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The present paper presents a derivation of the "master" or
Boltzmann "gain-loss" equation from the Schrodinger equation,
i.e., a derivation of the equation for the evolution in time of the
probabilities of finding a physical system in its various states
from the equation for the corresponding probability amplitudes.
The "master" equation is derived for an, in effect completely
self-enclosed, "supersystem, " (A+Bj, consisting of a "system
of interest, "

LA j, and a "surroundings, " LB/, in relatively weak
mutual interaction; A discussion is given of the range of validity
of the "master" equation for LA+Bj and it is shown that the
random phase assumption is required for the state vector of
L'A+Bj at the initial time only. The normally microcanonical
character of the equilibrium statistical configuration of LA+BE
is demonstrated and a treatment is given of exceptional, "ex-
tremely quantal-coherent, " initial statistical distributions of
(A+Bj which may evolve away from equilibrium. Derivations
are also presented of the "master" equation for LAj and of the
"master" equation for an individual particle or quasi-particle Pqg,
within fA j;a discussion of the range of validity of these "master"
equations is given and the normally canonical character of the
equilibrium statistical configuration of LAj is deduced. General
solutions of the "master" equations for LA+BE, LAj, and Pqg

are worked out and the relation between the principles of "micro-
scopic reversibility" and "detailed balance" and the nonoscil-
latory character of the approach to equilibrium are exhibited. A
theorem is presented regarding the time variation of the entropy
of PA).

As illustrations of the general methods developed two important
processes in magnetic resonance —the time variation of the
longitudinal magnetization, (p)~, and the time variation of the
transverse magnetization, (y)&—are discussed in some detail. It
is shown that the variation of (p)~ with f, and of Q )& with t for a
"nonrigid" lattice can be described by means of the "master"
equation for an individual spin Lgg and several special cases are
discussed on the basis of the evaluation of the appropriate transi-
tion probabilities; a comparison with the "spin-temperature"
procedure is also appended. On the other hand, it is demonstrated
that for a "rigid" lattice no description of the variation of (p')~
with t can be given on the basis of a "master" equation; in this
case, quantal coherence eBects neglected in the derivation of the
"master" equation from the Schrodinger equation are vital and
(y')& must be evaluated by a rigorous calculation of Trace {Lappro-
priate time dependent density matrix) p'}.

A. INTRODUCTION

1
~~NE of the major problems in quantum statistical~ mechanics entails the derivation of the "master"

or Soltzmann "gain-loss" equation from the Schrodinger
equation, i.e., the derivation of the equation for the
evolution in time of the probabilities of finding a
physical system in its various states from the equation
for the corresponding probability amplitudes. The
attack on this problem was initiated by Pauli' and
recently very important progress has been effected by
Uan Hove. ' The discussion below presents a derivation
of the "master" equation from the Schrodinger equation
using elementary methods and applies the general
theory to several magnetic resonance situations.

In brief outline, the subjects treated in the present
paper are:

(1) The "master" equation for the "supersystem":
derivation from the Schrodinger equation and dis-
cussion of range of validity —random phase assumption
required for the state vector at the initial time only;
deduction of the microcanonical character of the equi-
librium statistical configuration of the supersystem;
average values of "diagonal" and "nondiagonal" dy-
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Scientific Research and by the Ofhce of Ordnance Research, U. S.
Army.

f Now at Centre d'Etudes Nucleaire de Saclay, Gif-sur- Yvette,
Seine et Oise, France.

'W. Pauli, Festschrift 2'Nm 60 Geburtstug A. Sommerfeld (S.
Hirzel, Leipzig, 1928), p. 30.

2 L. Van Hove, Physica 25, 268 (1959);23, 441 (1957);21, 517
(1955); see also the instructive papers of W. Kohn and J. M.
Luttinger, Phys. Rev. 108, 590 (1957};109, 1892 (1958).

namical variables; quantal coherence and possible
evolution of the supersystem away from equilibrium.

(2) The "master" equation for the "system of
interest": derivation from the "master" equation for
the supersystem and discussion of range of validity;
deduction of the canonical character of the equilibrium
statistical configuration of the system of interest;
detailed balance and microscopic reversibility; time
variation of the entropy of the system of interest.

(3) The "master" equation for an individual particle
or quasi-particle of the system of interest: derivation
from the "master" equation for the (whole) system of
interest and discussion of range of validity.

(4) The solution of the "master" equation for the
supersystem, the system of interest, and the individual
particle: spectrum of real relaxation times and non-
oscillatory approach to equilibrium; comparison with
"spin-temperature" procedure.

(3) Magnetic resonance: time variation of longitud-
inal magnetization; treatment by means of the indi-
vidual particle "master" equation; evaluation of
appropriate transition probabilities and discussion of
several special cases.

(6) Magnetic resonance: time variation of transverse
magnetization; case of "rigid" lattice: inapplicability of
any "master" equation and discussion of crucial im-

portance of quantal coherence eGects neglected in the
derivation of the "master" equation from the Schro-
dinger equation; case of the "nonrigid" lattice: treat-
ment by means of the individual particle "master"
equation.
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B. THE "MASTER" OR BOLTZMANN "GAIN-LOSS"
EQUATION FOR THE SUPERSYSTEM

We contemplate a "system of interest, " CA), con-
sidered imbedded in another, in general, larger system,
[8), called the "surroundings"; the in effect com-
pletely self-enclosed combination: system of interest
and surroundings, [A+8), will be called the "super-
system. "The Hamiltonian of the supersystem ['A+8),
3C, can then be decomposed as:

X—X[g] +X[s] ']+'U —= X[']+'U, (1)
where K~&~('&, 3C~&~"' are, respectively, the Hamil-
tonians of [A] when isola, ted, and of [8]when isolated,
and where 'U is the interaction Hamiltonian between
CA) and [8). In circumstances where [A) and [8)
are both macroscopically large, the ratio of 'U to
X"' is =IV[~]i/(tY[~]+)V[~])&&1 (here E[z], E[n] are
the number of atoms in [A], [8], respectively) so
that 'U can be treated as a relatively small perturbation.

Ke now choose the complete set of 3C('& eigenstates
X["P =E„"]]t„;E "] effectively continuous —as

basic states for the description of the density matrix
operator of [A+8], p(t). The matrix elements of p(t),

I p(t) lit )—= (nip(t) lm), are given by

(nl p(t) lm)—=Q;&p„lit'
'

(t))&]t
''

(t) I4 l)p,
=Z, Q-I exp[ —('/h) (t—to) X]4 "'(«)&

X&exp[—(i/h) (t—to) X]4['](«)
l 0'-)P

=9- I expL —(i/h) (t—to) X)Z' 0"'(to))
X &0 "'(t.)P; exp[(i/h) (t—to) X]1]t-&

= (nl {exp[—(i/h) (t—to) X]p(to)
Xexp[(i/h) (t—to) X)}I m); (2)

p (t) =exp[ —(i/h) (t to) X]p(to) exp[(i—/h) (t—to) X]
in a physical situation where at the initial time to there
is an (incoherent) probability p, that [A+8) is found
in the state ]t "](to) and where the state f[t](to) evolves
in time according to the Schrodinger equation:

lP"'(t) = exp[—(i/h) (t—to) X]lP["(to)
= expL —(i/h) (t—to) (X"'+'U)]k"'(to);

t—t, ~0. (3)

Equations (2), (3) yields for P(n; t), the probability
that [A+8] is found at time t in the state f„,o

P(n; t) =»
I &]I -14"'«)& I'P = &nl p«) ln&

= &n I exp[—(i/h) (t—to) X]p(to)
Xexp[(i/h) (t—to) X)ln); (4)

P„P(n; t) =P; p; = 1=Trace {p (t) },
the totality of the P(n; t) values describing the statis-
tical conftguration of CA+8) at time t. The average

' Approximate calculations of (n f p(t) I m), (& I p(t) I tol «om Eqs.
(2)—(4) or the equivalent Eq. (12) below have been given in a
magnetic resonance context by R. K. Wangsness and F. Bloch,
Phys. Rev. 89, 728 (1953); U. Fano, Phys. Rev. 96, 869 (1954);
R. Kubo and K. Tomita, J. Phys. Soc. (Japan) 9, 888 (1954);
F. Bloch, Phys. Rev. 102, 104 (1956); A. G. Red6eld, IBM J.
Research Develop. I, 19 (1957).

value at time t, (X))&, of any dynamical variable S
associated with [A+8) is then:

(» =2 &]t "'(t)15)I]t "](t))p;

= 2 &lt"'(t)lit &&4-I&I4.&&4"Ilt"'(t)&P
j spm

=P (nl p(t) lm)&ml X)
I n) =Trace{p(t) $}

22 fm

=»(n t)(nl &ln)+2 (1—8-)
n sfm

X &nl p(t) I m&&ml &In). &5)

Thus, if the matrix of X) with respect to the lt is
diagonal:

&m I
m

f
n) = (n f

n
I
n)8.„,

the P(n;t)=&nip(t)ln) completely describe the de-
pendence of &$&~ on t and Eq. (5) becomes:

&n""& =P P(n; t)(nl n""In). (6)

In what follows we shall in general study "diagonal"
dynamical variables So"swith (m I

K)o'"I n) =(n I
X)

I
n&8 „

and we note that all such 5) "g will necessarily commute
with 3'.").

We now consider further the dependence of P(n; t)
on t. We have from Eq. (4), with r ~0:
P(n; t+r)

= &nl p(t+r) I
"&=(nl expC —(i/h)(t —to+r) X)p(to)

Xexp[(i/h) (t—to+ r) X) I n)
= (n I exp[—(i/h) r X)p(t) exp[(i/h) r X) ln) (7)

TR. (T)P(m; t)+TI'.(r; t—t,),
where

w„(T)= (1/T) I (nl ex—p[—(i/h)T x] lm)
I

',
WT„(r)= & fmexp[(i/h) r X]

Xexp[—(i/h) r X) I m) = 1; (8)

P TW„„(r)=(nl exp[—(i/h)TX)

Xexp[(i/h) r X) I n) = 1,

V (r; t to): (1/—r) P—(1—8o ) (n
I
exp C

—(i/h) r X]I m)
k, m

X&nl exp[—(i/h) rX]I h)'&ml p(t) I h&

=(1/ ) 2 (1—5.-)&nlem[ —(i/h)rx]lm&
I[:,m, l

X (n I exp[—(i/h) r X]I
k)*

X (m I exp[—(z/h) (t—to) X]I t)

X &k I exp[—(i/h) (t—t,) X]I
t)*P(t; t,)

+(1/T) + (1—8.-)(1—«,)
k, m, $,q

X (n I exp[—(i/h) rX]
I
m)

X (n I exp[—(i/h) rX]I
k&*

X &m I exp[ —(i/h) (t—to) X]f t&

X &h I exp[ —&i/h) (t—«) X) I
g&*&l

I p(to)1[I)
= Y„*(r;t to), — (9)
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With

exp[ —(i/Ii) r Se]=«p[—(i/&) r(~"'+&)]
—=exp[ —(i/k) r X&o&](1+&(r)),

1+S(r)=exp[(i/It) rK+'] exp[ —(i/It) r(X~"+U)]
=1—( /k) ~.—-', (1/b') (~'+«, ~"'])"+

00 r

=1++ (i7i) '
~' driV(ri)

j=l 0

—=1++ S,(r);
j=l

'U (r,)=—exp[(i/k) r, X+']U exp[ —'

(i/k) r, X~"].
Equations (7) and (8) yield

P(n; t+r) P(n; t)—

(10)

=P[W„„(r)P(m;t) —W „(r)P(n;t)]

+ Y„(r;t —t,), (11)

dp(t)/«= (i/Ii) [p(t) ~]
a relation which is usually obtained by direct diGeren-
tiation with respect to t of Eq. (4) for P(n; t)
=(nip(t) ln) or of Eq. (2) for (nip(t)lm).

We now assume that p(to) is a "diagona, l" dynamical
variable

p(to) = {p(to)}"";
«j p(to) le)=(tj p(to) lt)&, =P(t; t )&

„

so that, substituting into Eq. (9),

which is the basic equation for the subsequent develop-
ment.

It will be seen that the quantities W (r) of Eqs.
(8), (7), and (11) are (for num) the probabilities per
unit time for "transition" of [A+8] during the time
interval r from an "initial" state tt to a "final" state
P„under the influence of the interaction 'U—this follows
since any "initial" state P evolves in time as
exp[—(i/A) r3C]P . It should also be noted that, using
Eqs. (8) and (9), lim, o W„(r)=0 (num), and

lim, p Y„(r;t—to) = (i/A) (n j f p (t),K] j n),

so that, from Eq. (11),

dP(n; t)/dt= (d/dt)(nj p(t) j n)

Y„(r;t—to) = (1/r) P (1—8o„)(nlexp[—(i/h)rBC]jm)
k, m, l

X(nj exp[—(i/k)rBC]j k)*

X (m j exp[—(i/It) (t—tp) X]l 1)

X(k j exp[ —(i/k) (t—t,) Se] jl)*P(t;t,),
14)

Y„(r,0) = (1/r) P (1 5—o )(n l exp[ —(i/k)rK] m)
Ec, rl, l

X(nlexp[ —(i/It)r~]lk)*& i4d'(&;to)=o.

The assumption p(tp) = {p(to)}a"& implies that the
initial statistical distribution of (the ensemble of)
[A+8] over the states P~'& (tp) involves no specification
of any definite phase relations among the P; this
assumption therefore permits identification of the
P~'~(tp), p, with the P„,P(n; tp). Thus the assumption
p(tp) ={p(to)}"'"implies that quantal interference or
coherence effects associated with non-vanishing off-
diagonal (l j p(tp) l q) are absent in the initial time evolu-
tion of [A+8] and is equivalent to the so-called random
or incoherent phase assumption ' ' regarding the initial
statistical distribution of [A+8] over the P, i.e.,
equivalent to the assumption that the state vector of
[A+8] at t=to, P(tp), is given by

~(«) =Z-{[P(n; to)] e'"}4-
with the P„random. The validity of the assumption
p(to) = {p(to)}~"&is ensured, in most cases of practical
interest, by the preparation of the initial physical
situation of [A +8] (see Sec. G below for an example).

It is now worth mentioning that p(tp) = {p(tp)}p"p-
Eq. (13)—together with Eqs. (2), (10), yield,

(nl p(t) lm)
=P& (n l exp[—(i/5) (t—tp) BC]

l
k)

X (m l exp[—(i/A) (t to) X]l
k)*P(k—; to)

= exp[—(i/trt) (E„&o~—E ~o&) (t—tp)]
X{8„P(m;tp)+(nl S(t—to)

l m)P(m; tp) (15)
+(mj S(t—tp) ln)*P(n; to)

+g (njS(t—to) jk)(mjS(t —t,) jk)*P(k; t,)},
which is, in general, diferent from zero for elm and
t) tp, thus for t) to, p(t) is a "nondiagonal" dynamical
variable. For m=n, Eq. (15) gives

(njp(t) jn)=Qoj(njexp[ —(i/A)(t —to) X]jk)j'P(k; to)

which, in view of Eqs. (8) and (4), is equivalent to Eq.
(17) below.

We proceed to examine Eq. (11) or Eq. (7), together
with Eq. (14), for the dependence of P(n; t) on t;
setting t=to and writing to+r=t') tp, we have,

P(n; t') —P(n; to)

=P[W„(t'—tp)P(ni; tp)

—W „(t'—tp)P(n; tp)], (16)
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or, using Eq. (8),

P(e; t')=P f (t' —to)W„„(t'—to)P(m; to)). (17)

Equation (16) is of the general form of a "master" or
Boltzmann "gain-loss" equation for the probability,
P(N; t'), that. [A+B] is found at time t' in the state P„.
However the corresponding transition probabilities per
unit time, W„(t'—tp), are here dependent on t' tp-
and in fact essentially describe the whole actual de-
pendence of P(e; t') on t'—this is best seen from Eq.
(17).We should also emphasize that our whole develop-
ment in Eqs. (2)—(17) [in particular in Eq. (11) and
Eq. (16)]is valid with the P„anycomplete set of states,
not necessariLy the set of 3C(') eigenstates. The K('
eigenstate property of the P„is, however, used to obtain
explicit expressions for W„(7)and I' (r; t—tp) [see
Eqs. (20), (23)—(25), (27)—(34), below].

Equation (16) or Eq. (17) can be conveniently
employed to find an explicit form for P()t; t') vs t' for
small t' —tp, i.e., for

t' —tp«)s/i (+i V im) i
=A/(„=))t/P,

where

(t' —t,)'
P(rt; t') =P(n; to)+g i(Ni V im) ('

A2

. (t'-to)' (t'-t.)'
+terms in— ~ ~ ~

O' A4

X[P(m; t,) —P(~; t,)]
(21)

=P(n; t,)(1—[(t'—t,)'/)rt'][(fr i V'i fo)

—((Niuift))s]+ ")
P(m; to)([(t' —tp)'/I't ']

X t(~l&lm) I'+ )(1—&-).

