - (I/TN)
U12EW(1,2)6[E'(1)—E(2)]/2’67’, ceey
UTSE W(y,s)e[E(T)_E(‘?)] /2kT’ ey, (79)
0;0) | | B(1; e
Z;t P 2;)5 E(2)/2kT
lo@l=|@: ) |=| P2s e :
09| | PQv; pesevrme
with
E\)=e, .-+, EU(e))=e,
E@a(e)+D=e, -« -3
W(1,2)=wa)2® (er,01(1) ; e1,01(2)5 ), - -,
W Npay(e)+1)
=wa1* " (er,01(1) 5 e2,02(1)50), -+
P(l ; t)EP[A] (61,051(1) 5 Z)) Tty
(80)

P(ay(e)+1;0)=Pra(eze2(1);8), - -+

N=%1=2 MNai(e));
<
U,s W(r,s)elEM—E®1/2kT
- =1 [Eq. (65)];
Use W (s,r)elBE—Em)] /26T

(I/TH=2 W(sr)(1—=bs)

for the system of interest [4]. Since ||W|| and ||U]|
are both symmetric matrices, Eqs. (75)-(77) are of the
the same general form as Eqgs. (78)-(80), and it will
suffice to discuss the solutions of the former, those of
the latter being obtainable from those of the former by
appropriate substitutions.

The solution of Egs. (75)-(77) can now be written as

120l1="Z Q5.1 PGl

(1) v

=22 |

with 2
(=W D-lpll=wlipsll; 112Nl 24l =0m, (82)

the w,, ||p.]| being the eigenvalues (here assumed non-
degenerate) and the corresponding eigenvectors of the

1 The relationship between Q(r; ¢) and P(r;¢) used in Eq. (79)
was suggested to us by Professor F. Bloch. See also E. W. Montroll
and K. W. Shuler, Advances in Chemical Physics (Interscience
Publishers, New York, 1958), Vol. 1, p. 361.
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matrix — ||[W||. Since —||W| is symmetric—“‘micro-

scopic reversibility,” Eqs. (36), (77)—the w,:
w<wi<w:< -+ - <wy—1

are all real, while the normalizability of the P(n;¢) for
all ¢t [(d/d)2n P(n;t)=0 or 3., P(n;{)=1] demands
that the algebraically smallest w, is zero, i.e.,

0=wi<w1<w< - - - <wy_1.?
Thus, substituting Eq. (83) into Eqgs. (81), (89)

1P@11= IBoll- 12 @) 1] ol
+1§1(IIZ>»I;~“P(zo)H)||;,,y”e-w_m (84)

(83)

= [Pt X (U0 2 D,

(=W D-llpell=0, (83)
and, since the ||W|| of Egs. (76), (77) satisfies,
(=W lIll= (= 1Iw])- 1] =0, (86)
we have (wo assumed nondegenerate!)
[[poll= (1/904)[[1]]. (87)
Hence, from Egs. (84), (87)
[[Peasit]| = (1/90) (o P(n; ) |[1][= (1/90 1] (88)

in agreement with Eq. (41) or Eq. (50), The reality of
the various w, in Eq. (81) or (84) shows in addition
that ||P(#)|| approaches ||Pewil|| in a nonoscillatory
fashion, the (wi)™, (w2)™, -+, (wy—1)™! playing the
role of relaxation times. Similarly, solution of Egs.
(78)—(80) yields,

100lI=X g It Dl e
= (gl lo@ D laol

+ Z=.:1 (I|QV]| : ||Q(t0)||)“q,“e—wv’(t—to) (89)

= o=+ X (1] 106 Dl e-=r =,

[1/7 (min)—1/74]
W21
W

1
||XHET( Ili+lwi=

min)
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with
=1UD-llgsll=e"lgll; g1 lg:ll=80, (90)
and
(=T~ ligoll=w0'llgoll =0, (91)
whence, with the ||U||(=||T]|) of Eqs. (79), (80),
e~ B W [2kT
loul}=——|e-ewrmr
(a1? :
e—E(N)/ZkT
(92)
Zin=Y e EOI =3 g—eilhT
r €j,Q5
so that, substituting into Eq. (89)
e—E(l)IQkT
HQequil” ___M e—E(2)/2k7'
[A] 5
e-—-E(N)/2kT
e—E(l)/kT_eE(l)/WcT
= | E@IRT. gE@ j2%T (93)

VA :
1 e~ E(N) [KT", gB(N) 2T

i.e., using Eqgs. (80), (79),
P[A]equil(el’al(l); t)EPequil(l; t)EQequil(l)e~E(l)/2kT
= (g"él/kT/ Z e—éj/kT)’

e

etc.,, (94)

in agreement with Eq. (63). The symmetry of — ||U||
—*“detailed balance,” Egs. (62), (65), (80)—ensures
the reality of the w,’ and so the nonoscillatory character
of the approach of ||Q(?)| to ||Qeauil]|.

An interesting lower limit can be obtained for the
shortest of the relaxation times, i.e., for (wy—1)™?, viz.,

(3)T (min) = (wy-1)7";

T (min)=smallest of the T',, (95)

so that the shortest relaxation time is =% (lifetime of
the shortest lived state). Equation (95) follows upon
introduction of the ‘“non-negative” symmetric matrix,

W12 W1N
[1/T (min)—1/7%] Woan , (%)
W [1/T(min)—1/Ty]

Xu=[1/T(min)—1/7T:1]20, X1,=W,20, etc,,

12 The normalizability of the P(n;¢) for all ¢, as given, e.g., in Eq. (4), is also obtainable from Eq. (11) since, on the basis of Eq.
(9) or Eq. (14), 2, Ya(r; t—t0)=0 and'since Znm[Wam ()P (1} ) —Wmn(r)P(n; £)]=0. Thus the neglect of ¥, (r; #—1fo) in passing
from the rigorous Eq. (11) to the approximate Eq. (35) (the ‘“master” or Boltzmann “gain-loss” type equation) does not upset
the normalizability of the P(n;?). From a mathematical point of view, the normalizability of the P(n; #) in Eq. (35) is a con-
sequence of the fact that each column of the —||W|| matrix vanishes, and this property of — ||| together with Eq. (82)
may be used directly to establish Eq. (83) and also Eq. (87) below.
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and use of a theorem of Frobenius® to the effect that
a non-negative symmetric matrix such as ||X|| has an

eigenvalue spectrum «,: %o =%; = %3 = - -+ =%y—1 such
that
Xo ZH1 ZX2 =0 2, 20 Zwp =0 Zavn, (97)
and

X = IxN_1| . (98)

Equations (98), (96), and (75) yield
[1/T(min)] = |[1/T (min) J—wy—1],
—-W(2,1)

(99)

ull=

W (2,1)elE@~EM1/kT

1

e—EQ) [2kT
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which, upon squaring and dividing by wx—1, is seen to
be equivalent to Eq. (95). On the other hand, no
general expression in terms of the 7', seems to exist for
the upper limit to the longest of the relaxation times,
(w1)™, though examination of particular examples (see
Sec. F) appears to indicate that, as might be expected
physically,
(w1)'~T(max); T (max)=largest of the T',. (100)

As an example, we shall now give an explicit ex-
pression for ||Q(#)]| in the simplest case: N=2. Here,
from Eqgs. (79), (80), (92), (90), (93), we have

W(1,2)e EQ-E@] /KT
—W(1,2)
1

e—EQ) 12kT

llgoll =

Ziat|e E@ 2T
1

Za?

e—EB(@)/2kT

llg:ll =

b

——EQ)[2kT

[|Qeavit]] "'1—
Zia

so that from Egs. (101), (89), (79),
P(l ; t)eE(l)l2kT
P(z’ t)eE(Z) 12T

1 e—E(l)/kT,eE(l)/ﬂcT

Zia

le®ll=

1

e~ E@)/kT, pE(2) [2kT Z[A]

i.e., using also Eq. (80)

(e EWIKT | g~E@/ET)}

e—EW)/kT, gE(1)/2kT

eE@) KT, gE(2)/26T

b

e—E(2) 12kT
(101)

w1,= W(1!2)+W(2)1) H

’

+——LP(1; to)elEO=E@12RT _ P(2; f) e~ IEO~E@]1 /2T

e—E@) 26T
e W ADHW DI (—t0)

(102)

e—-E(l) 12kT

P(l’ t) = (1/Z[A])6—E(1)/k1'+ (I/Z[A])[e—E@)IkTP(l ; to)_ —-E(l)/kTP(Z; to.)]e-[W(1,2)+W(2;1)](l—to)

w(1,2)

L (WRDP; 1) =W (1,2)P(2; 1)

TwWa+weL

w(1,2)+Ww(2,1)

)e* [W1.2)+W(%1)] (t—lo)’

(103)

P(2;0)= (1 Zu)e PO~ (1 Zun)[eFRTP(L; 1)~ FORTP(Q; ) Jo~ 7 7 @0 =10

W (2,1) (W(2,1)P(1 s t)—W(1; 2)P(2; o)
W({1,2)+W(2,1)

WA+ W)

Equation (103) demonstrates the proportionality of
P(1;8)—Peavil(1;1), P(2;8)— Pewil(2;¢) to
£[W(2,1)P(1; t0)—W(1,2)P(2; )]
==£{W(Q2,1LP(1; t)—Peil(1;1)]
—W(L,2)[P(2; to) —Pexil(2; 1) ]}
[see Eq. (65)], i.e., to the initial deviation from

13 See, for example, E. Bodewig, Matrix Calculus (North
Holland Publishing Company, Amsterdam, 1956), p. 145.

)3— W @,2)+W(@2,D](t—t0)

“detailed balance” and so to the initial deviation from
equilibrium.
In concluding this section we wish to point out that

