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Some methods are developed for studying the singularities of
collision amplitudes in perturbation theory as functions of two
of the invariant energies, s, t, and u. It is shown that:

(i) There are no singularities other than normal thresholds in
the physical regions of the physical sheet.

(ii) For the equal-mass case there are no singularities in the
Euclidean region of the physical sheet.

(iii) The only straight lines of singularities on the real boundary
of the physical sheet are normal singularities in the equal-mass
case, and in the general-mass case are either normal singularities
or they intersect the Euclidean region.

(iv) The curves of singularities on the real s, t plane in the
physical sheet do not connect to surfaces extending into the region
s real, t complex except at turning points of the curves.

(v) Turning points of curves of singularities in the physical
sheet may occur either when sufhcient coincident singularities be-
come also end-point singularities, or when there is an accidental

relation between the Feynman variables at coincident singularities.
The former correspond to anomalous thresholds; the latter are
called spurious turning points.

(vi) For the equal-mass case there are no anomalous thresholds
and no anomalous turning points in the curves of singularities.

(vii) Spurious turning points do occur in negative spectral re-
gions, but here it appears that they may not lead to complex
singularities on the physical sheet. There are no spurious turning
points in positive spectral regions in low orders in perturbation
theory and to all orders for some types of diagram. It is plausible
that there are none for any diagram, but this is not proved.

The relation of this work to the Mandelstam representation is
discussed. All the proven results in this paper are consistent with
this representation. Some points are noted which require further
investigation before the validity of the representation can be
established to all orders in perturbation theory.

1. INTRODUCTION

'HE following hypothesis underlies recent work on
strong interactions of elementary particles:

(1) Collision amplitudes can be determined from the
unitary condition, the location of singularities of the
amplitudes in the physical sheet of the complex in-
variant energies, and some parameters related to the
residues at poles of the amplitude or to its value at an
arbitrary point. The parameters must be found from
experiment.

For the special case of collision amplitudes involving
only two particles incident and two outgoing and with
certain restrictions on the masses of the particles that
may be formed in the collision, Mandelstam' has pro-
posed a further hypothesis:

(2) All singularities in the physical sheet lie on its
real boundary.

For practical solution of the coupled equations re-
sulting from these assumptions, a third hypothesis is
necessary:

(3) The form of the collision amplitude is domina, ted
by the nearest singularities in the physical sheet.

In this paper, we study the location of singularities
of terms in the perturbation series for a scattering
amplitude. We will be concerned in particular with the
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singularities on the physical sheet or on its boundary.
The aim of such a study of perturbation terms is to see
whether it is possible to deduce a form for the analytic
structure of the amplitude itself by showing that the
structure is a characteristic of all terms in the series.
The Mandelstam representation is an example of such
a structure, and in this paper a number of results are
obtained which are necessary for the validity of the
representation, and which go some way towards estab-
lishing sufhcient conditions for its validity. In examples
where the Mandelstam representation does not apply,
a form of integral representation will still be required
for use in conjunction with the unitary condition. It is
hoped that the results of this paper will be useful in
setting up methods to determine singularities from
which more general integral representations can be
obtained.

The development of integral representations for colli-
sion amplitudes, and in particular the proof of the
Mandelstam representation, requires information about
the singularities of the physical branch of the amplitude.
The physical branch is determined by taking the three
invariant energies' s, t, and (u) to be real, and associat-
ing a small negative imaginary part, —ie, with each
mass in an internal line of a Feynman diagram. The
physical sheet of two of the variables s, t, and I is
obtained by considering the physical branch with one
of these variables real (sometimes it must be given a
small positive or negative imaginary part), and letting
the argument of the other vary from 0 to 2m. The three
variables are related by a mass condition, ' so that only
two can be varied independently.

The procedure for obtaining information about
singularities in complex parts of the physical sheet is
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based on a succession of steps, in which information
about singularities is transferred from one part of the
sheet to another by analytic continuation. It is shown
in Sec. 3 that the only singularities in the physical
scattering regions of the physical sheet are at normal
thresholds for production of extra particles. This result
follows from the unitary condition, though some use is
also made of the perturbation series. In Sec. 4 a result
of Mandelstam is quoted to show that for interactions
of equal-mass particles there are no singularities in the
Euclidean region. ' This result is proved again by an
independent method later in the paper in Sec. 8 example
(f). Any straight line of singularities in the physical
sheet must intersect either the physical scattering re-
gions or the Euclidean region. In the former case it
must coincide with a normal threshold, in the latter it
must coincide with an anomalous threshold. In the
equal-mass case there are no anomalous thresholds, and
hence all the straight lines of singularities are known
(Sec. 5). In Sec. 5 we discuss the manner in which
curves of singularities are obtained for s, t, (u) real and
in the physical sheet. A classification of curves of singu-
larities is introduced which permits us to study gen-
eralized Feynman diagrams in which all lines are on
the mass shell on the curves of singularities. In the
Feynman integral this means that we need consider
only coincident singularities. It is noted (Sec. 5) that
the anomalous thresholds in fourth order occur when
the curves of singularities have turning points. '4 At,

these points the coincident singularities are also end-
point singularities, and the tangents to the curves are
straight lines of singularities. The absence of this type
of turning point in the equal-mass case is established in
Sec. 7 to all orders in perturbation theory. It is essen-
tially due to the fact that the only lines of singularities
are given by the normal thresholds.