The initial relaxation of the P()s; t') from the P(N; tp)

is thus seen to be quadratic in (t' —tp)'. However the
series expansions in Eq. (21) converge rapidly only for
t' —to«)s/i(rti'Uim) i=A/g„=))t/$ [Eq. (18)]andwhen
t' —to ~ fi/P another method is required to find P(n; t')
vs t' from Eqs. (16), (8) or Eqs. (11), (8), and (14).

To describe this other method we consider the Eqs.
(11), (8), and (14) under the restrictions:

8 —= ( "'— o"')/( ( )+tY(i&));

$-=—(&-"'—&o"')/O'W)+&(»)
(22)

are the excitation energies per atom when fA+B] is
in the states It„,lt .' In fact from Eqs. (8) and (10)

1
W„(t' to) = — rs exp[ —(i/I't ) (t' —tp) BC( )]

(t'-tp)

i't/]„«r& t—t„
(19)

A/g. «r«[Q (2n-/A)8(E "'—E ('&)

X i(mi'U+'UG'U+ in) is(1—I&„„)]'
= [Q W (r) (1—

I& )]—'=—T„; (23)

G (p[ (~ (o)+~ (p)) g() (o)]—i

—ter()[-,' (E (o)+E„(o))—X('&].

ou(t' —t,)——,'(~'+[~, 8(. o ])

(t~ —to)'
x +"

A2

1 (t' —to)
(rt i

V
i m)

(t' —t,)

1 (t tp)s-—[(rti V'im)
2 A2

+ (E "'—E„"')(n i
'U

i m)]+ .

so that, introducing Eq. (20) into Eq. (16)

(20)

the equality of

(2s./))t) I) (E„")—E„(")i(m i
'U+ *UG'U+

i rt) i'

and

W-(r) = (I/r) I(mi exp[—(f/+) r(~"'+'U)]
I ~) I',

for r subject I:o the inequalities of Eq. (23) (and m, Wrc)
is a consequence of the application of standard pro-
cedures of time dependent perturbation theory' to

'

Eqs. (8) and (10) while the quantity T„is obviously
the mean life of pA+B] in the state lt„.Equation (23)
itself is only possible, of course, if [A+B] is of such a
character that

~/&-«K-(2 /f)&(E. "&—E."))
X i(mi'U+'UG'U+ il) i'(1—

i& )]—'
= T =A/AE„(o), (24)

(AE (o) =energy width of state lt„),

' The approximate equality in Eq. (18) of (a['U[m) and P„,g„,
is a consequence of the fact that

'U =/' Z; $)vie) Z)=rr(s) o([R l l —R, (el[)
with a short range o([R,("!—R;l l ) so that the nonvanishing
[(e['U[)a)[ are = [(N[p[)N)[ = [(n o[e)[ =$ or g, the last
approximate equality following from the virial theorem. It is to
be noted that (N[o [ I) will be considerably smaller than p„for Case
(II) of Sec. G below Lsee Eq. (180)j.

and the inequality of Eq. (24): (excitation energy per
particle in state p„)))(energy width of state lt „),is one
of the two basic restrictions on the character of [A+B]
that must be made to deduce a "master" or Boltzmann

~ See, e.g., W. Heitler, The Quantum Theory of Radhati on
(Oxford University Press, Oxford, 1954), third edition, Chap. 4.
(P in Eq. (23) denotes the Cauchy principal value
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"gain-loss" equation for P(n; t) vs t for t—tp))A/$„
Lsee (c), (d) after Eq. (35) below).

We now remark that the relation already set down
in Eq. (23), viz. ,

We proceed to give this last demonstration and write
Eq. (14), using Eq. (10) and with

v =—(1/A)(E "'—E &"),
in the form:

W „(r)= (2zr/A)b(E "'—E„'o~)

X l&ml U+«U+ "ln&l' (»)
implies that this W (r) is actually independent of r
for all r subject to the inequalities of Eq. (23); we
shall also prove below that the F (r; t—tp) of Eq. (14)
vanishes up to terms = ('U/BC&o&)' if t—tp r are subject
to the inequalities of Eq. (22). Hence, up to terms
= ('U/K&'&), ' the right-hand side of Eq. (11)is effectively
independent of r for all r, t—tp satisfying Eqs. (23)
and (22) so that the left-hand side of Eq. (11),

P(n; t+r) P(n; t)—

1 t"+' dP(n, t') dP(n; t) r O'P(n; t)

dt' dt 2 dt'

r' O'P(nv t)

6
~ ~ ~

)

must be closely equal to dP(n; t)/dt if it is also to be
effectively independent of ~. This last approximation,
however, is well justified since for t—tp)&A/&„ I Eq.
(22)] we anticipate that

=(1/ ) 2 (1—~ -)(~-+&nlS( ) lm&)
k, m, l

X (bg,„+&n I S(r) I
k)*)(B„4+&m

I
S(t—to) I l))

X (6,„+&k
I
S(t—t,) I

t)*)e'"-«- o~P(l. t,)

= (1/r)Z(1 —~-)L&nl S(r) lm&(ml S(t—tp) In)
m

Xe'"" &' 'p&P(n; tp)+&nlS(r)lm)

X(ml S(t to) I
n—&*e'"""&' 'o'P(m; to)]+c.c.

+ (1/r)Z ( (1—~p.)I:&nl S(t—to) ll&(nl S(r)k&*
k, l

X(klS(t —t,) Il&*e'" &'—'o~P(l; t )+c.c.]
+(1—&.4)l &'Is(r) l»&nl s(r) Ik&*

X&kl S(t—t,) Il&oe'""«' 'o&P(l; tp)+c.c.])
+(1/r) & (1—~~-)I:&nlS(r) lm)(nlS(r) lk&*

&,~, l

X(ml S(t—to) ll)(k'I S(t—to) l»*]e'"""&' 'p&P(l; to).

Further, from Eq. (10)

(27)

d'P(sz; t)

gt2

1 dP(n; t)

T„dt
Sg(r) = (i5)—' dr, U(r~)

dp

O'P(n; t) 1 d'P(n;t)

T
( 1. )' dP(n;t)

ET„) dt

= (z7i) ' dry expl (i/5) rqX@~]U
0

Xexpl —(i/tz)rex "~]='U; (28)
etc. (see Sec. D below) and since r/T «1

I Eq. (23)].
Thus Eq. (11) becomes, for t—tour&&A/( T ))r
)&iz/$„,

dP(n; t)
=PLW„P(m;t) —W „P(n;t)]

m

+Y„(r,t—tp);

W„„=—(2n./k) 6 (E„"'—E„&")

X l&nl&+«&+ "lm&l', (26)

where it is to be proven that V„(r,t—tp) is = ('U/K'o&)'
for t —tp ~ r&&b/'o„. Equation (26) shows that the
dependence of P(n; t) on t, for t—tp))A/$„, and ne-
glecting third and higher powers of 'U/ K'o&, is governed
by a "master" or Boltzmann "gain-loss" equation so
that completion of the derivation of this "master"
equation from the Eqs. (11), (8), and (14) now only
involves the demonstration that F (r; t tp) is, indeed-
= ('U/BC&")' for t—tp ~ r&&A/$„

pT AT/

So(r) = (zIt) ' dr)
~

drz'U(rz)U(rp) =V'
~O ~0

&nlS, (.)lm)=l (1—e*--)Pv„.]&nl~lm&;

so that Eq. (27) becomes, neglecting terms = ('U/BC&o~)',

('U/K &")4 ~ ~

t
1 e4vvvvry

JV 1 e4vvvm(V tp)y-
")= Zl )r h kv„„i (

X
I
(nl'U Im)

I I
P(n' to) P(m; to)]+C.C., (29)

and it only remains to prove that F„(r,t—tp) of Eq.
(29) vanishes when t —tp, 'r are subject to Eq. (22).

The proof that the F„(r,t—tp) of Eq. (29) is actually
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zero when t —tp, r are subject to Eq. (22) can be given [Eq. (22)7. Thus Eq. (32) can be written to a very good
as follows. We recall that approximation as

Y„(r;t—tp)
&m('& 0(m

X {&(Em t &m)}av over am,

pao (1 giv) f 1 g [t{t—tp)/rje)
= h 'f(&-) dxl ![

x ) x
where t](E (')) is the number of BC(') eigenstates

jt' [Ap/i j (Erl (rm) With any n and energy eigen-
values between E (" and E «)+dE "', ot denoting
all quantum numbers other than E (" which charac-
terize the state P„,. We can then write Eq. (29) as

(I gt~mv|r )Y-(;t—to)= 'dE-") f(4)!
hvttmr )

e 'vnm( t tp) i-
X[ !+ccr r

(35)X[P(E t& t'to) P(E,& 't to))}av over (31)
W = (21r/h){)(E (') —E (")

and the integral I([t—tp)/r) is zero for all (positive)
(t—to)/r since [(1—e

'

)/x) [(1—exp{i[(t—tp)/r)x})/x)
has no poles on the real x axis or in the upper half of the
complex x plane and vanishes 1/[x[' as [x[—+op.

We have thus deduced from Eq. (11) for Eq. (26))
the "master" or Boltzmann "gain-loss" equation with

(30) time-independent transition probabilities per unit time,
8'
dP(e; t)

=P[W„„P(m;t) W.P—(e; t));
na

so that, remembering that v„=—(1/h)(E (') —E ('))
= (1/h)(]„—$ )(%[A]+1''[sj) [Eq. (19)) and setting
x= v r, Y(r; t—tp) b'ecomes

xh
!Y„(r;t—t{))=h—'

i dx f[ P„—
(1]/ [A ]+1V [/t ])r i

/ I rLv ) / I pi[(t—tp)/rjz)—

+c.c. (32)
x E x

In Eq. (32), [(1—e")/x)[(1—et(' '«')*)/x) is appreci-
able numerically only for [x[ & rt/r(t —tp) (tr. Since now

f($ ) is a comparatively slowly varying function of $,
i.e., ln f($ ) = (1[r[Aj+E[sj)($m/($m),„„,„)+const,we
have

SA

(&[Aj+&[»)r i

X, [ (n [U+ 'UG'U+ [m) [',

under the restrictions:

() ~(to)=b(to)}"", [Eq. (»))
(b) h/$o« t—to, [Eq. (22))

(a) h/(„«h/AE„«)=—T„=[P„(2&/h)
X&(E ")—E.(")[(m[V+VGV+ [n) ['

X (1—Smo)) ', [Eqs. (24), (23)),

(d) neglect of terms —('U/X"')', ('U/3'. )',

in the Y (r;t—to) of Eq. (14) [Eq. (2&)—(34))
should also be mentioned that with neglect of
'UG'U+ compared to 'U in the expression for W„
[Eq. (35)) we obtain W„=W,i.e., "microscopic
reversibility, " so that Eq. (35) becomes

dP(e; t)
=Q„W„„[P(m;t) —P(e; t));

—SA

x[ I+".
& (%[A]+N[/tj)rJ

xh/p„
=f(&-) 1- + (33)

and this differs from f($ ) by a negligible percent
amount since [x [ is effectively not larger than 7rr/(t to)—
so that

W. = (2vr/h) b(E «) —E "') [(e ['U
[ m) ['

=(2)r/h)t)(E (') —E„(p))[(m['U[n) ['=W „.(36)

However the validity of "microscopic reversibility, "
i.e., of the neglect of 'UG'U+ . compared to 'U in

the expression for 8"„,is not necessary for the deriva-
tion of an equation for dP(n; t)/dt of the form of Eq.
(36). In fact, in view of the third of the equalities of

Eq. (8), we can write Eq. (11) in the form

P(n; t+ r) —P(e; t)

[x[h/P„ ~h/t„
((1

(t—tp)
=P W„(r)[P(m;t) P(n; t)7+ Y„(r;t—t' ), —(37)
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W„„—= (2g/h)ti(E {o&—E„{o&)

X I&~I~+~G~+" lm) I',

(38)

whence, by use of the arguments of Eqs. (22)—(34), we
can obtain the analog of Eq. (35):

dP(1; t) =P W'„„LP(m;t) —P(tt; t)];
m

™
in Eq. (13) for p(ts)= {p(to)jdisgA(1/K)1. s It should
also be mentioned that use of Eqs. (10) and (28) in
Eq. (15) for (I I p (t) I m) yields (for m W tt)

g
—irnm{t —to)

q
&ttl p(t) Im&=

(
E. Av„)

X(ttl'Ulm&(P(tt; to) —P(m; to))

+terms = ('U/K{o')' ('U/X"')s, . , (42)

which has the form of Eq. (36).
The solution of Eq. (36) or Eq. (38) is given in Sec.

D )Eqs. (75)—(88), (95), (100), (104)—(107)] where it
is demonstrated that for t—ts»T(max) —= largest of the
T {T=[Bells (1—&s )] 'j,

dP(tt; t)
(39) P(1—ti„„)(stlp(t) lm)(ml nI ts&

=0)

t —lp )&T(max)

which last equation can be employed to estimate those
terms in Eq. (5) for &$&i which are associated with the
off-diagonal matrix elements &m I

X)
I n& of the now

assumed "nondiagonal" dynamical variable, X). Equa-
tions (5) and (42) give, for t—to»h/$„, t't/], and with
use of Eqs. (36), (18), (24)

Lsee especially Eqs. (84), (88), (100)] so tha, t

0=Km lf nmLP(mi t) I
t-t, »T{msx)

P(ts; t—) lt —i »r{ )] (40)

Equations (39) and (40) show that the various P(tt; t)
ultimately approach time-persistent values which are
quite independent of the corresponding initial values,
P(n; ts). ' This follows since the quantum numbers
m=—E„{'&,0.„;m—=E (o), 0. ; E "'—E "&, can be chosen
so that: P(N; t)]t-t, »T{max) ~P(m; t)]t to»{mrax) f—or
fixed tt and all m, whence Eq. (40) implies that actually,

P (m j t)
I i to » T {max)—=P (tt i t) I t to » T {m )ex-

= (1/X)pe P(k; te) =1/X, (41)

where X is the number of mutually accessible K("
eigenstates of )A+8].' Equation (41) states that in the
ultimate and time-persistent, i.e., equilibrium, statis-
tical configuration of

I 2+8] all mutually accessible
K&" eigenstates are occupied with equal probability.

We now wish to emphasize that the equality of the
equilibrium values of the diagonal matrix elements of
p (t) LEqs. (41), (4)] by no means implies that
&ttl p(t) lm) I

i t, »T{,) vanishes; in fact, such an
ultimate vanishing of the off-diagonal matrix elements
of p(t) would not only contradict the explicit expression
for &ttlp(t) lm) given in Eq. (15) Land in Eq. (42) just
below) but would also yield

p (to) = expl (i/ts) (t to) 3C]p(t)—
XexpL —(i/A)(t —ts)3{'.]It „»r{,„)

= expl (i/l't) (t—to) K]{(1/K) 1}
XexpL —(i/t't) (t—to) X]I t —to»r{ )

= (1/~) 1

contradicting, in addition, the choice originally made

It will also be seen in Sec. D that the P(e; t) approach their
ultimate and time-persistent, i.e., equilibrium, values in a non-
oscillatory fashion.

Since W„nd (E„{ E{i) [Eqs. (38) or —(36)j all such
mutually accessible K(') eigenstates have. approximately equal
eigenvalues: L~„(')—E. ,(0).

t'1 —d
—irsm{t—rsi

~

1(~I & lm&
nm g ltd )
X (P(tt; to) —P(m; tii))(ml nln&

i p(1—5—.,„)L(27r/It)li(E„{"—E "')

(ml x)IN& I't

X I &m
I

'U
I m& I'](P(tt; to) —P(m; tii))

&mlultt& 2

=I+(1—a .)W„.P(m;«, )(mlnl~&(a/t„) I
Rr?S

= lg P(mI to){(ml &Its&javovern(I't /$ )/T
fn

=
I {(m I

X)
I
tt) j av over nml {(It/, $m)/Tm} nv over m

« I {(ml &
I
ts&}sv over n, m I. (43)

Thus, provided that

I {&ttI &II&}nv over nl&&l{(ml &I ts&jav over n, m I

X{(ft/]m)/Tm }sv over m& (44)

which, in view of Eq. (24), is certainly satisfied if

I {&~I
&

I ~&}---.I
&

I {(ml &
I ~)}---., -I, (45)

we have from Eqs. (43) and (5)

(~& —&~nondisg& P P(tt . t) &ttl
~nondisg

I I) .

t—to»A/(„, (46)
whence, using Eq. (41),

—(~nondisg& ~ (1/vr() P &tt
I

unending
I +) .

t—to»T (max) »h/$, (47)

while, from Eqs. (41), (6)

&» =&&""&i=(1/31)Z-&~l&""l~&;
t—to»T(max) »ttt/$ (48)

It should be particularly noted that however p(t0) is taken,
eg. , with arbitrary (rt

~ p(te) ~
Nt) (rrr Art), p(t) = exp) (t/tt)—

X (t—to) X]p(te) exp)(t/rrt)(t —te) Kg cannot ever become (1/K)t
except in the special case p(te) = (1/K) 1 when p (t) is also (1/ K)1
for all t~t0.
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Equations (47), (48) indicate that, in the equilibrium
statistical configuration of [A+B], average values of
"nondiagonal" as well as "diagonal" dynamical vari-
ables X) are obtained by averaging the expectation
value of 5) in a particular K(P] eigenstate, f, over all
mutually accessible [t„with the same weight, 1/X,
attached to each [t . This mode of averaging is pre-
cisely that which would be adopted if a microcanonical
ensemble were assigned to [A+B] and our demon-
stration of Eqs. (47), (48) is therefore equivalent to a
justification of the assignment of such a microcanonical
ensemble to the supersystem [A+B] in its ultimate
and time-persistent equilibrium statistical configura-
tion, i.e., equivalent to a demonstration [under the
restrictions (a)—(d) above and the further restrictions
(e), (f) below] of the quantal ergodic character of the
supersys tern.