14 The method of proof of Eq. (95) given in Egs. (96)-(99) was
suggested to us by Professor I. I. Hirschman. For nondegenerate
wy, the =, < signs in Eq. (99), (95) must be replaced by >,
< signs. Our statement of Frobenius’ theorem is valid only for
a non-negative symmetric matrix ||X||. The theorem can also be
proved for any non-negative matrix, in which case some of the x;
with 1< 7<N—1 may be complex, and Egs. (97), (98) become:
o= |wm| = 2 |ayal.
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a Laplace transform method for solving Eqgs. (75)-(77)
or (78)-(80) yields an exp]1c1t formula for the matrix
I&N=Z: ]| [|1P¢E) D]l in Eq. (81) or for the
analogous ||K,'||=([|@]- HQ(to)l])llqvll in Eq. (89), viz,,

&= (1[I 2@ D2

1 C(;s)
= |dD(s) | |C(2;5) , (104)
ds C(Z\:7;s) s=—wy
where
D(s)=det(s[|1]|—[[W ), (105)

*C(n; s)=same determinant as D(s) but with nth

column replaced by

P(Z'; to) |.
P(N, fo)

Equations (104) and (105) are valid for nondegenerate
w, and are derived in Appendix B below; the corre-
sponding equations for degenerate w, are also given in
this Appendix. It is to be noted for future reference
that, from Eqgs. (104), (87), (82),

2on Ko(n)= (||| [|P(t0) )2 n po(n)
=Zﬂ P(”) to)z 1;
K, (n)= (B [|P(t) )25 p.(%)
(1<v<N—1) (107)
= (151l [|1P o) [DoE([|2. ]| - [| o] )=0.
E. THE “MASTER” OR BOLTZMANN “GAIN-LOSS”
EQUATION FOR AN INDIVIDUAL PARTICLE

OR QUASI-PARTICLE OF THE SYSTEM
OF INTEREST

If the states ¥ (a;(ej,a;) of the system of interest [4 ]
can be appropriately described in terms of the states

(106)
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Y (G®), ¥ (G®), - (D), o Y (G9), -

of its constituent lndn 1dud1 pdrtlcle% or quasi- partlcles

[13, 121, ---[<l, ---, Cql, - - -, we can consider

Pray(ejas; )=Prai({7}; 0);
e, a;=e({7P}), a({7P});
{j(i)}gj(l), ]'(2)’ ° j(i), ° j((I-*l)’ ]'(fl), j(tﬁ-l)’
(108)

as the joint probability that [17], [2], ---, [4],

[g—1], [q¢], [g+1], --- are found in the states
Y (GD), v@a(G®), -+, v (G9), o, Ye-u@e),
Yia(79O), Y1 (), - -+ at time ¢, equal identically
to the probability that [4] is found in the state

Va1 (ej,2;) at time ¢ We further define

Pi(j2;0)= X Pui({j®};0);

{i9}@

{](2)}(q)Ej(l), ](2)’ s, ](‘1"‘1)’

@t .
(109)

](l), s

as the probability at time ¢ that [¢]is found in the state
gbm ( ](9)) for any probability distribution of [17], [2],
.- -, Lg—1], [q—l— 1], - - - over the various states
¢[11 (J(”) Y (J®), -

y Y (GD), <oy Yie-n(GO),
Yigr (7€), - -, The “master” equation for
Piay({79}5 ),

Eq. (64), together with Eq. (109), then yields

d
d—P[ql (G5 0)=2 [win(j@; 9; )Py (kD5 1)
A k@)

—wig (95 jO; )P (595 0)],

with the, in general, time-dependent transition prob-
abilities per unit time,

(110)

wraP I ({7OY, {(RD}; )P a1 ({kD} ;1)

1/} @, (O} @
wig(§@; k95 1)=

b

2 Pui({k9};0)

{6} @

(111)

W ({2 DY (7D} DPar({FP)5 )

) {79 @, (RO} @
wig (@ j O )=

2 Pu({79};0)

fiO}@

Let us now suppose that the system of interest [4] is, as a whole, never too far from equilibrium so that we
can replace the Pra({7®};¢) in Eq. (111) by their equilibrium values:

exp[—e({j"})/0]

Prad({j9}; )=

[Egs. (63), (108)],

UZZ(;)} exp[—e({£})/0]

(112)

2. exp[—e({j?})/0]

(i O} @

Pigei(j@; )= 3

{7} @

Prayat(j@; =

Eq. (109)].
> epl—aoyye] | e 10

{26}
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Then

Wi (JO; k051, win(kD; 7950

are replaced by time-independent

Wi (D RD50), wig* (kD5 jD;50)

while Eq. (65)—‘detailed balance”—ensures that the
numerators in the two resultant expressions on the
right-hand side of Eq. (111) are equal; thus, using also
Egs. (109), (112), we obtain

2 Praeil({9}; 1)
i@

wig k@D, jD5 1) X P i({k9}; 1)
{E©)}@

wig (@5 k95 1)

Psi(j03) 5 expl—e((j))/6)
= : N _ . (113)
Preil(k@5 1) 3 exp[—e({k9})/0]

{6} @

Equation (110) with

w1 (79, @ 5 1), wig(R9D,7@ ;1)

replaced by

W (F @D ;1) wig il (k@@ )

and Egs. (111)-(113) define the “master” equation for
the particle or quasi-particle [¢]; the analogy between
these equations and the Egs. (64), (65), defining the
“master” equation for the system of interest [4] is
obvious, and we can use the methods of Sec. D to
obtain P, (5@} ¢) as a function of ¢. A particular sim-
plification is obtained if, to a sufficient approximation,
e({77}) depends additively on the ey (79),

e({79)) ey (M) e (FO)+- -

Fewm(GP)+- - +e-n (@)
+ea (GO + et (7)) +- -,

w[q]equil(]’(q);k(q); t)=
{79} @, {6}, 9y, By, 10, By
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since Egs. (114), (113) give
Wi W@ kD5 1) expl—e(j9)/0]
Wi (k@ ; j@; 1) exp[—egq (R @)/ 6]
in complete analogy with Eq. (65).

F. MAGNETIC RESONANCE: TIME VARIATION
OF LONGITUDINAL MAGNETIZATION

We proceed to discuss certain magnetic resonance
situations in view of the general theory established in
Secs. B-E above. In these magnetic resonance situ-
ations, the system of interest [4] is identified with the
degrees of freedom describing the orientations of
nuclear (or electronic) spins, and the surroundings [ B]
with the degrees of freedom describing the motions of
atoms containing the spins, i.e., in brief, [ 4 ]=spins,
[B]=*“attice.” The ratio

0/ 30 =0/ (3C14; P+ 515 )

is now no longer =N 4%/ (N(a;+N5;) but is inde-
pendent of N41(=N5)) and is not necessarily neg-
ligible for a sufficiently large specimen—on the other
hand, U/3® is indeed small in many cases, e.g., for
U=nonsecular spin-lattice phonon interaction (mag-
netic dipole-dipole or electric quadrupole spin-lattice
interaction). We present a treatment of the approach of
the nuclear spin system ([ 4 ]) toward equilibrium under
circumstances in which the “lattice” ([B]) remains in
equilibrium throughout and with U/ (3C4; @+ 3C(5®)
small. Under these circumstances the conditions for
validity of the “master” equations deduced in Secs. B,
C, E are satisfied and our discussion is, in particular,
based on the individual particle ‘“master” equation of
Sec. E.

We treat this “master” equation for an individual
particle [¢], i.e., for an individual spin [¢], of the
system of interest [47], Eq.#(110), with w, (@ ;2@ ; £)
wiy (k95 j95 1) replaced by wig*®!(j9; k@5 1),
Wi *(k@; j@; 4) and with Egs. (111)-(113) for
w[q]equil(]'(q) ; AN ; t), .w[q]equil(k(q) ; j(q) ; t)_ These last

(115)

(114) equations, together with Eq. (65), yield
| ) e“'h;fe
{W[A+B] ({j(‘)};"lu;ﬁu; {k(i)} 7"”:60)——_—_]
Z g‘ﬂwlg
N, Bo

XPp| —€ @
X( exp[—e({£})/0] (116)

> exp[—e({k9}/0]/’

{6} @

> exp[—e({k®})/0]

{z®} @

Wig " MN(R(@D 5 @5 f) =gyl (5@ k@ 7)

1i®}@

> expl—e({79})/0T

where in the present instance 7@ is to be interpreted as the magnetic or spin-orientation quantum number of

the spin [¢]. Also, from Eq. (36),

W a5 ({79} muBu; {RD} m0,80) = 2/ )8 (e({7 ) Hmu— e({ED}) =) K{ 7@ }10,80 | O {E D} ,10,80) |*

=W a1 D },m0,805 {7P} 5 MuBu),

(117)
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where, for the case of the magnetic dipole-dipole spin-lattice interaction, V= Udgip-aip and Vgip-aip can be

identified with

Vdip-aiptonsecilar= 3 fZ[Cm(I 18] 1+ 111141 1618) + Epp (I 11141 514) ]+ Herm. conj.,
4
3 iyt

fe=—"
2 7}

where y=nuclear gyromagnetic ratio;
ty—1,=(rr0,010:670); t=Rst+¥&;,

R,=lattice vector of the atom [ ], £&,=displacement of
the atom [f] from its lattice position=function of
phonon creation and destruction operators, and I
=spin of the nucleus in the atom [f]. The term
Vaip-aip™®2* which establishes relatively rapidly a
“quasi-equilibrium” spin configuration within (4], need
not be explicitly considered in the treatment of the
relatively slower approach to equilibrium of dynamical
variables such as the longitudinal magnetization since

sinfy, cosb;,e~ /e,
3

118
3 297 (118)
Ep=—-

(sinfy,)%e =21,
7

this relatively slower approach to equilibrium involves
energy interchanges between the spins [4] and the
“lattice” [B]. If the atomic motions of the “lattice” [ B]
are appropriate to, e.g., liquid-like rather than solid-like
states of the specimen, r; must be expressed in terms of
creation and destruction operators of motional quasi-
particles other than phonons. The general formalism
developed below holds however in this case also.

We now introduce the notation j(¥=m,;, k(D=m,
(—IZm;m!=I) and find from Eq. (118) as typical
nonvanishing matrix elements,

’

({ml} = {mi} (q),mq; "u,ﬁulfodip_dipnonsecularl {mi,} —_ {mz} (q)’ Mg— 1 5 Moy ﬂv)

=Zf<’7u76u [ Cf‘l[nvyﬁv)mf[(l—mq"}'l) (I+mq)]§’ (119)
({ml} - {ml} (@) (p)mq’mp; nmﬁu I fodip_dipnonsecularl {'mw'} — {m;} (9) (17), Mg— 1, Mp— 1 ; Moy ﬁv)
= (Mu,Bu| Re Epq | NosBo)L (T —mg+1) (T+mg) PL(I—mp+1) (I+m,) 2 (120)
Thus, from Egs. (119), (120), (117), (116), (114) and with e(q(my) = — Frym H exy= — fiwpmy, we have
wig* W (mg; me—1; 1) = (I—mg+1) (I+mg) 2n/7) BZ , Lexp(—n./©)/ Zﬂ exp(—n./0)]
X {5(7714_ ﬂv“th)[Z.’l ("Iu:ﬁu ! qulﬂ,,,ﬁ,,>|2(<(1%f2>>— (<<mf>>)2)
+ | <’7u;ﬁul Zf qu"'?vylev>l2(<<mf>>)2]+6(’7u_770—Zth)
with XL 4| (uBu| Re Epq|mo,8:) |1 2T (I+1)— {({m))+ ({mN ]}, (121)
2 my exp(hwrmy/©)
= ~ (Tor, @) (I+1),
{{ms)) S exp(hammy/©) (hor®)3I(I+1)
my
> m? exp(hwrms/©)
=" ~17(I41), 122
{{ms)) ST E—T ( (122)
ms
whence, for H, T such that fwr/ 0«1,
wig1* W (1mg; mg—1; O (T—mg+1) (I+mg)3I (I+1) (2w /7) ﬂZ , [exp(—n./®)/ Z,; exp(—./0)]
XZ!{a("?u"'ﬂv‘hwb)l (nuyﬁulch]"lv:ﬁv> I 2+5(77u'—77v"'2h‘*’L)2l (ﬂu:ﬁulRe Efql"lv;ﬂv”z}
= (I—my+1)(T+m)w. (123)

The shape dependent term, | (n4,8.| 27 Crq| 10,84 |2(({my)))?, in Eq. (121) contains the factor
(ﬁWL/®)2= (ﬁ'YHext/kT)z

[Eq. (122)] and so becomes important at extremely low temperatures.
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In a similar way we can work out 4@l (m,—1; my;¢) and obtain, consistent with Egs. (116), (114), (115)
expL— e (m—1)/6]
" exp[— et (0)/0]
An analogous discussion can be given for the case of the electric quadrupole spin-lattice interaction; here,
Vaquaa™ =377 [As (T2l 1+ I+l 1112)+ 47 (T1714)"]+Herm. conj.
A4,=[0/8I2I-1)1(Us3:00— Utsiiu.2),

Wi (mg—1; mg; ) =wg1*W M (mg; mg—1; =w* W (mg; me—1; 1) exp(—twr/©). (124)

. (125)
A/=[0/8I2I—=1)](U s3;2,2— U ts1i9.0— 20U 113;2,0),
32U (r)
[fliz,a= etc.,
dxdx [r=R,+ &,

where Q=nuclear quadrupole moment, and U(r)=lattice electrostatic potential at r. A calculation similar to
that in Egs. (119)-(123), yields:

wiq* M (mg; me— 15 8) = (2my— 1)2(I—mq+1)(1+mq)(27"/ﬁ)

exp(—1./0)
i s\ S exp(my ey ) e ) [ bl Aol o)
N, Bw

= (2m,—1*(I—m+1)(I+mg)w’, (126)
Wi (my; mg—2; 1) = (I —mq+2) (I —mg+1) (I+mg) (I+m,—1) (2w /1)
exp(—./0)
[ —— ™ v—Zth P u Aq, P 2
Xﬂu.ﬂ?’lvyﬂv( > exp(—nw/@)))a(n " 1Bl |nubo)

10, B
= (I—mg+2)I—m+1) [+my) (I+m,—1)w"”. (127)
Again, consistent with Eq. (116) or Eq. (115), we have:
\expL—e(m,—1)/0]
" expl—en(my)/ 0]
=wg1*® (mg; my—1; 1) exp(—Hwr/0), (128)
\expL— e (m,—2)/ 0]

Wigr* W (mg—2; My 1) =W (g1° 0 (g mg—2; 1)
exp[ —eqq1 (m,)/ O]

=w* (my; m,—2; 1) exp[ —27uor/ O], (129)

Wit (mg— 15 my; 1) = w10 (my; mg—1; 8

Having thus obtained the transition probabilities Egs. (110)-(115). Thus, on the basis of the analogous
per unit time, w12 (my; my 5 t) [Eqs. (116), (121)- mathematical structure of Egs. (110), (115) and Eqgs.
(124), (126)-(129) ] we can use the methods of Section D (75)-(80) we can apply the results of Egs. (81)-(94),
to solve the individual particle “master” equation, (104), (105) and write (—1 =m,=<1)

2I
P gy (my; )= Pg*®i (my; 1) +2- K, (mg)e (=),

: (130)
exp[— egq1(m,)/ O] exp[7iwrmy/ O]

Pl (my; 1) = - = —,
2 expl—em(m)/0] % explhwiw,’/ O]
‘MQ' mg’
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where the w, are eigenvalues of the matrix
—(1/T1)
, Wi (I—1;1;7)
— [lwigeei||=— s
Wi (=15 15 1)

-1
(1/Tn= 2 wg* ™ (mg;I;1), etc,

mg=I—1
and

K, (mq)= { s

= ) C(myg; s) Is=_w,;
D(s)=det(s||1]|— llwgea]));

(132)

C(myg; s)=same determinant as D(s) but with the
column corresponding to m, replaced by

Pgy (I to)
Pig(I=1;1t0)|.

P (—1; to)

Thus the w, and K, (m,) are functionally determined by
the w*®(my;m,’;¢) and the wi*®(my; m,'; 1),
Pi,1(my’; to), respectively. However, the explicit evalu-
ation of the functions in question, apart from particu-
larly simple cases [as in Egs. (101)-(103)], is rather
complicated.

Once the probability at time ¢ of finding the spin [¢]
in the state Yi(my), Prg(mg;t), is known we can
determine the longitudinal magnetization, {u), of the
system of interest [47] composed of the individual
spins [¢]. Thus (u). is given by:

I
()= ; IPIQJ(mq§ )
N
h'y)Imz
Via

N
h’Y'mq)’
Via

so that using Eq. (130), and in view of Eq. (122),

X <‘l’ ta1 (720)

Vil (mq)>
(133)

I
= Z_:IP[q](mq;f)(

Nia z )
e ){ S Peeit(mg; O,
Viay/ tmg=—1

2I I

+20 = K.,(mq)mq) e~ 7v(t—to) }

v=1 \mgq=1I

) N
=<u> tequxl_'_ (h’)’ )
Via

21 I
X Z Z [{,,(mq)mq)ewwy(t—to) ;

v=1 \ mg=TI

w5 I—1;510)
—(1/T1-0)
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WL ; —1;1)
Wi (I—1; —1;1)

" : , (131)
w[q]GQull(_I; I— 1; t) - (I/T—I)
. Nia Nay ity
<#> tequd: h,y <<mq>>f_‘;l_Hext —‘%I<I+ 1)
Via Vi ©
N[A] th
= 1) (—) (134)
[4]1 o

We now discuss the evaluation of the w,, K,(m,) in
various special cases of interest in magnetic resonance.

Case I: I=1 with UVagip-aip>Vquaa. Then from Egs.
(123), (124)

Wi (1; 05 £)=1-2w=w;*®!(0; 1; £) exp(fwr/ ©)
Swi*(0; 15 ) (1+ 7w/ 0),
Wi (0, —1; 1) =2+ 1w
=w*®i(—1;0; ) exp(fiwr/0O)

w2l (—1;0;8) (14-Awz/0), (135)
Wi ™ (1; —1; ) =w*™(—1; 1;£)=0.
Equations (135), (131), (132), (134) yield
wi= (2—hwr/O)w=2w;
we=(2—wr/O)Iw=6w; (136)

<p'>t_<#> tequil
(AyN 141/ V 141)
= — e (=0 (4+43%wr/O) Py (—1; to)
+ (2Awr/ ©) P g1 (05 to) — (4—3%iwr/ ©) P11 (1; to) }
— 15 (hor/O){— Py (—1; to)
+2P151(0; to)— Pray (15 0)},

so that, in general, the longitudinal magnetization {u);
approaches its equilibrium value with two relaxation
times, (2w)™}, (6w)~'. On the other hand, in magnetic
resonance practice under the condition of initial satu-
ration, we have the various P4 (#,; to) mutually equal
so that (u),=0. With

Pry(15t0)=Pq1(0; 20)=Ps1(—1; 20)=3,
Eq. (137) becomes
() 4= () it

(YN 141/V 141)

(137)

o (O
<”> tequile—Zw( t—1p)
(YN /Via)

so that in this case the longitudinal magnetization {(u),
approaches its equilibrium value (u)£wil with a single