It remains to discuss the possible effect of the neglect
of the terms =('U/K"))' ('U/BC"))' . in passing
from the Y (T; t—tp) of Eq. (27) to the Y„(T;t tp) o—f
Eq. (29) [restriction (d) above). Since 'U/3C(P)

=X[A) /(X[A)+E[B)) [see discussion after Eq. (1)]
this neglect is better and better justified for larger and
larger [A+B]; on the other hand, the Poincarh
recurrence time, 9"(ft), defined by

I
P(Tt; tp+ 1 (I))) P(n; tii)—

I

P(tt; tp)
(49)

(for all tt; l), a preassigned arbitrarily small number,
say 1/100) approaches infinity as [A+B] grows larger
and larger. It is thus reasonable to conjecture that the
terms =('U/X"))', ('U/X('))', . in the Yn(r,'t tp)—
are associated with the actual quasiperiodicity of the
time evolution of [A+B], i.e., are associated with the
Poincare recurrence phenomenon in [A+B], and that
our neglect of these terms corresponds, among other
things, to the assumption that the Y'(tt) of [A+B] is

effectively infinite. If this conjecture is correct another
pair of restrictions:

(e) (t—t,)«K(t)), (f) T(max)«Y'(t)),

must be added to the list of restrictions (a)—(d), above,
required for the validity of the "master" or Boltzmann
"gain-loss" Eqs. (35) or (38) or (36); as a consequence
Eqs. (41), (47), (48) should, strictly speaking, be
written as:

P(~o t) I
9"(p)»t to)&T(max) =—P('I

o t) I 1'(b)»t to))T(max)—'

= (1/X)gi P(k' tp) =1/X (50)

(» (~nondiag& (1/SI)p (ti I
~nondiag

I
tt&.

Y'(l))))t—t,&)T(max) &)h/P. , (51)

&»t=&&""&t= (1/~)Z-&ttl &"'*Itt&

Y'(t))))t—tp»T(max)))A/$, . (52)

C. THE "MASTER" OR BOLTZMANN "GAIN-LOSS"
EQUATION FOR THE SYSTEM OF INTEREST

To deduce the "master" equation for the system of
interest we express the states P —=[t [A~B)(En(P)oman) of
the supersystem [A+B] in terms of the states
)I [A) (ej,n j),f [B](t)„,p, ) of the system of interest [A] and
the surroundings [B],as:

P[A+B] (Pn own) /[A] (Pjonj)4'[B] (gaoPn)o

~"'ttt'[A+B)(E "'V )=&~[A]"'+~[B]"')[t'(&"' 7 )

=4'[B)(t)«»n)( ~[A) "'ttt [A) (Pjonj))

+4[ ](, )f~[ ]"'0[ )(i)-»-)) ( )
= (pj+Tto)4'[A] (pjonj)4[B) &l»Pn)

=P. "V[A+B)(E, "' V )

where n, , P, y„—=n, and P„arequantum numbers other
than the energy eigenvalues pj, i)» E„(P)= gj+t)„
characterizing the states /[A](pj; n, ), f[B](t)» ), and
)t [A+B)(E„"',y„).We next consider

P(e;t) =P[A+B) (p j,n j; t)»—; t) (54)

as the joint probability that [A], [B]are found in the
states /[A] (pj,nj), )I [B)(t),p ) at time t, equal identically
to the probability that [A+B] is found in the state
)t [A+B)(& "]oV ) [=0[A](ejonj)4'[B](t)»& )] at time tt

and dehne

In concluding this section we wish to emphasize that
we have shown, subject to the restrictions (a)—(f), that
once the equilibrium statistical configuration is attained
it persists in time; thus it is impossible [at least during
time intervals «Y"(t))] for an equilibrium statistical
configuration to evolve into a nonequilibrium statistical
configuration. Since in addition, any nonequilibrium
statistical configuration evolves in a nonoscillatory way'
toward the equilibrium statistical configuration, we
have demonstrated, again subject to the restrictions
(a)—(f), the essential irreversibility of the time evolu-
tion of the statistical configuration of [A+B]. The
reconciliation of this irreversibility with the reversi-
bility of the time evolution of exp[ —(i/]it)(t —tp)K]
&&It(j)(tp) [Eq. (3)] which implies a corresponding
reversibility in the time evolution of

p(t) =exp[ —(i/A) (t—to) BC]p(tp) exp[(i/A) (t to) K]—

[Eq. (2)] is effected by the observation that very
special, "extremely quantal-coherent, " initial statistical
distributions, associated at a minimum with a "non-
diagonal" p(tp) and thus certainly violating restriction

(a), are required to produce processes which can be
appropriately described as the evolution of an initial
nonequilibrium statistical configuration of [A+B] into
statistical configurations of [A+B] still further from
equilibrium (see Appendix A).
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+[A] (»j&nj & t) = p P[A+B] (»j)nj j &]u&I9u & t)
Qu)Ou

=p E[AyB] (»j)nj j En»j& Pu j t)&
Pu

(55)
P[B](i)u)'Pu', t)—= Q P[A+B](»j)nj j 'jju)Pu) t)

fj&cxj

2 ~[A+B](En &]u)'nj) &)u&P'ui "))
aj

as, respectively, the probability at time t that LA] is
found in the state &jr(A)(»j,nj) for any probability dis-
tribution of LB] over the various states f(B)(gu; Pu)
and the probability at time t that [8] is found in the
state &I&(B) (~),P„)for any probability distribution of [A]
over the various states $(A)(»j;n;). The "master"

equatian fOr P[A+B)(»j,nj; &),Pu; t), Eq. (35), tOgether
with Eq. (55), then yields, with

Wn)n= W [A+B] (»jrnj)'gu)Pu j»k)nk)&rjv&Pe)&

W)nn= W [A+B] (»k&nkr gv)P'v j»j &nj) I)u')Pu)
&

E "'=»j+i) »k+—rj„=E„(P]=E,—

~[A)(»j&nj) t) = 2 Lit&[A](»j&nj &»k,nk; t)
dt &k& +k

XP[ A](»k)nk ) t) 7jl [A] (»k)nk &»j)n j) t)

XP(A) (», ,n, , t)], (56)

where

and

W[A+B] (»j& nj) E»j& Pu j»'k& nk) E»k& I9v)~[AyB] (»k& nk j E»k& Pv j t)
Pu, Pe

i»'[A](»jrnji »k)nki t) =
Q I [A+B](»k) nk

& E»k& Pv ) t)
P~

W[A+B] (»k& nk& E»k& Pv j»j& nj& E»j& Pu)I [A+B] (»j& nj &
E»j

& Pu j t)
Pu, Pv

u (A) (»k&nk, »»n; & t) =
Q 8 [AyB) (»i) ni i E—»i) P„i t)
Pu

(57)

where

P[B (&))u&Pu &
t) p LW[B) (&]u&Pu j '&)e&Pe

& t)P[B](gv&Pv j t') W[B] (&)v&Pv & &]u&I9u & t)P[B](&)u&Pu & t)]&
dt gt Pv

(58)

P W(A+B) (E rj„)n,", rj ) Pu; E— fj„)nk, »]„&P—„)P(A+B) (E rj„&nk, q„)—P„)t)
~7 ~ 'rrk

~a( )(n ,P n ,P , ) 2 +[A+Bi (E—i)v, nk; %, P. ; t)
aI»

W[A+Bj(E 'Vv& nk) 'gv& Pv i E Vu& n j) &)u'Pu)I [A+B](E &)u& nj i &)u& Pu i t)
jt &k

iIj(B) ('Ije)Pv i 'Vu)Pu i t) =

(59)

P[A] p ' (» ' n '' t) = Q X[B](E »)/X= (1/X)g —K[A] (» )X[B](E—» ) = 1

Z I'(A+Bj(E n-,nj; n-, P—-; t)
cd

Equations (56)—(59) for P(A)(»jnj; t), E(B)(&„,P„;t) are of the "master" or Boltzmann "gain-loss" type with,
however, time-dependent transition probabilities per unit time:

iIj[A] (»j)ni )»krnk j t)) ' ' ') ~[B]('gv)Pe i rju&Pu) t).
We first consider the ultimate and time-persistent equilibrium statistical configuration of LA+8]. In this case

9'(5)))t—tp))T(max) (see Sec. B above) and from Eqs. (41), (50), and (54):
I [A+B] (»k&nk j rje&Pe) t) =I [A+B] (»j&nj j 'gu&Pu& t) = 1/X (»j+&)u»k+&)v—=E)&

so that, using Eqs. (55), (57), and (59), and with K(A) (»;), K[B)(&) ) the numbers of LA], LB] energy eigenstates
with energy eigenvalues e;, g,

IA] ( ' n' t) +(B](E»')/+

&( "B")"(n-, -P;«)=&(A)(E—n-)/»

2 I'(»"""(n )P. &
t)= 2 &(A)(E—i).)/&= (1/&)2 &[B)(&) )&(Aj(E—i).)=1

Qu &Isu

W[A+B](»irni& E»ir Pui »k) nk) I' »k,P„)—
Pu, P~

Ot (B)(E »k)—

(60)
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If [A+B](ek )Qk) E ek) p j ej) Qi) E ei) p )
Pu PV

w[A] q" (ek,Qk', e ',Q; t) =
K [B](E ej)—

~[A+B](E )u) Qi) ]u) Pu j E ]v) Qk) )v) Pv)
0[j& ak

222 equ1l p p[) (n, n, , )
&[A) (E—

&) )

2 If'[A+B)(E 2]v) Q—.) )/jv) P. ) E—2)» Q, ) 2)u) P.)
+j& +k

W[B] (&)v)Pv j )u)Pu j t)
K [A] (E—2)u)

Equations (61), (60) and the "microscopic reversibility" of the W[A+B] [Eq. (36)) imply the principle of
"detailed balance":

w[A] (ej)Qj ) ek)Qk) t)P[A] (ek)Qk ) t) =w[A] (ek)Qk) ej)Qj j t)P[A] (ej)Qj j t))

w(B)' ""(&)„,p„;2/„,p„.t)P[B)' '(t)„,p„;t) =w[B)' ""(t)„,p„;2)„,p„;t)P[B)' "'(t)„,p„;t)
(62)

&[B](E—ej)

ek, r).k

which result is sufficient for these time-persistent and ultimate P[A)'q""(e;,Q;; t), P[B)equ" (t)„,P„;t) of Eq. (60)
to satisfy identically the "master" Eqs. (56), (58).

We may also write, in view of Eq. (60)

&[»(E—ej) &
—~~fe

P A 'q""(e;,Q " t) = Ou = (/)lT):— in% [B](E)
Q +[A] (ek)+ [B](E—ek) p X[B](E—ek) p e 'k'e dE

&[A) (E—
&]u) K [A) (E—t)u) 1 X[A) (E 2)u) 1—

P equil(~ p . t)—
Z &[B](2)v)&[A) (E t)v) Z &[A](E &)v) &[B](E) p &[A](E 2]v) K [B]—(E)

(63)

provided that the system of interest LA] is so much
smaller than the surroundings L8] (X[A)«&[B])
that the various states /[A) (ej,Qj) with appreciable
P[A)'q""(e;,Q;; t) are characterized by

d lncII [B](E)/dE d(Econst)/dE

d2 inc)I[B) (E)/dE2 d2(Econst)/dE2

Equation (63) corresponds to the assignment of a
canonical ensemble to the system of interest LA] and
of a microcanonical ensemble to the surroundings t 8]
in the ultimate and time-persistent equilibrium statis-
tical conffguration of the supersystem [A+8].

We now consider the case of the system of interest
LA] in nonequilibrium and the surroundings L8] in
equilibrium; physically this is possible only if LA] is
much smaller than L8]. Quantitatively, the assertion
that L8] is in equilibrium while (A] is not, is equivalent
to the statement that P[A+B](e;,Q;; &)„,P; t) has the
same numerical value for all P:P„(1),P (2), , P„(22),

P LX[B](&)„)];this implies, using Eq. (55), that
P [B]())u p; t) also has the same numerical value for
all p, consistent with the expression in Eq. (63) for
P[B]'q""(t)„,p„;t). With the P[A+B)(e,,Q;;2]„,p; t) the
same for all P„these P[A+B) (e;,Q;; &]»P„;t) cancel from
numerator and denominator in the expressions on the
right-hand side of Eq. (57) and the (in general, time-
dependent) w[A)(e;,Q, ; ekQk', t), w[A)(ekQk, ' sj,Qjj t) are
equal to the time-independent w[A]'q""(ej,Qj; ek,Qk, t),

w[A]'q""(ek, Qk, e;,Q;; t) of Eqs. (61) and (62). The
"master" equation for P[A)(e;,Q;;t), Eq. (56), then
assumes the form:

P[A] (ej j Qi j t)

[A+B] (ej) Qj) E ej) Pu j ek) Qk) E Ck) Pv)
Pu Pv

)(e [B '")'e/ p e s"/e (65)
rtw)Pw

If [A+B) (ej)Qj)2)u)Pu) ek)Qk)2)v)Pv)
hatt & Ptb & gv & PV

Xe v./e/ p;v./e-
]ftW & PW

equil(e . Q, .

w[A] (ek)Qk j

sk, Qk,' t) P[A] q""(ej Q j, t) e "e
MJ

e ,Q ;t) P[A] '('ek Qk t)

pw[A] (ej)Q) ) ek) Qk) t)P[A] (Kk)Qk) t)
&k& 0'k

—w[ )' ""(e„,Q„;ej, Q, ; t)P[ )(e,, Q, , t)], ("64)

with Lsee Eqs. (61), (60), (63), (62)]

w[A] (ei)Qi ) ek)Qk j ")

W[A+B](ej) Qj) E ej) pu) ek) Qk) E Ek) Pv)
P&A&PV

c]I(e—k/e/ P e
—l/e)
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which can be employed to describe the approach of [A] we have [again using Eq. (64)]
to equilibrium (see Sec. D). The "master" equation
for P(ii](z]„,P„(jz)j «), Eq. (58), becomes, using Eqs.
(59), (36)

P[ji] (gu&Pu(m) j «)

[P[A+&] (E r]s r n—; r]„,p„(jZ);«)
'gz]~ 0'ji &A'

P(A—+»(E n-, n—; ~-, P-(~); «)]

%[a]{z7.)
X Q IF(Apt]](E r]., n—j, z], P (zz);

E r]., nk, r]„—, P„(m))
—p $P (A+i]] (E r]s,r n, ,

—
r] a,r p„(ZZ);t)

rz«j e k

P[A+—n](E n-, n—; n-, p-(~) «)]

% [a]{g~)

X Q IF (A+i]] (E—rt, n, , r], p„(zz);

E—~., n„~., p„(m))=O.

S [A] («)= k Q P [A ] (e ,n ; «) 11'1P'[A] (e ',n ', «), (67)

and obtain from Eqs. (67), (64)

dS(A] («)
=(k/2) 2 L~(A]"""(ej,nj;ek, nk;«)

&ji 0'j~&ki &k

Thus P[i]](r]„,P„(jz);«) is time-persistent as is required
by the circumstance that [8]is in equilibrium (though
[A] is not).