(138)
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relaxation time, (2w)~!. Another interesting initial
condition corresponds to P, (#24; to) = 3(14-am,) with
la|K1;e.g., a=Tiwr/O for Py (my; to) = Pg)°® (mq; 1),
and a=—/wr/O for P, (m,;to) descriptive of the
(negative temperature) situation “immediately after
a sudden reversal of Hext.”” Equation (137) now becomes

() e— () vt (th )
——— a e-—Zw(t—to)

(YN 141/ V 141) 3\ 0O
O O

= , (139)
(YN 141/ V 143)

so that (u); again approaches (u)e®! with a single
relaxation time. It is also interesting to note that

T (min)=To=[wig*™(—1; 0; H)+wig*™(1; 0; ) I
2 (4w) 1< 2 (we) 1= (3w)™?

in agreement with Eq. (95), while
T (max)=T1= (wig*™"(0; 1; )= (2w) = (w1)

in agreement with Eq. (100). '
Case I1: I=$% with Uaip-aip>Uquada- Then from Egs.
(123), (124),
Wi (5535 0)
=1-3w=w*®(}; §; ?) exp(fiwr/©)
w3, $; ) (1+Fiwr/6),
w3
=2-2w=wg* ™ (—3; %; 1) exp(fiwr/O)
Swir®(—3; 3; ) (1+-Fwr/0),
wigi(—3, —4;)
=3-1lw=w(*™(—§; —%; ) exp(fiwr/0O)
S g2 (— §; — 45 8) (14-Tior/ @),
g (55 —3;0)
=wg " (—=3; §; )=w ™ (§; —5;0)

=wg* ™ (—3; §;0=0,

(140)

so that from Egs. (131)-(134) and under the condition
of initial saturation

w1= (2—fiwr/O)=2w;

we=(2—iwr/O)3w=6w; (141)
w3= (2—fiwr/ ©)6w=212w;
equil
W Shor
(ByYN 141/ V 141) 4 0
equile—-Z'w (t—1to0)
__ et o)

(ﬁ'YN[A]/V[A]).
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Thus the longitudinal magnetization (u); again ap-
proaches its equilibrium value (u)ce with a single
relaxation time, (2w)~
Case IIT: I=1 with UVguaa>>Vadip-dip-
Egs. (126)— (129),
wig*™(1; 05 %)
=1-1-20' =w1?®(0; 1; £) exp(hwr/O)
S0 1;0) (1-+1/ ),
wig* ™ (05 —1;7)
=1-2-1w'=w 20l (—1;0; ) exp(fiwz/0O)
Swig* ™ (—1; 0; ) 147w/ 0),
wig* (15 —1;7)
=2-1-2-1w"=w2(—1; 1; ¢) exp(2%iwr/O)
Swig* ™ (—1; 1; 1) (1+2/iwr/0),

so that from Eqgs. (131)-(134) and under the condition
of initial saturation,

1= (2—Tiwr,) O)w' + (2— 2o,/ ©)daw"”

Then from

(143)

gz‘w,'l'gw”: (144)
we= (2—Tiwr/ O)2w' 6w’
_ equil
(#YNay/Viag) 3 (145)

</"'> tequile— Quw’'+8w’’) (t—to)

(ByN 141/ V 141)

whence (u); once more approaches {u); 2! with a single
relaxation time, (2’4 8w’ )~

The evolution in time of (u); toward (u)#£ew! [as in
Egs. (137)-(139), (142), (145)] has also been treated
in terms of the concept of a time-dependent “spin-
temperature” T,(f). For a comparison of the results
obtained here with the not always correct results
deduced by means of the spin-temperature procedure,
see Appendix C.

G. MAGNETIC RESONANCE: TIME VARIATION
OF TRANSVERSE MAGNETIZATION

We shall now analyze the variation in time of (u’),,
the transverse magnetization of the system of interest
(4] composed of the individual spins [¢]. We have:

<u'>t=<<fw/vm>z IW> —((y/ Vi) 2)e. (146)

Such a nonvanishing transverse magnetization may be
obtained at the initial time #, by the application of a
(very short) “90°” rf pulse at a carrier frequency equal
to wr=<vHex which rotates the previously existing
equilibrium longitudinal magnetization into the plane
perpendicular to Hexy=Hext?; thus immediately after
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the pulse, we have in view of Egs. (2), (4), (5), (50), (51),
p(to) = expli(m/2) (1) Joex exp[ —i(w/2) (—1,) ]

exp(— 3141 ?/0) exp(— 35 ©/0)

=exp[—i<w/2>zy](

Trace[exp(— 3¢14;@/0) exp(— 3¢5 ©/0)]
exp(fiwrI./0) exp(— 35 @/ 0)

) expli(m/2)1,]

=exp[—4(w/2)1, :]( expli(r/2)1,] (147)
! Trace[ exp(fiwr]./©) exp(— 35 ©/0)] !
teopl, — e @
=exp( wrl./0) exp( 1B /@); E=E, 05,0 ..
9 exp(—E/0)
(0" )o="Trace{o(to)n'} = (fry/V 141) Trace{p(to)I.}
#y Trace{exp(fwrl./O)I,} )
- = (u eauil (148)
Va1 Trace{exp(fiwrl,/0)}
(N a1/ Via)iyI (T4 1)twr/ 0.
The description of the variation of (u’), with #(t>12,) the Eqs. (156), (152) yielding,
is most easily given in a frame of reference “rotating _ .
with angular velocity wz? relative to the laboratory ° rot () = expl — (i/7%) (l—.-to)({}C[B 191+0) Jo(t0)
frame” and we proceed to generalize our discussion to Xexp[ (/%) (t—10) (315 @ +0)].  (157)
the treatment of phenomena in such “rotating” frames.  1f jn addition,
We begin with Eq (5) for <}LI>¢, ViZ., [GC[B] (0)’,0]=07 (158)
= Trace{p(O0') = Tracelpon Ol O, (49) 1 o (157)and (147 give
where .
. _ prot(8) = exp[ — (i/%) (1= 10) 0 Jp(to)
pros(£) = = WE(— 0 Tzp (§) gieL(t—t0) ]2, (150) Xexp[ (i/) (t—t)0].  (159)
#wt/(t)Ee—iwL(t—to)lz#’eiwL(t—to)Iz’ (151)

the subscript rot indicating operators in the “rotating”
frame. Use of Eq. (2) with 3C= C‘C[A](O)—I- ICim O+
= —7wrl,+ 35 ¥ +V and of Eq. (146) in Eqgs. (150),
(151) yields,

prot(f) = e~ L=t Ll expli, (b—to) I,
= (5/%) (t—t0) (3C 151 @ +0) Jo (bo)
Xexp[—iwr(t—to) [~ (¢/7) (t—to)
X (35 @+V) Petort=w1,,

trot’ (8) = (Bry/V 1a1){1 > cos[wr({— o) ]
+1, sinfen(t—) T},
so that, substituting Eq. (153) into Eq. (149),

(Wye= (By/V 141) (cos[wr(t—to) ] Trace{prot(t) I}
+sin[wr,(t—t) ] Trace{prot(H)1,}), (154)

with prt(f) given by Eq. (152), and prot(to) =p () by
Eq. (147).

The expression for prot(f) in Eq. (152) is considerably
simplified if,

(152)

(153)

[3C4)®,0]=0, (155)
ie.,

[1.,0]=0 (156)

It is further reasonable to suppose on physical grounds
that Trace{protly} =0 for prot given either by Eq. (157)
or (159) so that

(w"ye= (Try/V 1a1) (cos[wr(t—1to) ]
X Trace{prot ) I}). (160)

Equation (160) corresponds to the assumption that, in
the frame of reference rotating with angular velocity
wr? relative to the laboratory frame, {(u’); approaches
{u)eil without any further precession.'®

Equation (160) shows that the problem of evaluating
(u")¢ is reduced to the problem of evaluating

Trace{prot (£)1 5}
which can be written, using Egs. (5), (6), as

Trace{prot ()12} =2 n{n| orot &) | ¢n){Dn| L | D)
=Zn Prot(”; t)<¢n[1x]¢n>7 (161)

provided that the matrix of 7, is diagonal with respect
to the complete set of states ¢n. The quantity Pro(%; )
= (¢n| prot (f) | #) is the probability that [4 4 B]is found
at time ¢ in the state ¢,. Equations (160), (161) for

15 See I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957),
who have also demonstrated by an explicit but approximate cal-
culation in the case I=14% that Trace {pwtly}=0 for pwt given by
Eq. (159) with U =T0gqip-aip *e=u!*r as in Eq. (168) below.
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(u"): are analogous to Eq. (133) for {u); and may be
evaluated in the same way if the P, (%; ) satisfy an
equation of the “master” type.

We now discuss whether Prot(12;8) = (dr|prot(?) | )
satisfies a ‘““master” equation analogous to that satisfied
by the P(n;{) of Eq. (35). First of all, we note that if
the ¢. are such that {¢m|l.|¢n)=/{(Pn|ls|Pn)dmn, i€,
I,={I,}%=e then for the p(fo)=prot(fo) of Eqs. (147)
and (152):

<¢m | Prot(t()) (¢n>= <¢nlproc (tO) l¢n>6mn
=Prot(n; t())amny i~e-, Prot (tO) = {prot (to)}diag.

Then, following the procedures of Egs. (7)-(11) and
Egs. (13)-(16), the Egs. (157) and (159) yield the
analogs of Egs. (11), (8), (9), and (14) and Eq. (16), viz.,

Prot(”; t+7)_Prot("’; t)

T

=;": [Wrot;n,m(T)Prot(m; t)——Wl'Ot;m,n('T)Prot(n; t):]
+Yrot;n(7'; l_to), (162)
where
Wrot;n,m('r)

= (1/7) [(¢n|expl— (i/7) 75 ]| $m) I%, (163)
Yrot'n('r ; t_t())
=(1/7) Z (1—0km){pn|expl — (/%) 7K ]| dm)

X{¢n | eXp[ (&/7) 73] dey*(dm | prot (8) | b1
=(1/7) 2 (1=8km){bn|exp[— (i/2)75]|dm) (164)

k,m,1

X {(¢a|exp[— (i/) 15 ]| x)*
X {¢m|exp[— (i/%) (t— 1)K ]| $1]
X (| exp[ — (5/7%) (t—10) K ]| 1)* Pros (¢ t0),

with
K= P4+0: prot(f) of Eq. (157), (165)
X=0: prot(?) of Eq. (159), (166)
and
Prot(1; ) — Pros(1; to)
t—1to
=§n: [Wrot;n,m(t—iO)Prot(m; l())
- rot;m,n(t"‘to)-prot(n; tO):L (167)

It remains, in order to demonstrate the equivalence of
Egs. (162)-(166) to a “master” equation, to show that
the transition probability per unit time, Wot; n:m(7), is
independent of 7 for #/£,&Kr=t—1, with £, a suitably
defined excitation energy per particle [analogous to the
discussion in Egs. (18), (19), (22)-(25); restrictions
(0), (¢) after Eq. (35)] and that Yioya(7;i—10) is
relatively negligible [analogous to the discussion in
Egs. (27)-(34); restriction (d) after Eq. (35)].
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To consider the questions raised in the preceding
paragraph we distinguish two cases: (I) “Rigid” lattice;
(IT) “Nonrigid” lattice, and discuss them in order.

Case (I): “Rigid” Lattice
Here we suppose that
V=0C- - R+&)—Ro+&) -5 -+,
is well approximated by
VC-R=Rp)- 5T, Ior, - )

where O is the spin-lattice phonon interaction, e.g.,

L, dier,e - )

V= e(-)dip-dip = ’Qdip_dipsecular_}_evdip-dipnonsecular’

with Vaip-aiphom®ee2r given in Eq. (118) and
Vaip-dip**™o* =3 fZg A5(Iipyel 1ot 1110 101
—2Ip1:l 1),
Apo(ty—1,) =— 57" /77,*) (1—3 cos®y,) ;
tr— ¥, = (779,070,%10)-

r;=R,+&; Ry=lattice vector of the atom [f];
&=displacement of the atom [ f] from its lattice posi-
tion=function of phonon creation and destruction
operators.

The neglect within U of &, & compared to R;, R,
corresponds to the physical assumption of the “rigid”
lattice and to the neglect of any energy interchanges
between the spins and the lattice; since 3Cip;©@=
ey @ (- - -, &,&,, - ) this neglect ensures that [ 3¢5 @,
U]=0[Eq. (158)] and implies the validity of Eq. (159)
for prot(#) provided that in addition [ 3C14;@,0]=0[Eq.
(155)]. This last commutator vanishes however if
Vaip-dip™®™* js neglected compared to Vaip.aip™ewier,
ie., if

(168)

V="Vaip-aip= Vdip-aip™™*+Vaip-diponsenlsr

secular
)

(169)

an approximation valid in the “rigid” solid where
energy interchanges between the spins and the lattice,
associated with Ugip.aip™®u2%, are entirely unim-
portant.

We proceed toinvestigate the properties of Wio; n, m(7),

Y roin(r; t—to) [Eqs. (163), (164), (166)] with
K =0 ~Vaip-aip*** (- - -,Ry— Ry, - -;

< dgee),  (170)

and, in accordance with the general method employed to
deduce Eq. (25) from Egs. (8), (10), decompose X as
[see Egs. (170), (168)]

=504y,
RO=3 Z Arg(Rp—

zcUdip-dip

g) (I[f]:c[[a]z>;

U=3 Z Afg(Rf_ a) (I[f]ul[u]y_2-[[."]:[[:1]2),

(171)
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and take for the ¢,

$n={D111()br21(12) - * D101 (k)" * * } ta¥ 181 (MuBa),
(172)
I'1q1:9 101 () = ke 101 ()
N{A]}
Z I’-q)¢m
q=1
whence
X (O)Gbn: 5(3"(0)(}5" = % /Z Afa (Rf_ Rg),“fﬂa
g
=N a)(#v/a®)=N 16, (173)
(a=lattice spacing).
We then have [see Egs. (23)-(25)]
Trot; n= [Z Wrot; m,n (7) (1 - 8mn):|—1
~[2-2n/1)8(Kn @ — K, )
X [bn| Wl pn) P(1—=8ma ]  (174))

[1 1 (ﬁ2'y2)2]~1 %
R £

so that restriction (c), after Eq. (35), i.e., the analog
of Eq. (24), is not satisfied and the quantity

W xot; n,m(7) = (1/7) [{pn| exp[— (i/%)
XTUdiD-dipmmr(' ) Rf— 7 I T I[f];
XI[u]’ o )]|¢m> |2
of Eq. (163) is not ever effectively independent of 7.
In addition U=K® so that restriction (d) after Eq.
(35), i.e., the analogs of Egs. (29)-(34), is not satisfied
either, and the term Vi, a(7; i—1%0) of Eq (164) (with
K=V~Vaip-aip™(---, Ry—Ryg, -+~ ;- 1 T+,
is not relatively negligible in Eq. (162) compared to
the term
Zm[Wrot; n,m(T)Prot(m; t)_Wrot;m. n(T)Prot(n; t)]
Thus no “master” equation analogous to that of Eq.
(35) for the P(n; ) is satisfied by the P:ot(%; £) of Eq.
(162) in the “rigid” lattice case and the correct deter-
mination of Proy(#;1), {(u'); must be made from the
complete Egs. (162)-(164) or from Eq. (167), together
with Egs. (161), (160), or alternatively, from Egs.
(159), (160). Such a correct determination of {u’); on
the basis of Eqgs. (159), (160):

(uye= (Frv/V 1a1) (cos[wz (t—t0) ]
X Trace{exp[ — (i/%) (t— 1)V Jp (40)
Xexp[ (i/#) (t— )01 2}), (175)
V=~ Vaip-aip* (- -+, Ry—Rg, -5 -+ > I Lo+ ),

as in Eq. (168), p(t) as in Eq. (147), has been given by
Lowe and}Norberg®® and predicts a type of oscillatory
approach to equilibrium for {{u’):/cos[wz(t—1?) }—the
Lowe-Norberg beats—which is observed (six beats are
detected in CaF at 1.2°K!) and which can never be
predicted by a calculation based on a “master’ equation
[see discussion at end of Sec. B and after Eq. (88)].
The Lowe-Norberg beats demonstrate in a dramatic
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fashion for the case of the “rigid” lattice the quantal
coherence effects contained in the 7 dependence of the
term Wiot;n:m(7) and in the presence of the term
Y rot;n(7; —10) in the complete Eqs. (162)-(164).

In summarizing the “rigid” lattice situation it must
be emphasized that the “master” equation is inap-
plicable and that the quantal coherence effects are
crucial because the physical coupling between the spins
[47] and the lattice [B], i.e., the dependence of VU on
&, &, is considered negligible [Eqgs. (158), (159), (170),
(169), (168) with r;=2R/]. The supersystem [4+B] is
then decomposable into two effectively noninteracting
parts: the set of coupled spins [4*] described by the
Hamiltonian 3€14)® <40 and the lattice [ B] described
by the Hamiltonian 3C(z; @, ([3C14; @+, 5C15; @ ]=0),
the variation of {(u’); with ¢ referring in fact to phenom—
ena occurring wholly within [4*7.

Case (II) : “Nonrigid” Lattice

To treat the case of the “nonrigid” lattice we begin
with the always applicable Eqgs. (162)-(164) with &
given by Eq. (165), (169), (168),

K=3m P+ 0= V(- &8, )
+Vaip-aip™ (- - -, (R+¥&)
~R+E), -5y, Ly, ). (176)

Thus the dependence of Vdip-aip®™°™** on the & is
included but energy interchanges between the spins
and the lattice are still considered relatively unim-
portant so that UVaip-aip”°**V* is neglected compared
to Vadip-aip®™®", ensuring the validity of Eq. (155).
Physically Case (I) applies for T<< T pey. and Case (1)
for TZTDebyg‘

We proceed to show that in this “nonrigid” lattice
case Egs. (162)-(165), (176) for P.o(n;t) are well
approximated by a ‘“master” equation of the type of
Eqgs. (35), (36) for P(n;1), viz.,

d
7Prot (%; lf) =Z[Wrot;n,mProt ('m; t)
rot;m,nProt(n; t):]’ (177)

with time-independent transition probabilities per unit
time
Wrot:n,m= (27r/h)8(11u—11,,) l <¢nl 'Odip-dipsecum"ﬁmnz
= Wrot;m.ny (178)
where
ba=¢141({1})¥151(1u,0u)
={dp1 ()b (u2) - ~pray(pe)- -
X (ﬂq) T } A s (771:::314):
=041 ({1’ ¥ 181(12,85)
={¢u1 ()b (u) - dra(u) -
Xo1a1(1a")  + * } a1 181(10,84),
3Cim (0)¢n NuPn; ICimy (0)¢m=77v¢ma

T1g129141 (ﬂq) = ligPq] (Nq):
Nia]

2—:1 l‘q)¢n-

(179)
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The derivation of Eqs. (177), (178) from Egs. (162)- of 3C4; @+ 35 @=3® and Udip-aip™"® playing
(165), (176) is effected by essentially the same pro- the role of V. In particular, the validity of Egs. (177),
cedure as that used in Sec. B to obtain Egs. (35), (36) (178) follows from the validity, in this Case (II), of
from Egs. (11), (8), (14) with 3C(; playing the role restrictions analogous to (¢), (d) after Eq. (35), viz.,

ﬁ/fn""’ h/kTDebye<<Tn = [Z erot; m,n(l _amn):lhl = [Z (2'”'/%)5 ("7v"‘77u) | <¢m l eodip-dipsecuxar l ¢n> l 2(1 - amn)]_l

[ (kTDebye)<( [RHAH-£)— (Rf+1+§f+1)]3) >av°ve‘§]
g[;(k:r;bye) (h_a})J ’

and

(180)

Vaip-aip* <K 3C 5, (181)

while restriction () is ensured by the diagonal character, with respect to the 35 eigenstates ¢, of Eq. (179),
of the p(fo) =prot(to) of Egs. (147) and (152).