Ke conclude this section with an illustration of the
use of the "master" equation for P(A](e;,n, ; «), Eqs.
(64), (65), in the derivation of an entropy theorem for
the system of interest LA]. We define the entropy of a
system of interest LA] whose stat. istical configuration
obeys such a "master" equation, as,

t' Bei(V(») l d V(A]
P[A] (ej,nj; «)

BV(A] ) d«

s Z I re[A] (eji&jj e»ak~ «)
6j, 0'j, Sic, cx Jg

XP[A](ek&nkj «) re[A] (ek~«j ej~njj «)
70

XP(A] (e, , a, ; «)](e; ek—)

( Be, (V(A])) dV(A]
P(A] (ej,n «)

~

——
BV[A] ) d«

dQ[A] d V(A]
A [A]

dt

where it is clear that dQ[A]/d«may be either positive or
negative depending on the direction of the net Row

between LB] and [A], and in general, vanishes only in
equilibrium —see Eqs. (62) or (65).These last equations,
used in Eq. (68), also ensure the vanishing of dS[A]/d«
in equilibrium.

We now define

A(j; «)=
P[A](ej,aj, «) —P[A] "' (ej,aq, «)

71
P A]equi[(& . a . ~

«)

which represents, at time t, the relative deviation of the
probability P[A](e,,n;; «) from its equilibrium value
PtA]'q""(e, , n, ; «). Expression of dQ(A]/d«, dS(A]/d« in
terms of «],(j; «) and

)ijk= w(A]' —""(sj)n;j ek)nk, «)P(A]' '""(ek,nk, «)

=w[A] q (ek nk lEj aj «)P[A] (ej n «)'
t see Eqs. (62) or (65)] yields,

XP(A] (ek,nk, «)
—zjj(A]'q""(ek,nk, e, ,n, ; «)

XP(A](e;, n;; «)]

dQ [Al («)
=-,'Q )~jklh(k; «) —«],(j;«)](e,—sk), (72)

as the basic equation for the time rate of change of the
entropy of [A] arising from: (1) the approach of the
probabilities P(A](e, ,n;; «) towards their ultimate and
time-persistent equilibrium values P (A] "q""(e;,n, ; «)

without any net flow of heat between LB] and [A], and
(2) from any net flow of heat between t.8] and [A],
dQ[A]/d« In this last c. onnection, defining the internal
energy of LA] as

k+- P ) j,L~(k; «) —~(j; «)]
2i, &

f'P(A] (ek)nk j «) )
(73)

[ P[A] q ' (e ',n; «))

XlnLP [A] (sky nk j «)/P [A ] (ei7nj j «)]iy '(68) &S(A] («) k (1+6(k; «) )=-p) j,La(k;«) —a(j;«)] ln~
dt 2 j, k [.1+6(j;«))

U(A](«)= P P(A]( )n,ej; «)e, ,

V [A] is the volume of pA7 and p[A] is the pressure exerted by
(69) LA) on LBj. dV [A]/dt is sufficiently slow so as not to induce any

transitions between ]t (A] (e& ,n&) and ]t (A]
.
(erk&ok).
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whence, using Eq. (63),

dS[~] (t) k=-P h;k[tk(k; t) —A(j; t)]
dt 2 ~~

/'I+tI(k; t)) 1 dQ[g](t)
I+— (74)

] I+A(j; t)) T dt

The first term on the right hand side of Eq. (74)
is (except in equilibrium) always positive and repre-
sents the time rate of increase of the entropy of [A]
associated with the establishment, without any net
heat flow between [8] and [A], of the ultimate
and time-persistent equilibrium probability distribution
P[z]'~""(e;,cr, ; t) relative to the initial probability distri-
bution P[~](e,,cr;; to). On the other hand, the second
term on the right hand side of Eq. (74) represents the
time rate of increase or decrease of the entropy of [A]
associated with the direction of the net Row of heat be-
tween [8] and [A]. Only under circumstances such
that dQ[~] (t)/dt)0 (net heat, flow from [&] to [A]) is
d5[~] (t)/dt necessarily )0.

where"

(1/Tt)
U'2g

UN1

U 12 ~ ~ ~

—(1/Ts)

UN2. —(1/TN)

with

E(1)=—et, , E(X[g](et)) =—et,

&(X[~](et)+I)=es) ~

W(I») =&[~]"""(er,~t(I) ' et,~t(2); t),

W(1; K[g) (er)+I)
=—w[g)' ""(et)nt(1); es,ns(1); t)) ~

Pts —W(1 2)e[E(&)—E(s)] /&kT
) ) 0 (7g)

U —W(» s)e[E(rl—E(a)] /skT

Q(1 ~ t) P (1 ~ t) eE(1]/2kT

IIQ(t) II
—= Q(2 t) P(2 t)8E&'] "k

Q P7 ~ t) P (AT
~ t) eE (N l /2 k T

where

—IIP(t) II
=

II wll IIP(t) II,
"

dt

D. THE SOLUTION OF THE "MASTER" OR
BOLTZMANN "GAIN-LOSS" EQUATION

For simplicity we rewrite the "master" or Boltzmann
"gain-loss" equations (35), (64) in matrix form as:

P(1' t) =Pa](et,~t(I); t),

P(X [g]('t)+1; t)=—P ig] (es)ns(1); t),

&=&W]=Z &[~](es) ]
Cj

U' W(y s)e[E(rl—E(s)l/&kT

=1 [Eq. (65)];
P W(s r)e[E(s)—E(r)]/skT

(80)

(1/Tt)
W2g

12 ~ ~ ~

(1/Ts)
(1/T„)=—P W(s, r) (1—I]„)

with

P(1; t)

IIP(t) ll=—

P(S; t)

—(1/TN)
for the system of interest [A]. Since flWII and IIUII
are both symmetric matrices, Eqs. (75)—(77) are of the
the same general form as Eqs. (78)—(80), and it will
suffice to discuss the solutions of the former, those of
the latter being obtainable from those of the former by
appropriate substitutions.

The solution of Eqs. (75)—(77) can now be written as
W „/W„„=1[Eq. (36)];

(1/T-) —=2- W-(1—~-) LEq (23),

for the supersystem [A+P], and,

(77) IIP(t) II= 2 (III II IIP(toll)IIP lie """"'
(81)

—IIQ(t)ll=llvll IIQ(t)ll,
dt

(78)

'0 In the mathematics literature a "master" equation of the
form of Eq. (75) is known as a "Markoff chain" equation in a
continuous variable. For a discussion of general methods of
solution of "Markoff chain" equations see J. S. Doob, Stochastic
Processes Uohn Wiley tk Sons, New York, 1953); W. Feller,
Introduction to Probability Theory (John Wiley 8z Sons, New York,
1957);W. Ledermann, Proc. Cambridge Phil. Soc. 46, 581 (1950);
47, 626 (1951). The solution of "master" type equations is
worked out for various special cases in the physics literature,
e.g., N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.
Rev. 73, 679 (1948);J. P. Lloyd and G. E. Pake, Phys. Rev. 94,
579 (1954); F. Lurcat, Compt. rend. 238, 1386 (1954); 238, 2517
(1954); I. Solomon, Phys. Rev. 99, 559 (1955).

with

Ilt II=— P (2),
P.P')

(—llwll) IIP ll=~ IIP II III II II& II=&-, (82)

the os„, Ilp, fl being the eigenvalues (here assumed non-
degenerate) and the corresponding eigenvectors of the

» The relationship between Q(r; t) and P(r; t) used in Eq. (79)
was suggested to us by Professor F. Bloch. See also E.W. Montroll
and K. W. Shuler, Advances in Chemical Physics (Interscience
Publishers, New York, 1958), Vol. 1, p. 361.
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matrix —IIW'll. Since —
IIWII is symmetric —"micro- with

scopic reversibility, " Eqs. (36), (77)—the ol, :
(—[loll) lie„ll=~„'lie„ll; llf. ll lie„[[=3.„,(9o)

mo(vl(+2( ' ' (N —1 and

are all rea/, while the normalizability of the P(n; t) for (—llf/II) i[roll=~2'llvoll=o,

all t L(d/dt)p„p(tt; t) =0 or Q„p(n;t) =1]demands whence, with the [[VI[(=IIVI[) of Eqs. (79), (80),
that the algebraically smallest co„is zero, i.e.,

(91)

0=COO(GD1(M2( ' ' ' (GON (83) g
—E(1) /2kT

Thus, substituting Eq. (83) into Eqs. (81), (89)

II p(t) II
= (IIPoII lip(to) II) IIPoII

N—1

+Z(IP II lip(to)ll)IIP lle "" "' (84)
v=1

=lip"""II+2 (II@ II lip«o)ll)IIP II&
"" "'

v=1

qqll
= e

Z[A] '
g
—E(N) /2kT

Z —V g
—E(r) /kT —V g

—e2'/kT
[Al =~

c2, cx2

so that, substituting into Eq. (89)

~
—E(1)/2kT

(92)

(—Ilwll) IIPoII=o, (85)

and, since the IIWII of Eqs. (76), (77) satisfies,

llwll). [[1[[= (—llwll). [[1[[=o, (86)

we have (&ds assumed nondegenerate!)

IIPoII = (1/&' ) ll1[I. (87)

Hence, from Eqs. (84), (87)

IIP"""II= (1/»K- P(n «o)) [[1[[= (1/» [[1[[

in agreement with Eq. (41) or Eq. (50), The reality of
the various ol„in Eq. (81) or (84) shows in addition
that Ilp(t)ll approaches Ilp'q""II in a nonoscillatory
fashion, the (o») ', (o12) ', , (olE,)—' playing the
role of relaxation times. Similarly, solution of Eqs.
(78)-(80) yields,

N—1

IIQ(t)ll= 2 (llf II IIQ(to) l)lie lle
''" "'

v=o

= (II fo ll IIQ(to) II) llvoll

+2 (llf, ll IIQ(to)ll)lie lle
""""'

v=1

N—1
= IIQ"""II+ 2 (II f II IIQ(to) II) lie [Is

v=1

(E.p(»; ts))
IIQeq""II = e E&"""

Z[A]
g
—E(N) /2kT

~
—E(1)/kT, eE(l) /2kT

E
—E(2) IleT .EE(2'I j22T (93)

Z[A]
g
—E(N) /k T .gE (N) /2kT

i.e., using Eqs. (80), (79),

P equil(& + (1) . t)—Pequil(1. t)
—Qequil(1)e (1)E(2kT—

=(e '1'" /Q e
—'1" ) etc. (94)

e2, 0!2

in agreement with Eq. (63). The symmetry of —IIVII—"detailed balance, " Eqs. (62), (65), (80)—ensures
the reality of the ~„'and so the nonoscillatory character
o«he app«ach of IIQ(t) II to IIQ"""II.

An interesting lower limit can be obtained for the
shortest of the relaxation times, i.e., for (olE—1) ', viz. ,

(-,')T(min) ~ (&qlv 1)
—',

T(min)=smallest of the T, (95)

so that the shortest relaxation time is & —, (lifetime of
the shortest lived state). Equation (95) follows upon
introduction of the "non-negative" symmetric matrix,

[[1[[+llw II
=

T(min)

I 1/T (min) —1/Ti]

8 21

8'12

[1/T (min) —1/T2]

t 1/T (min) —1/TE]

(96)

Xli ——[1/T(min) —1/Ti] &0, X12=W12 &0, etc. ,

The normalizability of the P(n; t) for all t, as given, e.g. , in Eq. (4), is also obtainable from Eq. (11)since, on the basis of Kq.
(9) or Eq. (14), Z Y (T; t—te)=0 and'since Z„LW„(T)P(nt;t) W(T)P(n; t))=0. T—hus 'the neglect of 7„(r;t to) in passing'—
from the rigorous Kq. (11) to the approximate Eq. (35) (the "master" or Boltzmann "gain-loss" type equation) does not upset
the normalizability of the P(n; t). From a mathematical point of view, the normalizability of the P(n; t) in Eq. (35) is a con-
sequence of the fact that each column of the —[[W[[ matrix vanishes, and this property of —[[W[[ together with Eq. (82)
may be used directly to establish Eq. (83) and also Eq. (87) below.
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and use of a theorem of Frobenius" to the effect that
a non-negative symmetric matrix such as IIXII has an
eigenvalue spectrum x„:xo ~xl ~@2 ~ ~xN 1 such
that

xp &mr 2:2 x„0a~1 ~/v 1, (97)

which, upon squaring and dividing by or& 1, is seen to
be equivalent to Eq. (95).'4 On the other hand, no
general expression in terms of the T seems to exist for
the upper limit to the longest of the relaxation times,
(4pt) ', though examination of particular examples (see
Sec. I'") appears to indicate that, as might be expected
physically,

&0 —&N—1 ~

Equations (98), (96), and (75) yield

[1/r(min) $ +
I
[1/2'(min) j—» 1 I t

(98) (car) ' =T(max); T(max) =—largest of the T . (100)

As an example, we shall now give an explicit ex-
pression for IIQ(t) Ij in the simplest case: X=2. Here,

(99) from Eqs. (79), (80), (92), (90), (93), we have

—W(2, 1)

W(2 1)e[E(2) E0-]]/kT

e—E(1)/2kT

W(1 2)e[EO]—E(23]/kT

—W(1,2)

e—Z(l) /2kT

g tg e—E[2)/2kT (e
—E0)/kT+e E[2)/kT)f e

—E—(2)/2kT

e—Z(2)/2kT

; ~1'=W(1,2)+W(2, 1);

(101)

e-@(1)/kT. eZ(l)/2kT
quil

Z[A] e—E(2)/kT. ez(2)/2kT

so that from Eqs. (101), (89), (79),

P(1. t)EE0)/2kT

(t) =
P (2 . t) eE (2) /2k T

e
—E(l) /kT. eE(l) /2kT

+ [p(1 t )e E 1 E 2 /21T p(2 t )e [E0] E{2]]/2kTj
Z~A~ e ~("/k e~(')/'k Z~A~

e—E(2) /2kT

i.e., using also Eq. (80)

X E
—[W0,2)+W[2,1]](t tol (1()2)—

e
—E(l) /2kT

W(1,2) )W(2, 1)p(1; tp) —W(1,2)p(2; fp) i
+I I

e—[w it, 2)+w(2;1) ] [t- to)

W(1,2)+W(2, 1) 0 W(1,2)+W(2, 1)

P(2. t) —(I/g[~ )e E(2)/kT —(I/g ~ )[[]- e)ElsP/k(T1 ~ t ) e-E0)/kTP(2. t )]e—w0, 2]+w(2, 1]](t to)-
W (2,1) (W(2,1)P(1;tp) W(1 2)P(2 —f,)~

I
e—[w 0,2)+w(2, 1) ] [1—to)

W(1,2)+W(2, 1) lW(1,2)+W(2, 1)

p(1; t)=(1jZ[~])e E0]/" +(1/Z[g])[e E[2]/kTp(1 tp) —e
—E0)/kTp(2 t )je-[w0,2]+w[2;1]](t-tol

(103)

Equation (103) demonstrates the proportionality of
p(1; t) —p«""(1;t), p(2; t) —p«""(2; t) to

&[W(2,1)p(1; tp) —W(1,2)p(2; fp) j
=+(W(2,1)LP(1;t.)—P""'(1;t)7

—W(1,2)[p(2; tp) —p p""(2; t)1)
[see Eq. (65)], i.e., to the initial devis, tion from
"See, for example, E. Bodewig, %atro'tt Calculus (North

Holland Publishing Company, Amsterdam, 1956), p. 145.

"detailed balance" and so to the initial deviation from
equilibrium.