The validity of the “master” equation for Proi(n; ), Egs. (177) and (178), implies the validity of the corre-
sponding individual particle (here individual spin) “master”” equation [see the analogous passage from Eq. (35)
to Egs. (55)—(57) or (64), (65) and then to Egs. (109)-(111)]

%Prot; ta1 (ka; 8) =”qu[wmt; ta1 (a5 Ba 5 1) Prot(ie 5 £) = Wrot; 101 (ka5 a'; 1) Prots ta1 (5 £) ], (182)
where
Progta(ug; )= 2 Pr(n;0)= 2 Prot({ui}; 10, Bu; 0), (183)
{ui} @, 14, By fui} @, qu, Bu
W rot; n,mProt (15 1)

{1} @, u, Bus {1’} D, 10, By

- S Pas(msl)

Wrot; (g1 (Mo Mg 5 D)=
{ui’} @, 70, By .

Wrot({:ui} 5 Nuy Bus {Mi/}, Ny Bv)Prot({#i,} 3 Moy Bos t)
{1} @, 7y, Bus {1’} @, 10, By

_ , (184)
Prot({,ui,} s Mo,y ﬁv: t)

{ui'} @, y, By

Wrot({ﬂi’} 30,003 {I‘i}mu,ﬁu)Prot({l-‘i} 3 NusBu s 1)

{1} @, 1, Bu, {ui’} @, 1p, By

Wrot; ' D=
s S Purl{uidimbu; )
{1} @, nu, Bu
are, respectively, the probability at time ¢ that the individual spin [¢] is found in the state ¢ (ue) and the, in
general, time dependent individual spin transition probabilities per unit time.
As in the corresponding discussions in Secs. C, E, we can, to a sufficient approximation, replace the quantities
Prot({us} ; MuBu; £)y Prov({ui'},m0,8v; ) in Eq. (184) by their equilibrium values:

Prot® @ ({3} ,musBu; 1) = Prot®™({u:} 00,80 ; ) = 1/ =1/{ (2 1)V 14] Z N ()}
These equilibrium values follow from Egs. (41), (50) since Egs. (177), (178) are of the same mathematical

structure as Eq. (36), or, in more physical language, are a consequence of the “master’”’ equation, Eq. (177), with
the “microscopic reversibility” condition, Eq. (178). Thus Eq. (184) becomes, using also Egs. (178), (179),

Wrot; g1 (a3 i"q,§ D) =Wrot; 101°W (g 5 g 3 1)
27/ )8 (nu—n0) [ {bra1 (i} ¥ 181 (uB2) | Vatip-ain®™2% | ¢ a1 ({1} 151 (10,8)) |2
{1} @, nu, Bu, {1'}1 @, 9, By

= (185)
{I+1)Nur? ; MNiei(n.)}

= Wrot; [qleq“ﬂ(ﬂq,; Mg t)gwrot; [q] (f‘q’; Mg t))

so that “microscopic reversibility”” also holds for the wyot; [412%iL
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We now set down typical nonvanishing matrix elements of Ugip-aip®**** entering into Eqs. (185) and (182);
we find from Egs. (168), and (179)

<{qu} @ '(p))ﬂq’“p; ﬂuﬁu [ codip_dipsecularl {I‘ il} @ s Mg— 17 “P:Fl > 771)7)811>

. _ y [LT=ppt ) T +w) T (D)
_<7Iuyﬁu|A:0<1l"lv;Bv>[(I #q+1) (I+I-"q)] {E(I_”p)(.[_}-”p_*_l)]% (_"1') (186)
Equations (186) and (185) yield,
Wrot; [q1°W ! (tg ; g— 15 1) =Wrot; 1a1°™ M (g —1; kg5 £)
5 27 1
=(I—u,+1) (I+l"q)—l(1+ D— > (""_‘_’_’“)6("714—’711)2 , ("luyﬁu) lqu ! ﬂv:6v> I 2 (187)
12 h s Bus 101 By Z N [B] (nw) !

= (I_/“‘q+ 1) (I+I~ltq)wtmm

which is to be compared with Eqgs. (123) and (124) for w1l (mqy; mq—1;8), w1 (me—1; my; £). It is to be
noted that 4 ;,=4 ;;(R;+&—R,—&,) [Eq. (168)7] so that pairs of states ¥(5](1,8), Y151 (Ma="1s, B) With non-
vanishing (4= 1y, Bu|4 14| 15,8+), 1.€., pairs of states which make finite contributions to Wret; (1% (ug; ue—1; £),
Wrot; [41° (g— 1 ug; £), in general contain different numbers of phonons. It is the presence of u,e2u,— 1 spin flip
transitions involving a net phonon emission or absorption which destroys, in the Case (II), the quantal coherence
effects so characteristic of Case (I).

Having obtained in Eq. (187) the @rot; 1% (kg ; 1q”; £), We can use the methods of Sec. D to solve the individual
particle “master” equation, Eq. (182), for Prot; (g1 (uq; £). The general procedure is completely analogous to that
given in Eqgs. (130)-(132), (135)-(142) and will not be reproduced in detail here. With Prot; (g (1g; #) available and
using Eqgs. (160), (161), (179), and (183), we can write

W)e= (ry/Via)) cos[wr(t—t)] 2

{rs}s 1u, Bu

Ny o1

Ny
Proe({ms} 5 1usBus t)( Zl #p)
pd

=cos[wr(t—10) 12 2 Prot;1p1(kp; 1) (Brypp/V1a1)

p=1up=—1I

z Niag
—cosfor(t—t]) ¥ Pra [qlmq;z)(—ﬁwq),
Viap .

pa=—1
where [analogous to Eq. (130)]
Prot; 1q1 (g )

= Pra (a3 )+ K)om0, (189)
Prot; 1g1°% N (g, 1)=1/(2I+1),

and w,, K,(m,) are given by Egs. (131), (132) W@th
lwigeelll, Prg(mg;?) replaced by |lwroy 1],
Prot: 101 (ug; ). Equations (188), (189) yield

(W)= cos[wr(t—1)] (wa [A])

Via

of T
X% (X Kolu ), (190
y=1 \pg=—1

which is to be compared with Eq. (134) for {(w).
Equation (190) for (u’); may be used to discuss various
special cases, e.g., I=1 and I=3%, as in Sec. F for (u)..
From a fundamental point of view, the nonoscillatory
approach of this {{u):/cos[wL(t—2%)]} to

(W)t cos[wr (t—10) 1} =0

is to be noted.

(188)

A word should be added about the situation in liquids,
Here Vaip-aip™™ (-« ty— 1, -+ 5+, Iy, Ly -+ )
is effectively of the order of

Vaip-aip™™ (-, ty—1g, ==+ 5 oo+, Iy, Ipgy, -+ 2)

so Eq. (155) no longer holds and the p.t(¢) of Eq. (152)
must be used. However the p;o1(#) of Eq. (152) does %ot
satisfy a relation of the form:

Prot (t'l' T) = CXP[— (Z/h) Tee:lprot (t) eXP[ (i/h) 7'£:|

—4& some operator—so that the procedure involved in
the derivation of Eq. (11) from Eq. (7) and so ulti-
mately in the derivation of the “master” equation,
Eq. (35) or Eq. (177), is not immediately applicable.
Augxiliary, largely physical, arguments, to be reported
elsewhere, show nevertheless that a “master” equation
of the type of Eqs. (177), (178), and so an individual
particle “master” equation of the type of Eqgs. (182)-
(185), are also valid in the case of a liquid but with
fodip_dipsecular replaced by cOdip_dip:seeular_‘_ =Odip_dipnonsecular
in the corresponding transition probabilities per unit
time: Wiotinm, and  @rop; 101%™ (ug; mg'; £). These
Wrot 1V (Ug; 4’5 £) may then be evaluated in a
manner analogous to that of Eqgs. (185)-(187) and the
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corresponding (u’); found in a manner analogous to
that of Eqgs. (188)—(190).