In concluding this section we wish to point out that

"The method of proof of Eq. (95) given in Eqs. (96)-(99) was
suggested to us by Professor I. I. Hirschman. For nondegenerate
oo„the ~, & signs in Eq. (99), (95) must be replaced by ),
& signs. Our statement of Frobenius' theorem is valid only for
a non-negative symmetric matrix [~X~~. The theorem can also be
proved for any non-negative matrix, in which case some of the x;
with 1&j&lV' —1 may be complex, and Eqs. (97), (98) become:
so~ lstl ~ "«I» 11.
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a Laplace transform method for solving Eqs. (75)—(77)
or (78)—(80) yields an explicit formula for the matrix
II&.Il—=(II& II lip(~p) l)IP I

ln Eq. (81) «««he
analogous IIX„'ll=—(I g, I I Q()!p) II) If(t, ll in Eq. (89), viz. ,

II&.Il
= (III.II

lip�(&o)

II) III.II

1 C(1; s)

where

dD(s) C(2; s)

. ds ~ C(X; s), = —
„

(1o4)

D(~)=—det(~ll1II —II+'ll), (105)

C(»;s)—= same determinant as D(s) but with»th
column replaced by

P(i; tp)

P(2; tp)

P(s; tp)

Equations (104) and (105) are valid for nondegenerate
co, and are derived in Appendix 8 below; the corre-
sponding equations for degenerate ~„arealso given in
this Appendix. It is to be noted for future reference
that, from Eqs. (104), (87), (82),

&- &p(») =(IIPpll. Ilp(&p) ll)Z- Pp(»)
=Q„P(»;tp)=1, (106)

&-&.(») = (IIP.II lip()'o) ll)&. P (»)
(1&) &lV—1) (107)

=(Ill. ll Ilp(&o)ll)&'(Ilp. ll Ilpoll)=o

E. THE "MASTER" OR BOLTZMANN "GAIN-LOSS"
EQUATION FOR AN INDIVIDUAL PARTICLE

OR QUASI-PARTICLE OF THE SYSTEM
OF INTEREST

If the states ))((g) (p;,(2;) of the system of interest [A]
can be appropriately described in terms of the states

4 (1) (j"'), )t (2) (j"'), , 4 ('l(j"'), , 4(.) 0"'),
of its constituent individual particles or quasi-particles
[1],[2], [i], , [q], , we can consider

(». )')—=p ({j"'})')

p J ~ =—p({j"'})~({j"'})'
{j(i)}—j(1) j(2) j(i) j(» 1) j(») j(»+1)

(1o8)

as the joint probability that [1], [2], , [i],
[q—1], [(t], [q+1], . are found in the states
(((1)(j"'), )t (2)(j"'), , |((')(j"), , )t (»—ll(j" ')
))t (») (j«'), )t (»+1) (j('+ )), at time (, equal identically
to the probability that [A] is found in the state
f(z) (p;,n;) at time t. We further define

p (») (j;t): gp—(g) ({j ' };t) )

) j(&))({t)

{j(s)}(»)—e(1) e'(2) . . . e (i) . . . (e1») e (»+1)

(109)

as the probability at time 3 that [q] is found in the state
f(,)(j«)) for any probability distribution of [1], [2],~, [i], , [i7—1],[q+1], over the various states
4(1)(j"'), )t(2)(j"'), ", |t('l(j"'), "., )|(.-1)(j""),
f(»~1)(j(»+')), . The "master" equation for

p(g) ({j ' };3),

Eq. (64), together with Eq. (109), then yields

—p ( ) (j";t) =Q [w( ) (j";k; ()p (,) (k"'; t)
k((I)

~ (k"', j"';&)p ~ (j"';&)], (»0)

with the, in general, time-dependent transition prob-
abilities per unit time,

)j(p)) ((I) fk(&)) ((I)

2(i( ) (j(») ~ k (») ~ ()=
2(1(g) q ' ({j(')} fk(')}; f)p(g) ({k(')};l)

(k(2) I (e)
P( )({k"'};)

2('(~)"""({k"'}' {j"'}'
~)p(» ({j"'}'

&)

) j(2)}(C) )k (2) f (e)

2()( ) (k (») ~ j(») ()=
pw) ({j("};()

)j(i)) (z)

Let us now suppose that the system of interest [A] is, as a whole, never too fa,r from equilibrium so that we

can replace the P(&)({j(')};t) in Eq. (111)by their equilibrium values:

«p[—p({j"})/8]
P (~)equi)({j(()}~ )~)~ [Eqs. (63), (108)],

Z e~[—p({k"'})/O]
)k(p))

[Eq. (109)].
pl:—({j"'})/o]

f j(2)f(a)
p equil (j(») ~ ()— Q p equil( j(i) ~ ()rv

f j(2) I (e) 2 exp[—p({k")})/o]
)k(2) )

(112)



EQUILIBRIUM IN QUANTAL SYSTEMS: MAGNETIC RESONANCE 193

Then

i(i[ ] (j(e) ~ lt(e) ~ t) i(&[ ] (P(u) ~ j(e) t)

u&[ ]euui[(j(e). p(e). t) p p ]euui]({j(~)}.t)
f j(~)}(e)

euu[l($(u) j(il) ~ t) ~[~]"""({&")}' ")
(P(~) }(e)

expL —e({j&"})/Oj
f j(&) }(e)

P[,]' ""(k t)
(113)

expl —e({k"&})/Oj

Equation (110) with

[(&[ ] (j(e) 1't(e) ~ t) zg [ ] (1(,(e) j&e) ~ t)

replaced by

euuil( j(e) ~ p(e) . t) i(&[ equi[(p(e) j (i) ~ t)

and Eqs. (111)—(113) define the "master" equation for
the particle or quasi-particle Lqj; the analogy between
these equations and the Eqs. (64), (65), defining the
"master" equation for the system of interest LA) is
obvious, and we can use the methods of Sec. D to
obtain I' [,] (j«'; t) as a function of t. A particular sim-
plification is obtained if, to a sufEcient approximation,
e({j&'&}) depends additively on the ~[;](j&'&),

~({j")})—=~[i](j&i))+~[2](j(2))+"

+~['](j"')+ +~[ —l](j" ")
+~[.] U"')+ «.+ll (j'~")+, (114)

are replaced by time-independent

u)[ ]euuil( j(e) ~ P(e) . t) [(& cpu(1(P(p) ~ j(Z) . t)

while Eq. (65)—"detailed balance" —ensures that the
numerators in the two resultant expressions on the
right-hand side of Eq. (111)are equal; thus, using also
Eqs. (109), (112), we obtain

since Eqs. (114), (113)give

vr[e] u""(j e k«; t) expl —«,](j )/0)
(115)

z&[ ]euuil(p(e) ~ j(e) ~ t) expL &[ ](p(e))/0e$

in complete analogy with Eq. (65).

F. MAGNETIC RESONANCE: TIME VARIATION
OF LONGITUDINAL MAGNETIZATION

Ke proceed to discuss certain magnetic resonance
situations in view of the general theory established in
Secs. 3—E above. In these magnetic resonance situ-
ations, the system of interest LA( is identified with the
degrees of freedom describing the orientations of
nuclear (or electronic) spins, and the surroundings

r Bj
with the degrees of freedom describing the motions of
atoms containing the spins, i.e., in brief, LAj=—spins,
LB]=—"lattice. "The ratio

'U/K"'='U/(K[g]"'+ X[)&] ')
is now no longer =E[~]'/(E[~]+X[I&]) but is inde-
pendent of E[z](=cV[i&]) and is not necessarily neg-
ligible for a suKciently large specimen —on the other
hand, 'U/X(0) is indeed small in many cases, e.g. , for
'U=—nonsecular spin-lattice phonon interaction (mag-
netic dipole-dipole or electric quadrupole spin-lattice
interaction). We present a treatment of the approach of
the nuclear spin system (r A j) toward equilibrium under
circumstances in which the "lattice" (l Bj) remains in
equilibrium throughout and with 'U/(K[&]&')+BC[i&]"))
small. Under these circumstances the conditions for
validity of the "master" equations deduced in Secs. 8,
C, E are satis6ed and our discussion is, in particular,
based on the individual particle "master" equation of
Sec. E.

Ke treat this "master" equation for an individual
particle L(t], i.e., for an individual spin L(&(), of the
system of interest

l
A j, Eq.~(110), with w[,] (j«);&«); t)

[(&[ ](k«) j"' t) replaced by u&[,]'&""(j«) k«); t),
w[,]'u""(k«& j«&; t) and with Eqs. (111)—(113) for
i(&[,]eu""(j«) k«) t) i(&[ ]'u""(k«); j«; t) These last.
equations, together with Eq. (65), yield

equil( ~(q) . p(q) . (3te)

expl —&({&")})/K
fQ(t) }(e)

~«]""'(&'";j "', t) =~[e]'u""(i «'; t «', t)
expl: —~({j")})/K

)j(~ )}(e)

g
—«et'(y

i ~[~+~]({j("'},n- p-' {&")}n. p.)
fi(')}«). fA'(')}«) ee Pu»ge Pe~ ~ew lis

'Qu&t Pit&

expl —~({&")})/K
l, (»6)

.E P expL &({tt"'}/0j&
(Q(O }(e)

where in the present instance j«) is to be interpreted as
the spin l q]. Also, from Eq. (36),

the magnetic or spin-orientation quantum number of

II f&+l&l({j }'0 P {iI' } ] P ) (2lr/~t)()(~({j })+] e({~ }) ] ) l({2 }Pl Ar Ul {)I' }i] P ) I'

=+'[~+~]({tt")}n. p {j"'}~- p-)' (117)



A. SHER AND H. P RI MAKOFF

where, for the case of the magnetic dipole-dipole spin-lattice interaction, 'U='Udp p;p and 'Uq;p Q'p can be
identi6ed with

Ud'p-d'p g P(Cf (I[f]SI[]++I[/]+I[g]z)+Efg(I[f]+I[ ] +)7+Her rn.

f.g
3 A'7' .

C~,=——— sine~, cos8~,e
—'«~;

2 (rx.)'

conj. ,

3 A'7' .
Egg =——— (sin[]g )'e "d&~

4 (ry, )'

(118)

where y=—nuclear gyromagnetic ratio;

~f ra= (rf u fgA'fu) f f'+ 4f

Rt=—lattice vector of the atom [f7, g~—=displacement of
the atom [f7 from its lattice position=function of
phonon creation and destruction operators, and I ff]
=—spin of the nucleus in the atom [f7. The term
U p ' p- Q p

" which establishes relatively rapidly a
"quasi-equilibrium" spin configuration within [A 7, need
not be explicitly considered in the treatment of the
relatively slower approach to equilibrium of dynamical
variables such as the longitudinal magnetization since

this relatively slower approach to equilibrium involves
energy interchanges between the spins [A7 and the
"lattice" [B7.I the atomic motions of the "lattice" [87
are appropriate to, e.g., liquid-like rather than solid-like
states of the specimen, ry must be expressed in terms of
creation and destruction operators of motional quasi-
particles other than phonons. The general formalism

developed below holds however in this case also.
We now introduce the notation j("—=m k(')=—ns '

(—I~m;, m,'~I) and find from Eq. (118) as typical
nonvanishing matrix elements,

&{m;}={m,}«&,m, ; q.,p„l'Ud;, d;,--«"'«I {m,'}={m;}«&, m, —1;&]„p.)
=Pt&r[„,P„ICrq I g„,P„&mt[(I m, +1—) (I+m, )7&, (119)

({m }={m}«& [»m m q,p I'Ud;, d; '"-'"'"l{m,'}={m,}«& [», m, —1, m, 1; &]—., p, &

= &n.,P. I «E„ln.,P.)[(I—m, +1)(I+m,)7:[(I—m.+1)(I+m, )7~. (120)

Thus, from Eqs. (119), (120), (117), (116), (114) and with c[,] (m, )= hvm~H—, ~= It»m~—, we have

w[,]''&""(m„m,—1; t) = (I—m, +1)(I+m,)(2n/5) g [exp( —rt„/0)/ P exp( —&]„/0)7
SQs PQt sos Po

with

x{~(~.—.,-~ .)[K~I &~.,~-IC~, I',~.) I'(((m~'&&- &(&m)))')

+I &~-P-l&f Cf. l~ & )I'(&&mf)))'7+~(n- —v.—2@»)

X[&&I &~.,P. I
R.Ei, I~.,P.)I'(I(I+1) ((m, '—))+&&m,)))7}, (121)

g mg exp(A»my/0')
tÃf

((m&)) —= —(Aa)r, O~)-',I(I+1),
P exp(]]&»mg/0)

P mg' exp(][&»mr/0)
fSf

((m~')&—= —-', I(I+1),
P exp(h»mg/0)
mf

whence, for H.„„Tsuch that koi/O((1,

go[,p~""(m„m,—1; t')—(I—m, +1)(I+m,)3I(I+1)(2n/A) p ['exp( —g„/0~)/ p exp( —g,„/0~)7
'Q'gs PQs tISs Pv

(122)

&&Et{~(~-—~ —&~~) I &~-AIc&ale, & ) I'+&(~-—~ —2~~)2I &~-»-l«E~&l~ A ) I'}

—= (I—m,+1)(I+m, )m. (123)

The shape dependent term,
I (t7„,P„IPt Cy, l g»P;& I'(«my)))', in Eq. (121) contains the factor

(a»/8)2= (a&II.„,/Sr)2

[Eq. (122)7 and so becomes important at extremely low temperatures.
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In a similar way we can work out w(, ]e«"(m, —1;m, ; t) and obtain, consistent with Eqs. (116), (114), (115)

expL —e( ) (m, —1)/0]
f

]e«i) (m 1 ~ m ~ t) —w f
]e«il (m ~ m 1 ~ t) =wf ]

«e" (m m, —1; t) exp( —»f/0~). (124)
expl —e(,) (m, )/Qj

An analogous discussion can be given for the case of the electric quadrupole spin-lattice interaction; here,

Vu (p Qf f f ( ff] [f]++ (f]+ [f] )+ f'( ff)+)'j+Herm. conj.

~f—=LQ/8I (2I—1)j(U(f];..—U(f);i,*),

~f =EQ/8I(2I 1)7(—U(f), ,—U( )f,„,y 2. iU—(f),,„),
O'U(r)

Uu~'. = etc.,
BxBx r =Rf+ $f,

(125)

where Q—=nuclear quadrupole moment, and U(r)—=lattice electrostatic potential at r. A calculation similar to
that in Eqs. (119)—(123), yields:

wf ) «"(m, ; m, —1; t) =(2m, —1)'(I—m+1)(I+ m)u(2m/ ))[I

exp( —i)„/0)
x Z I i~(~-—~ —»~)

I &~-~-l~ l~ ~ &I'
u. , p., e., p. L Q exp( —i)„/0))

—= (2m, 1)'(I —m, +1)—(I+m, )w', (126)

w f ]«""(m,; m, —2; t) = (I—m, +2) (I—m, +1)(I+m, ) (I+m, —1)(2ir/0)

( exp( —i)„/0~)
x & I

"
I&(~.—~.—2»g)

I (~.,P. I a,'I ~.,P.) I'
u..p. , u. , )4 ( P exp( —i)„/0)j

—= (I m, +2) (I —m, +1)(I+—m, ) (I+m, 1)w". (12—7)

Again, consistent with Eq. (116) or Eq. (115), we have:

expL —e(,) (m, —1)/Oj
w(u)' ""(m —1;m„t) =w( )'«"(m„m, 1; t)—

expL —e(,) (m, )/03

=wf )e«"(m„m,—1; t) exp( —»z/0),

expL —e (u] (mu —2)/0' j
W f

]e«il(m 2 ~ m ~ t) W e«il(m ~ m 2 ~ t)
expL —«.) (m.)/0'j

=w(, )e«" (m m, —2; t) expl —2fnug/0~$.

(128)

(129)

Having thus obtained the transition probabilities
per unit time, w(, ]e«"(m„m,'; t) LEq's. (116), (121)—
(124), (126)-(129)]we can use the methods of Section D
to solve the individual particle "master" equation,

Eqs. (110)—(115). Thus, on the basis of the analogous
mathematical structure of Eqs. (110), (115) and Eqs.
(75)—(80) we can apply the results of Eqs. (81)—(94),
(104), (105) and write ( I gm, ~I)—

2I
P (m t)=P ' ""(m . t)+P I (m )e-""'-"'

v=1

expl: —~le] (m.)/0 j exp[»z, m, /0 j
P e«il(m . t)—

pL
—~[)( .')/oj 2 e pL» ~,'/0]

(130)
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where the co„areeigenvalues of the matrix

—(1/Tz)

w(, ]'q""(I—1;I; t)

w(]'q""(—I I t)

w( ]'q""(I;I 1—; t)

—(1/2'I-I)

equil( I.I 1.t)

w(, ]'q""(I; I;—t)

(131)

(1/Tz) = P w( """(m I; t), etc.
&

tnq=l —1

D(s) =—det(s11111—11w( ]'q""11) (132)

C(m„s)=—same determinant as D(s) but with the
column corresponding to mq replaced by

P[.](I' tp)

P(p](I 1; tp) . —

P[.](—I to)

Thus the pl„and E„(m,) are functionally determined by
the w[ ]e«"(m .m, ', t) and the w q""(m„m,'; ,t).,
P(,](m, '; tp), respectively. However, the explicit evalu-
ation of the functions in question, apart from particu-
larly simple cases [as in Eqs. (101)-(103)],is rather
complicated.