In conclusion, and for the sake of completeness, we
most comment briefly on the calculation of expressions
involving “lattice’” matrix elements such as that enter-
ing into Eq. (187):

2 wsBul Agal 10,80 |2
551 5 5(%_%)2;!@ Bul Asqlnv,80) |
2 51 (10)

h Nus Bus 01 Bo
For solids, A7, can be expanded in terms of the dis-
placements &=r,—R;, &=r,—R, which are known
functions of the phonon creation and destruction oper-
ators [see Eq. (168)] while B4, B, are expressed in
terms of the phonon occupation numbers characterizing

(191)

0

fd'r >

—00 s Bus N0y B
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the states ¥(p1(a=170;Bu), ¥181(1:,8,); thus the
matrix elements in § and so § itself can be evaluated
in a reasonably straightforward fashion.!® On the other
hand, in the present state of development the theory
of liquids, the (r;—r,) within 4, cannot in general be
expressed in terms of creation and destruction operators
of suitable motional quasi-particles and § cannot be
evaluated exactly. However § can be calculated approx-
imately using, eventually, a classical stochastic method.
Such a method can be introduced if one recalls the
relation

B (nu—ny) = (1/2x7) f dr expL(i/7) (na—no)7], (192)

so that

(nuyﬁu[ afq("') I"Iwﬁv)(ﬂv;ﬁvl afq(o) l"7un3u>

F=(1/2) 2
7

where

Qyq(m)=exp[ (/1) 730151V 1A o

Xexp[— (#/B)r 5 ©]; (194)
@fq(0)=qu-
Thus
1 ® [ Trace[ Gyy(7) Grq(0)]
=— dr . (195
7 hzzf:»[w { Trace (1) (195)

Finally, approximation of the ‘“‘correlation function of

Qyq (7'))“
f(r)={Trace[ Qso(7) @s,(0) ]/ Trace(1)},

by a suitable average over the quantity Qyq(7)@s,(0),
results in the determination of f(7) as a known function
of 7 and permits the evaluation of & by calculation of the
integral over 7 in Eq. (195). In performing this suitable
average over @ ,(7) @s,(0) the Heisenberg operators,

[r(r)—ry(r) J=exp[ (/%) 735 V] (1,—1,)
Xexp[[— (i/%)73C 5 @], within the @s,(7) are treated

as classical stochastic variables.
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APPENDIX A

In the present appendix, we analyze an example,
proposed to us by Norberg, of a supersystem [4-+B]
described by such an “extremely quantal-coherent”
nonequilibrium statistical distribution at the initial time
to, that [4+ B] evolves away from rather than toward
the equilibrium statistical distribution. Essentially the
same as well as related examples have been analyzed
in detail from the point of view of pulsed nuclear mag-
netic resonance theory'® by Lowe,” and the “solid
echoes” observed by Lowe provide experimental evi-
dence for the existence of nonequilibrium statistical
distributions which evolve away from equilibrium.

Consider a solid which contains two different nuclear
species, 4 and B. Suppose that the lattice of the solid
is effectively rigid (see Sec. G) and that y5>>7v4 so that
the local magnetic field at any nucleus is effectively
due only to the B nuclei. Under these circumstances
the two spin systems 4 and B form an essentially self-
enclosed supersystem, [4-+B] (see related discussion
in Sec. G after Eq. (175)) with the 4 spins acting as
the system of interest, [4], and the B spins as the
surroundings, [ B].

Let us suppose that [4A+B] is in equilibrium in a
magnetic field Hey# at time fo— 7 and that at this time
a (very short) “90°” rf pulse at a carrier frequency
=wy 4] is applied to the 4 spins. Then, by Eq. (147),
we have immediately after application of the ¢“90°”
pulse,

exp (hw,1411,141/0) exp (!B, 1/ O)

p(to—1)=

Trace [exp(feor 411,141/ @) exp(feo,1B11,181/@)7

(A.1)

16 See, for example, the forthcoming book on nuclear magnetic resonance by A. Abragam.

171. J. Lowe, Bull. Am. Phys. Soc. 2, 344 (1957).
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while for {>#—7, Eq. (152) yields,
prot(£) =exp[— i (t—to+ ) A 1A I exp[i (¢—to+7) (w1411, 14140 L 1B 1B — (1/7)0) Jp (fo—7)
Xexp[—i(t—to+7) (wp 4 14140 BT IBI— (1/%)0) ]} exp[i(t—to+7)wr AI,I4T]. (A.2)
If now 1,141, I,18]1 commute with U, a condition that is satisfied if U is taken as [see Egs. (169), (168)],
V="TVadip-dip** ™ = Vaip a-dip 4°°*+Vadip B-dip B°°* 4+ Vaip 4-dip B, (A.3)

. prot (¢) =exp[ — (&/%) (t— to+7) 0o (to— 1) exp[ (i/7) ({—to+7) V], (A4)
where, in the case at hand [see Eq. (168) and recall that fiwz, [B1>>%w, 1417,

then

VVdip 4-dip B +Vaip B-aip 58N =2 As, A1 IBI(R—R,) (— 275, 141T 1, 1BY)
f.9
+3 2 A BV BY (R, — Ra) (T 12 (10 BT 153 VBT 14y 1B — 21 1), 1BV T 1, 1B)
g.h
E—IZ Ty alin™1-Hipy (Ry; - - Xy 1B - ) =3 Ay plig) B Him *(Rygy; - - Iy 181+ --). (ALS)
g

Also from Egs. (154), (160),
(urar V= (frya/V 1ar){cos[wr 1) (¢—to+7) ] Trace[prot (11411}, (A.6)
whence, substituting Eq. (A-4) into Eq. (A-6),
(rar)e= (Fry1a1/ Viar){cos[wr 4} (1—to+7) ] Trace(exp[ — (/%) (t—to+7) Vo (lo— 1)

‘ Xexpl (i/%) (t—to+7)V]L14))}, (A7)
so that, using also Eq. (A-1),

(a1’ ) o—r= (Fry141/ V1a1) Trace {p(to—7)I,141}
Trace {exp[ (fiwy[41/ @), 141,141} '
= (frya/V 141) (A.8)
Trace {exp[ (fiwr141/ @), 1417}

= (ura)) I (N 141/3V 141 Ty Al I (T4 +-1) (0, 141/ ©).

The Eqgs. (A-7) and (A-8) are analogous to Eqs. (175) and (148) and the quantity {{ura;")s/cos[wz 4! (t—t+7)]}
will approach {{ua;’)e®il/cos[ w41 ((—Zt47) ]} =0 in an oscillatory fashion—Lowe-Norberg beats; see discussion
after Eq. (175) in Sec. G. Thus we may say that the prt(f) of Eq. (A-4) evolves in time as ¢ increases beyond
to— 7 in such a way that [4-+ B approaches equilibrium, though of course, as in the “rigid” lattice case treated
in Sec. G, this oscillatory approach to equilibrium as exemplified by the {{ura’)s/cos[wr41(t—to+7)]} vs ¢ of
Eq. (A-7) cannot be described by any “master” equation.

Let us now suppose that at a time r after application of the “90°” pulse to the 4 spins, a (very short) “180°” rf
pulse at a carrier frequency wz!Bl is applied to the B spins. Then, immediately after application of this “180°”

pulse, i.e., at the time (fo— 7)=7= 1o, which time ¢y we shall consider as the initial time for the subsequent behavior
of [A+B], we have from Egs. (A-4) and (A-6),

prot(fo) = expim (— 1, 1Y) ] exp[ — (i/#) 70 Jo(to—7) exp[ (/%) 70 ] exp[ —im (—1,1%) ]
=exp[— (i/%)70*]p* (fo— 1) exp[ (/%) 70*], (A9)

where, using also Egs. (A-5), (A-1),
V¥*= eXp[—iWIy[B]]@ eXp[’hrIu[B}:l= —Vdip A-dip Bsecular..*.fodip B-dip pSecular

p*(to—7)=exp[ —inI, P Jo(to— ) exp[inl,P1]
exp[ i M11,141/0] exp[ —fuw 1B, 181/ 0]
" Trace {exp[fiw 41,141/ 0] exp[ — 1w, 1B, [B1/ O]} ’

(A.10)
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(rrar Yo/ cos(wr417) = (rya/V 1a1) Trace [p(to)I,141]
= (fry(a1/ V141) Trace {exp[ — (i/%) 70 ]p* (to— 1) exp[ (i/%) 7 0*]L, 141}
= (Trya1/V141) Trace {exp[— (/%) 70 Jo(to—7) exp[ (¢/%) 7V 11141}, (A.11)
prot(to+7) =exp[ — (i/7) 70 Joror (t) exp[ (i/%)7V]
=exp[ — (i/%)70] exp[ — (4/%) 70* Joros* (fo— 7) exp[ (¢/%)70*] exp[ (i/%)70V], (A.12)
(urar"Yto++/cos (2w 417) = (Fry 4/ V 141) Trace[ prot(fo-7)1,141]
= (fy4/V 141) Trace [exp[— (i/%)70] exp[ — (/) 70" Jprot* (fa—7)
Xexp[ (¢/%)70*] exp[ (¢3/%)70]1,141].  (A.13)
We now note that [see Egs. (A-11), (A-8)]
(prayYto/cos(wr417)  Trace{p(to— 7) exp[(i/%) 701,41 exp[ — (3/%)7V]}
(piarYto—r B Trace {p(to— 7)I.141}
=1—1(s/%)? Trace {(O,[O, LA} +---=1—A<1, (A.14)

the inequality being, physically speaking, a consequence of the ‘“dephasing effects” of the local fields
His[Ry; - - I8 ..) [see Eq. (A-5)] which, in the frame of reference rotating with angular velocity wz[412,
precess the various A spins, I;{4]) at different rates [since Hyp (Ry; - - -I,[81- - ) is different at different R/].
The spin “dephasing” Eq. (A-14) which indicates the decrease of {(u(a;"):/cos[wr!4!(t—t+7)]} with ¢ for
to— 7<t<ty is the basis of our previous remark that [4-+ B] approaches equilibrium during the time interval f—r
to #. We further note that [see Eqs. (A-13) and (A-11)7,

(pray o+r/cos (2w 417) *Trace {p*(to—7) exp[ (i/h)70*] exp[ (i/%) 7V ]I,14} exp[ — (3/%) V] exp[ — (¢/A)70*]}
{urar’Yto/cos(wrl417) Trace {p(to—7) exp[ (¢/%)70]I,141 exp[ — (3/%)7V]}

’