Once the probability at time t of finding the spin [q]
in the state f[,](mp), P[,](m„t), is known we can
determine the longitudinal magnetization, (ti)„ofthe
system of interest [A] composed of the individual
spins [q]. Thus (tl), is given by:

1

(t)l= Z PM(m. 't)
my= —I

(&(A]
[q] fSq AP I[q]Z [q] SSq(V[A]

(133)
I (= P P(„(m,;t)1 Apm, I,

~e= I ~ V[A]

so that using Eq. (130), and in view of Eq. (122),

t'

(ti),=1 Ay 1' P P(]' ""(m, t)m,
V(A]) I, I=

pr ( I
IS.(m, )m, 1e

—"«—ee]1')

&[A] ]—
(&) equil+1

V[A])

(+) (+) equil

(AyX(A]/ V(A])

ppl
——(2—Appz/0) w=2w;

pip ——(2—Aplz/0) 3w—6w; (136)

=——,'e—' ['-"]{(4+3A~pz/O)P(,](—1 til)

+ (2A&oz/O~)P( ] (0& tp) (4 3A[pz/O~)P [p] (1& tp) }
——'e ~" "](Apiz/0)( —P(,](—1; tp)

+2P[p](0 to) —P[.](1;o)}, (137)

so that, in general, the longitudinal magnetization (p),
approaches its equilibrium value with two relaxation
times, (2w) ', (6w) '. On the other hand, in magnetic
resonance practice under the condition of initial satu-
ration, we have the various P(,] (m, ; tp) IIlutually equal
so that (ti)lp=0. With

P[p](1 i tp) =P(p](0i tp) =P[p](—1 i tp) = 3,

Eq. (137) becomes

(~) (~) equil
3 (Aplz/0~)e

—3~(l—&el

(AYl]t [A]/V [A])
/ X eguilg —2t(](t—][0}

(138)
(AV& [»/ V [A])

so that in this case the longitudinal magnetization (te) &

approaches its equilibrium value (p)l'q"" with a single

E[g] S[g] A p
(ti) l' ""=Ay ((m, ))—II,„e 3I(I+1)

V[A] V[A]

&[a] AMz
—;A I(I+1)1 1. (134)

V(A] (6)
We now discuss the evaluation of the pl„, E„(mp) in
various special cases of interest in magnetic resonance.

Case I:I=1 with 'Udp pip))Uqu d Then from Eqs.
(123), (124)

w«]"""(1;0; t) =1 2w=w[, ]'q""(0; 1; t) exp(Acoz/0)
=w«]equ'[(0 1; t)(1+Ariz/0),

w [ ]
q"' (0 —1 ' t) =2 1w

—w[ ] q ' (—1;0; t) exp(Aplz/0~)

:w( ] q""(—1;0; t) (1+Aplz/0), (133)
equil(1 ~ 1 ~ t) —

W( equil( 1 ~ 1 ~ t) —0

Equations (135), (131), (132), (134) yield
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Thus the longitudinal magnetization &p,)i again ap-
proaches its equilibrium value &p)iequ" with a single
relaxation time, (2w) '.

Ca$8 III I—1 with U quand)) 0 ti' p-pip Ihen from
Eqs. (126)—(129),

relaxation time, (2w) '. Another interesting initial
condition corresponds to P(,i (m„tq) = 3(1+nm, ) with

~
~

~
&&I; e g., n= h~r/0 for Z (,((m„to) =P (g'q""(~, ) t),

and n= —hq&1/0 for P(,~(m„tq) descriptive of the
(negative temperature) situation "immediately after
a sudden reversal of H. i."Equation (137)now becomes

w( j'q""(1 0 t)
=1 1 2w'=w( (equ" (0; 1; t) exp(h»/O~)

—w (q('q""(0; 1; t) (1+h»/0),
w(, ('q""(0 —1.t)

=1 2 iw'=w( )'q""(—1;0) t) exp(hMr/0~)

=w«~equ" (—1;0; t) (I+h»/8),
w( ~equil(I ~ 1 ~ t)

=2 1 2 iw"=w(, )'q""(—1 1; t) exp(2hidr/0~)
—w(g'q""( —1; 1; t) (1+2h»/0),

&t )i-&t ) """
(h7&wi/V +i)

2 (t'h»
je

—2w(t ip)-

3(0 ]
&p) i'q""[1 n/—(h~r/O~)5e '"('—'e&—

(h7l~ p 1/V(&()
(139)

(143)

so that &p)i again approaches &p);q"" with a single
relaxation time. It is also interesting to note that

T(min) =T,= [w(,(equ" (—1 Q t)+w«(equ" (I;0; t)$-'

~(4w) —i&2(~,)—i—(3w)-i so that from Eqs. (131)—(134) and under the condition
of initial saturation,

in agreement with Eq. (95), while

T(max)=Ti ——(w(('q""(0; 1 t)) '~(2w) '~(~i) '
oui = (2 h»/O)w—'+ (2 2hidi/0—)4w"

=2w'+Sw", (144)

in agreement with Eq. (100).
Case II:I= ~ with UQ'p d&p)) Uqu&J Then from Eqs.

(123), (124),

w( ('q""(-' -' t)

= 1 3w=w(q('q""( —,'; ~~; t) exp(h»/0)
—w 'q""(-' -'; t) (1+hoor, /0),

~equil(i ~ 1 ~ t)

(02——(2—heel/O~) 2w'=6w',

& ) -()"""
(h71Vw~/V(~~) 3 0 0~ )

~ equil —(2w'+8w") (t—tp)/&~it

(h7&w i/V w~)

(145)

=2 ~ 2w=w( p""(——'.—' t) exp(hymir, /8)
—w(, )'q""(——,'; —,'; t) (1+hill/0),

w(q] ( g 2 t)
=3 ~ 1w= w(, )'q""(——,'; ——,'; t) exp(h(oz/0)

= „,. (——;;——,';t)(1+h /0),
equil (3 . 'i

~ t)
equii( i ~ & ~ t) W equii(u ~ 3: t)

equii( 3 ~ u ~ t) —0

whence &p,)i once more approaches &p,),'q"" with a single
relaxation time, (2w'+gw") '.

The evolution in time of &ti)i toward &ti)i'q"" [as in
Eqs. (137)—(139), (142), (145)) has also been treated
in terms of the concept of a time-dependent "spin-
temperature" T,(t). For a comparison of the results
obtained here with the not always correct results
deduced by means of the spin-temperature procedure,
see Appendix C.

G. MAGNETIC RESONANCE: TIME VARIATION
OF TRANSVERSE MAGNETIZATION

so that from Eqs. (131)-(134)and under the condition
of initial saturation

We shall now analyze the variation in time of &ti')i,
the transverse magnetization of the system of interest
[A] composed of the individual spins [q$. We have:cdi= (2—h»/0~) 2w;—

a)2
——(2—h»/0)3w=6w;

cats
——(2—fuel. /0) 6w—12w;

(141) N [A]
&P')i= (h7/Vwl) 2 1(q]. —=&(h7/V(~i)l. )i (146)

g=l t

&t )i—(t e)"""

(h7l~ (~l/V(~1)

5 AG0&

g
—~w(t—tp)

Ow

/ % equilg —2w(t —tp)

(142)
(h7~(.(/V(. i)

Such a nonvanishing transverse magnetization may be
obtained at the initial time to by the application of a
(very short) "90'"rf pulse at a carrier frequency equal
to ~l.=yH, & which rotates the previously existing
equilibrium longitudinal magnetization into the plane
perpendicular to H,„i——H, iz; thus immediately after
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the pulse, we have in view of Eqs. (2), (4), (5), (50), (51),

p(»o) =exp[i(~/2) (—I.)]p"""«p[—i(~/2) (—I.)]
exp( —Ktg) & )/0) exp( —Ktz)) ")/0~)

=exp[—i (pr/2) I„]( ~
exp[i(pr/2) I„]

&Trace[exp( —X t~] t')/0) exp( —Xtz)]"'/0)] ~

( exp(]r»»I, /0~) exp( —x tz)) ")/0)
=exp[ —i(ir/2)I„]

~ ~
exp[i(ir/2)I„]

(Trace[exp(ha&zI, /0) exp( —3C tzi)
' /0')] &

exp ()srozI,/0) exp (—K tzr) "'/0)
g=g (0) g (0)

m exp( —8/O~)

(]i')ip ——Trace{p(»p)p, '}= ()sy/Vtg)) Trace{p(»p)I }
Ay Trace{exp(hpozI, /0) I,}—(+) equi]

Vt~) Trace{exp(h»I /0) }
—(1Vtg)/Vtg)) skpI(I+ 1)A»/O.

(148)

(») =e
—i+ L ( t ip) Il (—») e i cuL t i pp) zz-

p,«vJ —— pe1(P=g—i»OI (t—tp)lz ~ it'll, (t—to)lz
) (151)

the subscript rot indicating operators in the "rotating"
frame. Use of Eq. (2) with X=—Ktg) "+Xtz)) +U
= —~zI,+Ktz))&')+'U and of Kq. (146) in Eqs. (150),
(151) yields,

» ...(») =e-'"st'- o)'*{exp[i»(»—»p) I,
(i/&) (»») (~t»"'+U)]e(»p)

Xexp[—icoz (»—»p) I,+ (i/0) (»—»p)

X (BCtz))")+'U)]}e'"zt' 'P)I,
&

(152)

] -p'(») = (&7/V t~]){I.cos[»(»—»p)]

+I„sin[(»»—»p)]}, (153)

so that, substituting Eq. (153) into Eq. (149),

(»p'), = (Ay/Vtg)) (cos[»(»—»p)] Trace{p„&(»)I,}
+sin[fez, (»—»p)] Trace{p„,(»)I„}), (154)

with p»p(») given by Eq. (152), and prpp(»p) = p(»p) by
Eq. (147).

The expression for p„p(») in Eq. (152) is considerably
simplified if,

The description of the variation of (»i )i with»(»)»p)
is most easily given in a frame of reference "rotating
with angular velocity col.z relative to the laboratory
frame" and we proceed to generalize our discussion to
the treatment of phenomena in such "rotating" frames.

We begin with Eq. (5) for (p, ')&, viz. ,

(»i') p
=Trace{p(»)»i'} =Trace{p„p(»))ti,.p'(») }, (149)

where

the Eqs. (156), (152) yielding,

» -p(») =exp[—(i/@)(»—»o) (~t~]")+'U)]» (»o)

Xexp[(i/@) (»—«) (3'-wl"'+U)] (157)

If in addition,

[Ktz)] &'),'U] =0, (158)

») o&(») =exp[ (i/@) (»»o)U]p(» )
Xexp[(i/A) (»—»p) 'U]. (159)

It is further reasonable to suppose on physical grounds
that Trace{p„pI„}=0 for p„&given either by Eq. (157)
or (159) so that

(»i') p
= (ky/ V w ])(cos[roz (»—»p) ]

XTrace{p,.p(»)I,}). (160)

Equation (160) corresponds to the assumption tha, t, in
the frame of reference rotating with angular velocity
rdzs relative to the laboratory frame, (»p'), approaches
(»i')i'q"" without any further precession. "

Equation (160) shows that the problem of evaluating
(p, ')i is reduced to the problem of evaluating

Trace{p„p(»)I,}
which can be written, using Eqs. (5), (6), as

Trace{p„p(»)I,}=+„(g„(p„p(»)(P„)(P„(I,(P )
=2- I'- (~; »)(I-II. I 0-) (161)

provided that the matrix of I is diagonal with respect
to the complete set of states i» . The quantity P„&(~s;»)
= (P„~p»p (»)

~
P„)is the probability that $2+8] is found

at time» in the state i)]„.Equations (160), (161) for

1.e
[I„'U]=0

(155)

(156)

"See I.J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957l,
who have also demonstrated by an explicit but approximate cal-
culation in the case I= ~ that Trace (p„g„)=0for p„~given by
Kq. {159)with 'U ='Up;„q;~'""'"as in Eq. {168)below.
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(p, ')t are analogous to Eq. (133) for (tt&t and may be
evaluated in the same way if the P„t(n;t) satisfy an
equation of the "master" type.

We now discuss whether P„t(n;t) = Q „Ip„t(t)I g„&
satis6es a "master" equation analogous to that satisfied
by the P(n; t) of Eq. (35). First of all, we note that if
the P„aresuch that (P„II,I&„&=/„II,lp )b„„,i.e.,
I,={I,& P"

P, then for the p(tp)=p t(tp) of Eqs. (147)
and (152):

(0-Ip- (to) le.&=8-Ip- (to) I e.&b-
=Prot(n j to)bmn& & e r prot(to) = {prot(to) )

Then, following the procedures of Eqs. (7)—(11) and
Eqs. (13)—(16), the Eqs. (157) and (159) yield the
analogs of Eqs. (11),(8), (9), and (14) and Eq. (16),viz. ,

P...(n; t+r) P„t(n—; t)

=P )II rot;sm(&),Prot(noj t) II rot;m, s(&)Prot(n j t)$

+F...,„(r;t—to), (162)
where

To consider the questions raised in the preceding
paragraph we distinguish two cases: (I) "Rigid" lattice;
(II) "Nonrigid" lattice, and discuss them in order

Case (I):"Rigid" Lattice

Here we suppose that

V=V( (Rf+$f) (R—g+gg) . j ~ ~ ~

r I[f1)I[g], )
is well approximated by

'U ( (Rf—R,) . ; ~,I[f»I [g], )
where 'U is the spin-lattice phonon interaction, e.g.,

secular tU . . nonseculard1p-d1p d1p-d1p I d1p-d1p 7

with Uq;y q;, ' "'"given in Eq. (118) and

&[y-&[y p 2 fg( [f1* [pl*+ [fly [gly
f,g

—2I [f],I[,l,), (168)

Af (rf rg}= p (It r /ff ) (1—3 cos'gf, );
rf r =("f Pf A'f )

II rot; s.m(r)

—= (1lr) l(4. I expL —(i/@)«3 I4-& I',

=—(I/~) 2 (1—b.-)Q-lexpl: —(i/a)«]l&-&
k, m

&&8-lexpl —(i/@) xllet&*Q-I p ot(t) l@p)

=(1/ ) 2 (I-b.-)Q-l-pL-('/~) xll~-&
k, m, l

X(y„lexpt —(i/a) ex' I y, &*

)&Q I expI —(i/]]I) (t—to) Xg I y &j

&&(pbbs, I expL —(i/5) (t—to) Xg I P )*P,o (I; to),

(163)

(164)

rf ——Rf+gf, Rf=—lattice vector of the atom I fj;
gf=—displacement of the atom I fj from its lattice posi-
tion=function of phonon creation and destruction
operators.

The neglect within 'U of gf, (g compared to Rf, Rg
corresponds to the physical assumption of the "rigid"
lattice and to the neglect of any energy interchanges
between the spins and the lattice; since K~~~&')=
X[]p]['&(. ,gf („)thisneglect ensures thatLX[]&]['&,
'U) =0 LEq. (158)7 and implies the validity of Eq. (159)
for p,ot(t) provided that in addition LK[~]«&, 'U)=0

I Eq.
(155)). This last commutator vanishes however if
'Udip-dipnon~ular is neglected compared to 'cd. d. secular

i.e., if

with
X=—X [»]['&+'U: p,.t(t) of Eq. (157), (165)

seen]sr+ c[] . &. nonsecular

seoulsr (169)

and

P,.„(n;t) —P,.t(n; to)

p...(t) of Eq. (159), (166)

=Q LW„t.,„,(t—tp)Prot(nt; to)

—W..t.,„,„(t—to)P„t(n;to)). (167)

It remains, in order to denmnstrate the equivalence of
Kqs. (162)-(166) to a "master" equation, to show that
the transition probability per unit time, W',.t, ,' (o.), is
independent of r for A/f„«o ~t—tp with $ a suitably
defined excitation energy per particle Lanalogous to the
discussion in Eqs. (18), (19), (22)—(25); restrictions
(b), (c) after Eq. (35)j and that F,.t, (r;t—tp) is.
relatively negligible Lanalogous to the discussion in
Eqs. (27)—(34); restriction (d) after Kq. (35)J.

X=X«&++,

X"'=—
p & Af. (Rf—R.)(I[f]&[g].),

f,g

Afg(Rf Rg) (I[f]yI[g]y 2I[f]sI[g]s)r
f.g

(171)

an approximation valid in the "rigid" solid where
energy interchanges between the spins and the lattice,
associated with 'Ud;p d;p ' "'", are entirely unim-
portant.

We proceed to investigate the properties of 8;.t, „,(r),
F„t,. (r,' t tp) I Eqs. (163),—(164), (166)j with

secular(. . . R Rdip dip f g~~,I[f],I[gl ~ )r (170)

and, in accordance with the general method employed to
deduce Eq. (25) from Eqs. (8), (10), decompose X as
I see Eqs. (170), (168)g
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and take for the p„
ti' u {it [11(t»l)it'[2] (P2) ' ' (['[q] ([»q) ' ' ' }[A]4'[B](q]uqPu) q

(172)
I(ql utt'( ]q(t»q) =t»A'[q] (]Mq)i

(&q[A]

2 ]q 14.( q=l

whence

4' =X 4' =2 2 fffq(Rf Rq)]Aft»
f»g

=&(» (&»V/')=&[A]4 (173)

(a —= lattice spacing).

We then have )see Eqs. (23)-(25)]

T-»;.=LE ll'-»;, (r)(1—& .)] '

= t g (2»r/]2) 5 (X„['&—X„I&)

&& l(~.l~i~.) I (1-~..]- (»4})
1 1 (Apyqy ' -'

. ]2 (ltpyq/»22) ( »22 j
so that restriction (c), after Eq. (35), i.e., the analog
of Eq. (24), is not satisfied and the quantity

half-»;-, -(r) = (1/r) tQ-I expL —(i/&)

+I[ ], " )]I&-)I'

of Eq. (163) is not ever effectively independent of r.
In addition [t=X['& so that restriction (d) after Eq.
(35},i.e., the analogs of Eqs. (29)—(34), is not satisfied
either, and the term Y„»,.„(r;t—tp) of Eq. (164) (with
X='U='Ua a "'"("' Rf—Rq "' ' '' I[f] I[q] ")
is not relatively negligible in Eq. (162) compared to
the term

Z &W..». (r)&, ,.»(qn; t) W„,„—„(r)&..», (n; t)].
Thus no "master" equation analogous to that of Eq.
(35) for the E(n; t) is satisfied by the I'„»(n;t) of Eq.
(162) in the "rigid" lattice case and the correct deter-
mination of I'„»(n;t), (t»')» must be made from the
complete Eqs. (162)—(164) or from Eq. (167), together
with Eqs. (161), (160), or alternatively, from Eqs.
(159), (160). Such a correct determination of (t»')» on
the basis of Eqs. (159), (160):

(t» )»= (f2']f/V(A]) (cost ~z(t to)]-
XTrace fexp L

—(i/A) (t—tp) 'U]p(tp)
XexpL(i/][1) (t—tp)'U]I, )), (175)

'U='Ua]p-a] "'"'"(' ' '& Rf—Rq, ~; ~
~ I[f1, I(q] ~ ),

as in Kq. (168), f&(tp) as in Eq. (14'7), has been given by
Lowe and/Norberg" and predicts a type of oscillatory
approach to equilibrium for f(p, ')»/cos$pqz, (t—tp)])—the
Lowe-Norberg beats —which is observed (six beats are
detected in CaF at 1.2'K!) and which can never be
predicted by a calculation based on a "master" equation
(see discussion at end of Sec. 8 and after Eq. (88)].
The Lovre-Norberg beats demonstrate in a dramatic

where

0'u= 4'[Al (ft»i))]t'[Bl (r[utPu)
={4'[1](t»1)»t'[21(t»2) ' ' '»t'(i] (t»i) ' ' '

XQ[q]([Aq) ' ' ') (A]f[B](»]u,Pu)p

4~=4 [»(ft»''))AB](r[»P.)
{4[1](t»l}4[2](t»2) ' ' '4[»] (t»i ) ' '

+4'[2] (t»q ) ' ) [A]4'[B](»]u~Pu)i

X[B] itiu q]A u j X[B] 4 m»]u4m)

I(q]A' [ql (f»q) t»A'(q] (t»q) i

iA.=I Z ]q I@-'i

(179)

fashion for the case of the "rigid" lattice the quantal
coherence effects contained in the v dependence of the
term 5'„»,„,(r) and in the presence of the term
F,.»,. (r, t tp—) in the complete Eqs. (162)—(164).

In summarizing the "rigid" lattice situation it must
be emphasized that the "master" equation is inap-
plicable and that the quantal coherence eGects are
crucial because the physical coupling between the spins
LA] and the lattice L8], i.e., the dependence of 'U on
gf, gq is considered negligible I Eqs. (158), (159), (170),
(169), (168) with rf=Rf]. The supersystem [2+8] is
then decomposable into two eGectively noninteracting
parts: the set of coupled spins (Al*] described by the
Hamiltonian BC[A]"&+'U and the lattice L8] described
by the Hamiltonian X[B]('&, (pX (A] ['&+'U, X(B]('&]=0),
the variation of (1» )1 with t referring in fact to phenom-
ena occurring wholly within LA*].

Case (II): "Nonrigid" Lattice

To treat the case of the "nonrigid" lattice we begin
with the always applicable Eqs. (162)—(164) with X
given by Eq. (165), (169), (168),
X= &(B]"'+'U=X[B]"'( .4 4 ")

+g . . »eoulur(. . . (R +( )
(R +~ ) ' ' ' ' ' 'Ilf] I( 1

' ' ') (176)
Thus the dependence of 'Uaip aip " on the gf is
included but energy interchanges between the spins
and the lattice are still considered relatively unim-
portant so that 'Ud;p g;p

'"'""'" is neglected compared
to 'Ua;p a;pq~"&u", ensuring the validity of Eq. (155).
Physically Case (I) applies for T(&T]&,b„,and Case (II)
for T&TD,b„.

%e proceed to show that in this "nonrigid" lattice
case Eqs. (162)—(165), (176) for P„»(n;t) are well
approximated by a "master" equation of the type of
Eqs. (35), (36) for P(n; t), viz. ,

—P„»(n;t) =P&W„»... P..»(r&t; t)
(Q ts —8'„»,.„,„P„»(n;t)], (177)

with time-independent transition probabilities per unit
time

half-»;-, -= (2~/&)~(~- —n.) l([t I'U'p-a p ""'I&-)I'
=8'„», ,„(178)
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The derivation of Eqs. (177), (178) from Eqs. (162)-
(165), (176) is effected by essentially the same pro-
cedure as that used in Sec. 8 to obtain Eqs. (35), (36)
from Eqs. (11), (8), (14) with X[&][o]playing the role

of X[q] q +X[&l (o]—X(0) and Udip-d]pseau]ar playing
the role of "U. In particular, the validity of Eqs. (177),
(178) follows from the validit. y, in this Case (II), of
restrictions analogous to (c), (d) after Eq. (35), viz. ,

&Ie.=&l&2'n b"«T-=LE ~-t:-,-(I—~-)] '=l Z(2~/@)~(n —~-) l8-I'Ud pd'p"'"]" l0-)l'(1 —~-)] '

1 ]t' 1 ) ( A'7'

5 jt kTneb„e& [,L(Rf+(f)—(Rf+i+gt+i)] & av over (.
1) 1 p ph' 'q'

]t] Itr .,3 & a' &

secuIar(( ~ (0) (181)
while restriction (a) is ensured by the diagonal character, with respect to the X[~][q] eigenstates P of Eq. (179),
of the p(tq) =p„t(tq) of Eqs. (147) and (152).

The validity of the "master" equation for P,.t(N; t), Eqs. (177) and (178), implies the validity of the corre-
sponding individual particle (here individual spin) "master" equation Lsee the analogous passage from Eq. (35)
to Eqs. (55)—(57) or (64), (65) and then to Eqs. (109)-(111)]

Prot; [q] (]tq j t) =PLqprot; [q] (pq j ttq j t)Prot(ttq j ") &rot; [q] (]tq j ttq j t)Prot; [q] (]tq j t)]& (182)
dt

P..., [q] (]t„t) = Q P,.t(qt; t) = Q P,.t({tt,};q]., [3.; t), (183)
f»s)«&, gs. Pu f» g) «), n», P»

W..t,„,„P..t(vt; t.)
f» s J «&. g», P»,'{ll"I «' ev Pv

qprot; [q] (tt q j pq j t) =
P...(qqt; t)

f» "I«&, nv Pv

II ..t({.,};q]., t3. ; {..'}, q]P.) .P. ({t.,'};q]., P. ; t)
fw)«&. v P '

f» ')«& n P

P-t({t ''};n., P. ; t)
f» s')«&. nv, Pv

(184)

f»'f«&. ~» P» f»s'J«&, nv, Pv

qp-t;(](t ';t;I)—=—
f» iI «& n» P»

P,.t({tt;};q].,P„;t)

are, respectively, the probability at time t that the individual spin l g] is found in the state g[ ] (~ ) and the
general, time dependent individual spin transition probabilities per unit time.

As in the corresponding discussions in Secs. C, E, ave can, to a sufhcient approximation, replace the quantities
P„t({tt,};q]„,P„;t), P„t({]it},q]„,P„;t) in Eq. (184) by their equilibrium values:

P."""({t}n t3 t)=P. """({t''} ~ t3 't)=1/&=I/{(21+1)"["'2 &[s](n )}.
']7v

These equilibrium values follow from Eqs. (41), (50) since Eqs. (177), (178) are of the same mathematical
structure as Eq. (36), or, in more physical language, are a consequence of the "master" equation, Eq. (177), with
the "microscopic reversibility" condition, Eq. (178). Thus Eq. (184) becomes, using also Eqs. (178), (179),

eguil fqprot;[q] (ttq j pq j t)=qt'rot;[ql (ttqj ttq j ")

(2qr/@)&(q] —qt.) l (4 [» ({tt'})]»'[»(q] A) I
Ud pd p"'"'*'

l 4 [d] ({tt''})4[» (qt. ,P.)) I

'
f»t') «&. n». Pu f» ~') «& mv. Pv

{(2I+1) '"] 'Z ~[]]I(t].)}
~roti [q] (ttq j ttq j t) qt rot; [q] (ttq j pq j t)&

so that "microscopic reversibility" also holds for the m „&,~,~' "".

(185)
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We now set down typical nonvanishing matrix elements of 'Uz;, z;, '""' entering into Eqs. (185) and (182);
we find from Eqs. (168), and (179)

n,P-I Ua;. a;.-'""'I{u )"""'u —1, u,~1;n. ,P.)
L(I us+—1)(I+u.)]' (-')

=(qtur PulAnql rt»Pe)DI up+1) (I+up)] I-(I )(I+ +1)]; ( q)
'

~ (186)

Equations (186) and (185) yield,

w '""(u u —1 t)=w ( i'""(u —1 u t)

5 2or ( 1
+»(I+u.) I(I+—1) I~(~--~.)&I(~-,P-) IAf, l~„P,) I'

12 A o..p., o.. p. &P X(at(qt ))
—= (I up+1—) (I+up)qt s-.

(187)

which is to be compared with Eqs. (123) and (124) for w~q~'q""(m„mq —1; t), wtq~'q"'(qqtq —1;m„'t). It is to be
noted that A fq A f—q(Rt+gt —R,—gq) [Eq. (168)] so that pairs of states /~a~(rts, ps), f~z~(qt =rt. , P„)with non-
vanishing (qt = qt„,P„IArql rt„,P„),i.e., pairs of states which make finite contributions to qpi„, ~q~'q""(u„uq—1; t),
w„,, ~qiequ" (uq

—1;u„.t), in general contain different numbers of phonons. It is the presence of up&~up —1 spin flip
transitions involving a net phonon emission or absorption which destroys, in the Case (II), the quantal coherence
eBects so characteristic of Case (I).

Having obtained in Eq (187.) the w„o., ~qt'q""(u„uq'; t), we can use the methods of Sec. D to solve the individual
particle "master" equation, Eq. (182), for P„,«~(u„t). The general procedure is completely analogous to that
given in Eqs. (130)—(132), (135)—(142) and will not be reproduced in detail here. With P„&,«~(u„t) a.vailable and
using Eqs. (160), (161), (179), and (183), we can write

(+f~l

(p, ')s= (hy/V[&]) cosLppr, (t—tp)] Q P„o({u;);ot,P„;t) I P u, I

tsi). oe pe E u=& j
+fAl z

=cosl(pr, (t—tp)] g Q P„,, (,)(u„t)(@au„/V(g))
P =ipse = —I

=cosL~ri&(t —tp]) 2 P»o; [q] (uq' t) I
& (uq

EV(g) ) (188)

where Lanalogous to Eq. (130)]

P,., (q)(uq) t)
2l

P equil(u ~ t)+p It (u )g
—&r(r—&o) (189)

P-o; iqt""*'(uq; t) = 1/(2I+1)

and &u., E„(mq) are given by Eqs. (131), (132) with
llqi'rq&"""II P «i (rrtq; t) replaced 'by llqt'. os; [qJ ""II
P,os, «&(uq,

' t) Equations (1.88), (189) yield

(hyX(g) )
V [pi

which is to be compared with Eq. (134) «r (u)r.
Equat&on (190) for (ur)& may be used to discuss various
special cases, e.g. , I=1 and I= q, as in Sec. F for (u)r.
From a fundamental point of view, the nonoscillatory
approach of this {(u')r/cosLopl, (t—tp)]) to

{( )""/ o L" (t to)])=0
is to be noted.

A word should be added about the situation in liquids,
Here'Ua a '-'""' . r;—r I I; )&9- &p x ) f 0& ~ [fl) [air
is electively of the order of

so Eq. (155) no longer holds and the p„o(t)of Eq. (152)
must be used. However the p„&(t)of Eq. (152) does Not

satisfy a relation of the form:

p„s(t+r)= expl —(i/A) rZ]p„o(t)expL(i/A) rg]
—2 some operator —so that the procedure involved in
the derivation of Eq. (11) from Eq. (7) and so ulti-
mately in the derivation of the "master" equation,
Eq. (35) or Eq. (177), is not immediately applicable.
Auxiliary, largely physical, arguments, to be reported
elsewhere, show nevertheless that a "master" equation
of the type of Eqs. (177), (178), and so an individua. l
particle "master" equation of the type of Eqs. (182)—
(185), are also valid in the case of a liquid but with

seeu er replaced by rU &, &. secular+ U . &. nonsecular

in the corresponding transition probabilities per unit
time: W»s,.u, ~, and w», , ~qiequ"(uqr. pq'; t). These
w»„iq~'q""(u„.u, '; t) may then be evaluated in a
manner analogous to that of Eqs. (185)—(187) and the
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corresponding (p')~ found in a manner analogous to
that of Eqs. (188)—(190).

In conclusion, and for the sake of completeness, we
most comment brieQy on the calculation of expressions
involving "lattice" matrix elements such as that enter-
ing into Eq. (187):

K~I(~.,p. lA~, l~. ,p.) I'
~(~-—~.) —(»1)

E..&w&(~-)

For solids, AJ, can be expanded in terms of the dis-
placements (~ rr —=R~, gq=rg —R, which are known
functions of the phonon creation and destruction oper-
ators I-see Eq. (168)] while P„,P„are expressed in
terms of the phonon occupation numbers characterizing

the states p&»(q„=g.;p.), p&p&(p„,p„); thus the
matrix elements in P and so F itself can be evaluated
in a reasonably straightforward fashion. "On the other
hand, in the present state of development the theory
of liquids, the (r~ —r,) within A~q cannot in general be
expressed in terms of creation and destruction operators
of suitable motional quasi-particles and 8 cannot be
evaluated exactly. However 5 can be calculated approx-
imately using, eventually, a classical stochastic method. "
Such a method can be introduced if one recalls the
relation

b(g„—g„)=(1/2mA) ~t' dr expI. (i/A)(g„—g„)r), (192)

so that

(n-,p-I &fq(r) I n. ,p.)(n.,p. I ~~q(0) I n-,p-)

s=(1/A') P
f Z &&a(~-)

(193)

00

r=—Q' dr
A'r

TraceI-Srq(r) S~q(0)]

Trace (1)
(195)

Finally, approximation of the "correlation function of

erq(r), "
f(r)= {TraceI-Qrq(r—) Qyq(0)]/Trace(1)),

by a suitable average over the quantity 8fq(r) 8fg(0),
results in the determination of f(r) as a known function
of r and permits the evaluation of F by calculation of the
integral over r in Eq. (195).In performing this suitable
average over Syq(r) S~q(0) the Heisenberg operators,

fr~(r) rg(r)]—=expL(i/A) r X&» &P&](r~—r,)
XexpI- —(i/A) r X&~& &p&), within the SIq(r) are treated

as classical stochastic variables.
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where

8fg(r) —=expI-(i/A) r X&+& &'&]A fg

XexpL —(i/A)r X&'&&'&]; (194)

@xq(0) =Aug.

Thus

APPENDIX A

In the present appendix, we analyze an example,
proposed to us by Norberg, of a supersystem LA+B)
described by such an "extremely quantal-coherent"
nonequilibrium statistical distribution at the initial time
fp 'tllat I-A+B) evolves away from rather than toward
the equilibrium statistical distribution. Essentially the
same as well as related examples have been analyzed
in detail from the point of view of pulsed nuclear mag-
netic resonance theory 5 by Lowe, ' and the "soljd
echoes" observed by Lowe provide experimental evi-
dence for the existence of nonequilibrium statistical
distributions which evolve away from equilibrium.

Consider a solid which contains two different nuclear
species, A and B. Suppose that the lattice of the solid
is eGectively rigid (see Sec. G) and that &z»pz so that
the local magnetic field at any nucleus is eGectively
due only to the 8 nuclei. Under these circumstances
the two spin systems A and 8 form an essentially self-
enclosed supersystem, $A+B) (see related discussion
in Sec. G after Eq. (175)) with the A spins acting as
the system of interest, LA), and the B spins as the
surroundings, LB).

Let us suppose that PA+8] is in equilibrium in a
magnetic field H, ~z at time to —r and that at this time
a (very short) "90"' rf pulse at a carrier frequency
=co'&"& is applied to the A spins. Then, by Eq. (147),
we have immediately after application of the "90"'
pulse,

exp(A(o ' 'I, ' &/Q~) exp(A(up& 'I ' &/O~)

u(~p —r) =-
Trace )exp(Acoz &»I &~&/CI) exp(Au&z t»1, &»/Q)]

See, for example, the forthcoming book on nuclear magnetic resonance by A. Abragam.
' I. J. Lowe, Bull. Am. Phys. Soc. 2, 344 (1957).