(A.15)

and if the ratio of the traces turns out to be greater evolves further and further from

thal-l 1, ie, .equz.ll to 1/(1—A), the 4 spins “rephase” {arar e/ cos[wp 1 (1— o+ ) ] = 0,18
during the time interval ¢ to {7 and so
i.e., during this time interval the nonequilibrium initial
(urar’)e/cos[wr 4 (t—to+7) ] statistical distribution of [4+B], described by the
. . prot(t0) of Egs. (A-9) and (A-10), evolves into another
increases as a consequence of the reversal of sign of (i 4iciien distribution, described by the prot(fot7) of
Hp) by the “180°” pulse, i.e., as a consequence of the Eq. (A-12), which is even further from equilibrium.
difference in sign of the term Vaip 4-aip 3*™* in V*  Also we note that, as already mentioned in Sec. B, the
and in U [Eqgs. (A-10) and (A-5)]. Alternatively, if nonequilibrium “extremely quantal-coherent” initial
the trace ratio in the spin “rephasing” Eq. (A-15) is  p(f) of Egs. (A-9), (A-10), and (150) which is associated
greater than 1, i.e., equal to 1/(1—A), we can say that with this possible trend away from equilibrium is cer-
during 2 time interval of duration 7 subsequent to the tainly “nondiagonal” with respect to the eigenstates of

initial time # the quantity 301y @4 5015 = — (Ficop, 41T, 141 oo, 1B1] 1B
{{urar’)e/ cos[wp 41 (t—to+7)]} viz,

o(to) =exp[irwr 41,141 Jp o4 (to) exp[ —iTw 411,141 ]
explir(wyI411,141—7710*) ] exp[ 7w 411,141/ O] exp[ — i1 (wp 141,141 —7710%) ] exp[ — 7w 1BV, 151/ O]
" Trace {exp[ir (41,141 —%710%) ] exp[ w 1411,141/ 0] '

Xexp[ —ir(wy 44— 7710%)] exp[——ﬁwz,wllzm/@]%A 16)

18 Because of the assumed rigidity of the lattice containing both the 4 spins and the B spins, (1B to4r= (_,4[31)¢,,=—(u[31)t“_,
= —(uig))°il, so that, as the 4 spins “rephase,”’ the B spins effectively remain in the same nonequilibrium (negative tem-
perature) statistical configuration.
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It remains to investigate the circumstances under which the ratio of the traces in Eq. (A-15) is actually greater
than 1, i.e., equal to 1/(1—A). If the B species is fairly dilute compared to the 4 species Vaip B-dip 3°°“*F may be
somewhat less important than Vaip 4-aip %°9" so that, from Egs. (A-10) and (A-5), :

V¥=—0.

Equations (A-17), (A-15), and (A-14) yield

(uray’) to++/cos (2w 1417)

(A.17)

Trace {p*(ty—7)I,141}

(wiarYio/cos(wptlr)  Trace {p(to—r) exp[ (i/%) 70 L1 exp[— (i/4)~0]}
Trace {p(to—7)I,141}

=Trace {p(to— 1) exp[ (3/%) TV, exp[— (3/%) 7V ]}

which shows that, in the approximation of Eq. (A-17),
the “dephasing” of the 4 spins during the time interval
to— 7 to #o is wholly compensated by their “rephasing”
during the time interval ¢ to Zo+7. In practice however
it is probably a poor approximation, even at small dilu-
tions of B, to neglect the “dephasing” Vaip B.aip 5
compared to the “rephasing” Vadip 4-aip %** so that
the actual “rephasing” of the A spins is far from
complete.

APPENDIX B

In this appendix we present the solution of Eq. (75)
by a Laplace transform method and discuss further
certain mathematical questions mentioned in Sec. D.

Let p(n;s) be the Laplace transform of P(#n;¢)

0

pln;s)= e P (; 1)dt. (B.1)
Then, the Laplace transform of Eq. (75) is
slp@I=1PE=W1- 1261, (B.2)
or
GILI=1wD-lp@I=l1P ). (B.3)

The solution of the NV linear inhomogeneous equations
specified by Eq. (B-3) can be written as,

p(n;5)=C(n,s)/D(s), (B.4)
where
D(s)=det{s|1]|—[[W[}
s—Tvt =Wy —Win
=det| —Waun s—T5? —Wav |, (B.S)
-, s— Tyt

and C(n;s) is the same determinant as D(s) except
that the terms in the nth column are replaced by
P(n';t), n'=1, 2,3, ---, N. D(s) can be written in
the factored form:

D(s)= (s+wo) (s+wy) <s+w2) cor(sFwn_1), (B.6)

(rayYio—r

N (rray)s/cos(wr417) 1A

>1, (A.18)

where the —w,; =0, 1, 2, ---, N—1 are the roots of
the polynomial D(s), and in view of Eq. (B-5), are
also the eigenvalues of |||

Since C(z;s) is a polynomial of order N—1, the
method of partial fractions can be used to give:

N-1K,(n
pln;s)=20 ( ),

=0 STW,

(B.7)
for nondegenerate w,, where,

K)=Clns—w) /| TT  (ov—)

»/=0; (' #v)
dD(s)
=Cn; —w,
(55— / —
1 Y1C(1s9)
1K, ||=1 |dD(s) C2;9)
ds J|IC(Nys)

, (B.8)

$=—wyp

so that

(B.9)

s=—wy

The inverse Laplace transform of Eq. (B-7) reproduces
Egs. (81), (104), and (105).

Let us now briefly treat the degenerate case where
w,=w, for certain » and »’. Here

Ng—1 Ng—1

D(s)= II (s+w)™; X r=N, (B.10)
v=0 y=0

where Vg is the number of distinct w,, (Vg <N). With
this D(s) the method of partial fractions leads to the
following generalization of Egs. (B-7), (B-8):

Na—1 1y va(”)

)S)= , B.11
P= E TS
where
A, (n,5) ‘
va(")=‘m—‘]s=_wy/(n—]) L, (B.12)
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with
C(n;s)

¢y(%,$)=(8+wy)’ D(s) N

(B.13)

The inverse Laplace transform of the p(n,s) of Eq.
(B-11) is:

Na—1 vy K,i(n)

Pln;t)= > > {G—De—wr(t=to) - (B.14)
=0 =1 (j—1)1
ie.,
vast o Kyl
IPOlI=X X 1 Dgmer(t=t0) (B.15)
= i (= 1)!

which is the appropriate generalization of Eq. (81) to
the case of degenerate w,.
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Eq. (110), having the form,
exp[ — egq) (mq)/RTs(1) ]

Prg(mg; )=
2 exp[—eqq1(mg)/RT (1) ]
mg (C.1)
,\11-I-mq(ﬁoz)z,/kTa ®)
(21+1)

are assumed, whence, substitution of Eq. (C-1) into
Eq. (110) and use of Eq. (115) yields

—;t[]n(Tsl(t) _%)]

m 7
=—[>: (! mq;o(l——"’—)]z—w(mq);
My

mq’
APPENDIX C g0, (C.Z)
The evolution in time of {u); toward (u) e [as in . corat . .
Eqgs. (137)-(139), (142), (145)] has also been treated O—E’w[q] wil(mg'; 0; ymg'=v;
in terms of the concept of a time-dependent “spin- - =1.2.3 ...
temperature” T, (¢). In the spin-temperature procedure, my=0  (only when I=1,2, 3, ---).
solutions of the individual particle “master” equation, Equations (C.2) and (C.1) give
1 my fle 1
Pg(mg; ) =—-+ ——[—— ( —— e““’""“)“_“”]
2I+1 2141 k- Ts(to) T
(C.3)
P ‘1( )'l‘ hor ! 1 (mq) (t—t0)
=P ]eqm m, ;t —_—  m ( ___)e—w mg) (t—to ,
! U QI+0E C\TWt) T
which is to be compared with the P (m,;1) of Eqs. w(mg)=2w'[1+8m2—4I(I+1)]
(130)—(132). +8w[21(I+1)—2m2—1], (C.5)

It is now to be emphasized that Eq. (C-3) for
Py1(myg; t) is correct and so is equivalent to Egs. (130)—
(132) for Py (my; 8) only if Eq. (C-2) is satisfied, i.e.,
only if the transition probabilities per unit time,
w12 (g ; mq; t) are such that »=0 and that the
w(m,) are actually independent of m, (for m,7<0) ; this
last condition must hold since (1/7T({)—1/T) is inde-
pendent of m, Using Eqs. (123), (124), (126)-(129)
with Zwr/O<K1 it is straightforward to verify that the
W1 (m, ; mq; 1) are indeed such that »=0 always,
and that the w(m,) are independent of m, (for m,0)
fOI‘ V=70 dip- dipnonseculeu- with any I’ and for eoqua dnonsecular
with 7=1; in fact:
w(mq) =2w: V= @dip-dipﬂonmular; I=1, 33;,

(Cases I, IT of Sec. F), I>% (C.4)
w(mg) =2w'+8w" :

V= eOquadnonseculm-; I=1

(Case III of Sec. F).
On the other hand, for UVquaq™™swer and 7>1,

so that for V=TV quaa®"** with 7>1 the spin-tem-
perature P (mq; ) of Eq. (C-3) are not correct.

Confining our further attention to the cases of Eq.
(C-4), where the Py(mqy;t) of Eq. (C-3) are correct
and so are equivalent to the Py (m,;8) of Egs. (130)-
(132), let us substitute the P(mq;8) of Eq. (C-3)
into Eq. (133) and obtain,

N,
W= Pia(my; t)( fwmq)
mq Via

= (a1~ [1= T/ T (1) ]9}
<N>tequilg(N[A]/V[A])%‘ﬁ'y[([—{—1) (th/@),

which, for example in the condition of initial saturation,
T (to) = », becomes,

()= (u) e[ 1 — g—e )], (C.7)

The Egs. (C-7) and (C-4) for (u); are identical with
the Eqgs. (138), (142), and (145) for {u): vs t.

(C.6)