(A.1)
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while for t&tp r,—Eq. (152) yields,

p„o(t)=exp[—i(t—to+r)ipz[ ]I,[ ]]{exp[i(t—tp+r)(piz[ ]I,[ ]+piz[B]I,[ ]—(1/A)g)]p(to —r)

Xexp[—i(t—tp+T)((dz[ ]I,["]+ops,[ ]I,[ ' —(1/]]t)'U)]} exp[i(t —tp+r)cod, [A]I,["]] (A.2)

If now I,["', I, [B' commute with 'U, a condition that is satisfied if 'U is taken as [see Eqs. (169), (168)],

Udip-dip Udip A-dip A. +Udip B-dip B + U d' A-d'p B
then

p„&(t)= exp[—(i/A) (t—to+ r)'U]p(to —r) exp[(i/t't) (t—to+T)'U],

where, in the case at hand [see Kq. (168) and recall that Acoz, [B]))hooz,[A]],

Bseeu[ur+gd. B d. Bsecuiur p g& [A], [B](R R ) ( 2I f [A]I [B])
f,g

+ p Z~ ~[B'"](R.—R.)(I[ ] "]I[~].[B]+I[.]."]I[~]p"]—2I[o]*"]I[~]"')

(A.3)

(A.4)

—=—P AyAIu]["] H[B](Rf, '. I[,][ ] . .)—P hyBI[, ][ ].H[B]*(R[,]& I[» ). (A.5)
f

Also from Eqs. (154), (160),

(tz[A]')i ——(AVA/V[A]) {cos[&oz" (t—tp+r)] Trace[p,.i(t)I, " ]},
whence, substituting Eq. (A-4) into Kq. (A-6),

(jl [A] ) t (@7[A]/V[A ]){cos[piz, ' (t to+ T)]—Trace(exp[ —(i/'It) (t—to+ r)U]p(tp T)

(A.6)

so that, using also Eq. (A-1),

(p[A]')ip-. = (Ay[A]/V[A]) Trace {p(tp—r)I, [ ]}

)&exp[(i/]]t) (t—tp+ T)'U]I, ["])}, (A.7)

Trace {exp[(hooz [A]/O~) I,[A]]I,["]}= (&&A/V[»)
Trace {exp[(&z[A]/O~)I, [A]]}

=(ti[»), p
'

(~[A]/3V[A])gyAI[A](I[ ]+1)(]]tpiz[ ]/Q~).

(A.8)

The Eqs. (A-7) and (A-8) are analogous to Eqs. (175) and (148) and the quantity {(ted[A]')&/cos[&oz, [ ](t—tp+r)]}
will approach {(tz[A]');P""/cos[zoz,["](t—tp+r)]}=0 in an oscillatory fashion —Lowe-Norberg beats; see discussion
after Eq. (175) in Sec. G. Thus we may say that the p,.&(t) of Eq. (A-4) evolves in time as t increases beyond
tp T in such a wa—y that [2+8]approaches equilibrium, though of course, as in the "rigid" lattice case treated
in Sec. G, this oscillatory approach to equilibrium as exemplified by the {(tz[A] ),/cos[ooz, ["](t—tp+r)]} vs t of
Eq. (A-7) cannot be described by any "master" equation.

Let us now suppose that at a time r after application of the "90"'pulse to the A spins, a (very short) "180"'rf
pulse at a carrier frequency cop, & & is applied to the 8 spins. Then, immediately after application of this "].80 "
pulse, i.e., at the time (tp —r)+r = tp, which time tp we shall consider as the initial time for the subsequent behavior
of [A+I3], we have from Eqs. (A-4) and (A-6),

p„&(to)= exp[ior( —I„[')] exp[—(i/]it) r'U]p(tp —r) exp[(i/]p) r'U] exp[—iver( —I„[B])]
=exp[—(i/A) r'U~]p*(to —r) exp[(i/]]t) rw*],

where, using also Eqs. (A-5), (A-1),

V~—=eXp[ iOTI [ ]]V eXp[iOTI„[ ]]= Udip A diP B i—u ++dip -B dip Bmuuu'u~-

p*(tp —r)=exp[—iiTI„' ]]p(tp—r) exp[ATI„[B]]

(A.9)

exp[Azoz [A]I,[A]/0] exp[ —ftoiz [B]I,[B]/O~]
(A.10)

Trace {exp[Apr ["'I ["]/Q] exp[ —Aid [B]I [B]/Q]}
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(@[~i')«/cos(&ol, ["ir)= (Ay~/V[~l) Trace [p(to)I, ["l]
= (A7[~l/V[~1)»ace {expL—(i/A) «*]p*(to—r) exp[(i/A) «*]I-'"'}
= (Ay(gl/V(gl) Trace {exp[—(i/A) r'U]p(to —r) exp[(i/h)rg]I, "l},

p «(to+ r) =exp[—(i/A) r'Ujp «(to) exp[(i/A) r'U]

= exp[ (ilh) rV] exp[ (i/h) rV*]p,«*(to—r) exp[(i/h) rVo] exp[(i/A) rV],

(p(~l')&o+ /cos(2oor["'r) = (Ayg/V(») Trace[p«(tp+r)I, ["']
= (Ay~/ V[~[) Trace [exp[—(i/h) r'U] exp[ —(i/A) r'U*]p,«*(tp—r)

(A.11)

(A.12)

We now note that [see Eqs. (A-11), (A-8)]

Xexp[(i/A) r'Ua] exp[(i/A) r'U]I, ["l]. (A.13)

(p[~l')~p/cos(ppr(~[r) Trace{p(tp r) e—xp[(i/h)r%]I ["l exp[ —(i/A)r'U]}

(P[» )~o-. Trace {p(to—r)I, [~'}

=1—rs(r/A)s Trace {('U,['U,I,[~l])}+ —= 1—A&1, (A.14)

the inequality being, physically speaking, a consequence of the "dephasing eGects" of the local fields

H(nl(Rf, . Io(n[. ) [see Eq. (A-5)] which, in the frame of reference rotating with angular velocity ool, ["'z,
precess the various A spins, If["l, at different rates [since H[nl(R~, I, [n[ ) is different at different Rf'].
The spin "dephasing" Eq. (A-14) which indicates the decrease of {(p[zl')&/coster, [" (t—to+r)]} with t for
to r&t&tp i—s the basis of our previous remark that (2+I3] approaches equilibrium during the time interval tp —r
to tp We fur. ther note that [see Eqs. (A-13) and (A-11)],

([I[~i')~p+./cos(2ppr[~'r) Trace {p*(to—r) exp[(i/h)r'U*] exp[(i/h)r'U]I, ["l exp[ —(i/h)r'U] exp[—(i/h)r'U*]}

(ts(gl') [p/cos(cur, ["lr) Trace {p(to—r) exp[(i/A) r'U]I, ("l exp[—(i/A) r'U]}
(A.15)

{(p [s l )~""'/«s[cor '"'(t—«+r)]}=0 "
i.e., during this time interval the nonequilibrium initial
statistical distribution of [A+8], described by the
p «(tp) of Eqs. (A-9) and (A-10), evolves into another
statistical distribution, described by the p, o(tp+r) of
Eq. (A-12), which is even further from equilibrium.
Also we note that, as already mentioned in Sec. 3, the
nonequilibrium "extremely quantal-coherent" initial
p(to) of Eqs. (A-9), (A-10), and (150) which is associated
with this possible trend away from equilibrium is cer-
tainly "nondiagonal" with respect to the eigenstates of

QQ[Al +$Q[&l( l (hoor, [AlI ['[]+hoor(nlI [Bj)

(p Vl'),/cos[ool, " (t—to+ r)]

increases as a consequence of the reversal of sign of

H(zl by the "180"'pulse, i.e., as a consequence of the

difference in sign of the term 'UJ'p Q J p Q
'" in U*

and in 'U [Eqs. (A-10) and (A-5)]. Alternatively, if

the trace ratio in the spin "rephasing" Eq. (A-15) is

greater than 1, i.e., equal to 1/(1 —A), we can say that
during a time interval of duration 7 subsequent to the
initial time to the quantity

and if the ratio of the traces turns out to be greater evolves further and further from

than 1, i.e., equal to 1/(1 —A), the A spins "rephase"
during the time interval tp to tp+r and so

{(p(gl'),/cos[oor, " (t—to+r)]}

p(to) =exp[irpos, ["lI [~l]pI, o(to) oexp[ ir z, f"looI ["—l]

V1Zq

exp[ir(~&(»I [A[ A-tg*)] exp[hooJ. ["lI (»/0'] exp[ jr(ooI. (~l—I,(» A r'Ua)] exp—[—Appr, (nlIo[nl/0]

Trace {exp[ir(co "
LI[, l" [hl'ge)] exp[h~z, ["[I,("l/0~]

Xexp[—ir(coz, ["[I.( l —A 'Uo)] exp[—Aoo [ lI [ l/0~]}
(A.16)

'o Because of the assumed rigidity of the lattice containing both the A spins and the 8 spins, (p[s[)«+~=(v[s[)«= —(p[s&)«,
= —(y[s[)p«", so that, as the A spins "rephase, " the 8 spins effectively remain in the same nonequilibrium (negative tem-
perature) statistical configuration.
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It remains to investigate the circumstances under which the ratio of the traces in Eq. (A-15) is actually greater
than 1, i.e., equal to 1/(1 —A). If the 8 species is fairly dilute compared to the A species 'Ug'p Q d'p Q

'""may be
somewhat less important than 'Ue;p g p;p s-'"'" so that, from Eqs. (A-10) and (A-5),

(A.17)
Equations (A-17), (A-15), and (A-14) yield

(p tg)') ~py. /cos(2ppi. &"&r)

(p!g)') ~p/cos(a)1, &~&r)

Trace {p*(tp—r)I, ~"~}

Trace {p(tp—r) exp[(i/5) r'U]I, &"t exp[ —(i/A)r'Uf}

Trace {p(tp—r)I,~"'}

Trace {p(tp r) e—xp[(i/ft) r'U jE ~"' exp[—(i/t't) «]}
(t (~i') ~p-.

&1, (A.18)
(pt~~ )g/cos(rur, ~+~r) 1—A

which shows that, in the approximation of Eq. (A-17),
the "dephasing" of the A spins during the time interval
tp —v to tp is wholly compensated by their "rephasing"
during the time interval tp to tp+r. In practice however
it is probably a poor approximation, even at small dilu-
tions of 8, to neglect the "dephasing" 'Ud p p Q'p

compared to the "rephasing" 'UQ&p p d'p p "' so that
the actual "rephasing" of the A spins is far from
complete.

APPENDIX B

&—& E„(n)
P(n; s)= Q

vM s+(Q~
(8.7)

for nondegenerate co„,where,

where the —co„v=0,1, 2, , X—1 are the roots of
the polynomial D(s), and in view of Eq. (8-5), are
also the eigenvalues of IIWII.

Since C(n; s) is a polynomial of order 1V—1, the
method of partial fractions can be used to give:

In this appendix we present the solution of Eq. (75)
by a Laplace transform method and discuss further E„(n)=C(n;—co„)
certain mathematical questions mentioned in Sec. D.

Let p(n; s) be the Laplace transform of P(n; t)

p(n;s)= e '&' '»P(n;t)dt.
J gp

=C(n; —ar„)
dD(s)

dS s = —cov

1 C(1; s)

N—I
Cvv' Or v

v'~; (v'gv)

(8 8)

Then, the Laplace transform of Eq. (75) is

sIIP(s) II
—IIP(to) II

= Ills'll IIP(s) II (8 2)
dD(s) C(2; s)

ds - C(1V;s) . ,= —
„

(8.9)

(sll111—ll~ll) IIP(s) II
= IIP(to) II (8 3)

The solution of the S linear inhomogeneous equations
speci&ed by Eq. (8-3) can be written as,

p(n; s) =C(n, s)/D(s), (8.4)

The inverse Laplace transform of Eq. (8-7) reproduces
Eqs. (81), (104), and (105).

Let us now briefly treat the degenerate case where
co„=or„for certain v and v'. Here

where

D(s) =det{s11111
—

II ~'ll } v=p

Nd —1

S Tl %12 ' ' ' ~1N

S—T2 l=det —8 2l

+Nl
r p It, (n)

P(n,s)= P
vM g=l $4)v

(8.11)and C(n; s) is the same determinant as D(s) except
that the terms in the nth column are replaced by
P(n'; tp), n'=1, 2, 3, , X. D(s) can be written in
the factored form:

pt n
d«" &'y, (n,s)-

(r„—j )!, (8.12)
D(s) = (s+cop) (s+org) (s+a)p) . (s+coN g), (8.6) (rv—g')

s tv

where Eq is the number of distinct &u„, (Xe ~E). With
gr, (8 5) this D(s) the method of partial fractions leads to the

following generalization of Eqs. (8-7), (8-8):
$—TN '
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with
C(n; s)

y„(n,s) = (s+to„)"
D(s)

Eq. (110),having the form,

expl —e[,i (m, )/kT, (t)](B.13)
P[,l(m, ; t) =

pl
—

[ [( )/kT (t)j
The inverse Laplace transform of the p(n, s) of Eq.

(B-11) is:
(C.1)

1+m, (h(oz, /k T, (t))

(2I+1)~& —l "r E„,'(n)
P(n t)= P g t[t' 'le ""[' "' (B 14)

=' (i-1).
c.e.,

are assumed, whence, substitution of Eq. (C-1) into
Eq. (110) and use of Eq. (115) yields

(IIP(t)ll= S
dt &T.(t)

which is the appropriate generalization of Eq. (81) to
the case of degenerate co,.

mo')
g w[ i'u""(m, '; m„t)l 1—

l

—= —co(m,);

APPENDIX C

The evolution in time of (p)t toward (p)t'uu" Las in
Eqs. (137)—(139), (142), (145)) has also been treated
in terms of the concept of a time-dependent "spin-
temperature" T, (t). In the spin-temperature procedure,
solutions of the individual particle "master" equation,

m, WO, (C.2)

O=g w[, i'u""(m, ', 0; t)m, '= v;
fSq

m, =O (only when I=1, 2, 3, . ).

Equations (C.2) and (C.1) give

1 m, Aa)r 1 t' 1 i i
P[,[(m„'t)= + —+l ——le "[ el[' "&

2I+1 2I+1 k - T ETs(to) Ti

A&1 t' 1 1 )=P """(m t)+ m g
—e0 (~q) (&—&0)

(2I+1)k (T, (to) T)

(C.3)

which is to be compared with the P[,[(m„t) of Eqs.
(130)—(132).

It is now to be emphasized that Eq. (C-3) for
P[,i(m„t) is correct and so is equivalent to Eqs. (130)—
(132) for P[,~(m„t) only if Eq. (C-2) is satisfied, i.e.,
on1y if the transition probabilities per unit time,
w 'u""(m', m„t) are such that v=0 and that the

cu(m, ) are actually independent of m, (for m, &0); this
last condition must hold since (1/T, (t)—1/T) is inde-

pendent of m, . Using Eqs. (123), (124), (126)-(129)
with %or/O'«1 it is straightforward to verify that the

w[,i~""(m,';m„t)are indeed such that v=0 always,
and that the ~(m,) are independent of m, (for m, /0)
for U 0 . . nonsecular with an~ I and for g nonsecular

with I=j; in fact:

co(m, ) =2w'L1+Sm, '—4I(I+1)j
+Sw"C.2I(I+1)—2m '—1j, (C.5)

so that for 'U = 'U „,g'"-'"'" with I& 1 the spin-tem-
perature P[,i (m„t) of Eq. (C-3) are not correct.

Con6ning our further attention to the cases of Eq.
(C-4), where the P[,[(m, ; t) of Eq. (C-3) are correct
and so are equivalent to the P[,i (m„t) of Eqs. (130)-
(132), let us substitute the P[,i(m„t) of Eq. (C-3)
into Eq. (133) and obtain,

f'&[a]
&tt&t=Z P[ol(m. ; t) l fleam. I

tns & P'[g] )
(C.6)

(n)t"""=(&[»/I'[») o&7I(I+1)(~~/O) t

nonsecular. I—1 o

which, for example in the condition of initial saturation,
(Cases I, II of Sec. F), I) '(C.4)—

&(m )—2~t+SZyrt ~ "U —'U nonsecular.

(Case III of Sec. F).

On the other hand for U dnonsecular and I~ I

(tt) —
(t ) euuilt. i e reit—tc)$— (C.7)

The Eqs. (C-7) and (C-4) for (t)t are identical with
the Eqs. (138), (142), and (145) for &t )t vs t.