In Sec. 6 we study the general properties of the de-
nominator of the Feynman integral for a general term
in perturbation theory. This denominator is the dis-
criminant5 of the quadratic form in the internal mo-
menta of the corresponding Feynman diagram. The
importance of the discriminant D(n, s,t) is that it is
stationary and zero at singularities of the amplitude.
The singularities on the physical sheet are identified
by the requirement that all the Feynman parameters n
should be positive. "The discriminant is a linear function
ofsandt,

D(n, s, t) =sf(n)+tg(o. )—E(n). (1.1)

In the equal-mass case, E depends on the mass only
through a factor m'. It is shown in Sec. 7 that a curve

' S. Mandelatam, Nnovo cimento 4, 658 (196 ).' R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys.
Rev. 114, 376 (1959).

4 J. Tarski, J. Math. Phys. 1, 149 t,'1960).
~ R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952).
5' This identification is made as an assumption in this paper, it

requires proof, and the conditions for its validity are discussed in a
forthcoming paper: R. J. Eden, "The Problem of Proving the
Mandelstam Representation, "UCRL report 9254.

of singularities can have a turning point only when the
coeKcient of s or t vanish on the' curve. It will be noted
that on the curve all variables are a function of a single
parameter, which can be s for example. Similar results
hold when turning points are considered as functions
of t, u or of I, s.

The importance of determining the turning points
(if any) is that only at a turning point of the curve of
singularities (s, t real), can there be an extension on to a
surface of singularities which intersects the physical
sheet for s real and 1 complex (or t real and s complex).

The vanishing of f or of g in Eq. (1.1) may occur
either when a sufhcient number of the o, variables be-
come zero (these correspond to anomalous thresholds),
or when a general factor of f or g vanishes because of a
special relation between the 0. variables at a point on
the curve. The latter will be called a spurious turning
point, since it does not correspond to a threshold. For
the equal-mass case, there are no anomalous thresholds
and no turning points of the first type. If a spurious
turning point occurs in the region s& 0, t&0 of the real
part of the physical sheet, there will be a curve of
singularities extending from that point into the complex
part of the physical sheet. This would cause a break-
down of the Mandelstam representation. It is therefore
important to prove that there are no spurious turning
points in certain parts of the real s, t plane.

In Sec. 8 a number of examples are worked out for
the equal-mass case which illustrate explicitly most of
the features of the general theory of Secs. 6 and 7. In
particular, spurious turning points can be shown to be
absent for all ladder diagrams. A spurious turning point
will always occur when a diagram has singularities in
more than one spectral region but it is necessary only
to show they are absent from the spectral region where
the relevant two variables are positive. This is proved
for a ladder diagram with two crossed rungs and for the
fully symmetric crossed eightlt-order diagram (reduced).
As an illustration of the general theory, a proof is given
that there are no singularities in the Euclidean region
for the equal-mass case.

In Sec. 9 the general form of the discriminant is
studied further in an attempt to show that there are no
spurious turning points in any order in perturbation
theory. A reduction formula is obtained which permits
the discriminant for any diagram to be expressed in
terms of simpler diagrams in which one or more lines
have been removed. The reduction formula is adequate
to prove the absence of spurious turning points for
certain classes of diagrams. The discriminant for a
general diagram is analyzed and a plausibility argument
is given for the absence of spurious turning points from
positive spectral regions.

In Sec. 10 the relation between the results of this
paper and the Mandelstam representation is discussed.
If it is assumed that the absence of spurious turning
points of curves of singularities has been made plausible,
two further points must be considered. These are the
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possibility of disconnected complex singularities, and
the double application of Cauchy's theorem when all
three spectral regions contain singularities. The former
problem can also be discussed in terms of the vanishing
of the coefficients of s or of 1 in D(n, s,1) Th. e latter re-
quires, for example, the consideration of singularities
when s and t have small positive imaginary parts. It is
expected that this will su%.ce to take the contour of
integration along the "safe" side of the branch points
at I=constant, and thereby avoid the complex surfaces
of singularities that extend from the curve of singu-
larities in the I, s spectral region at the spurious turn-
ing points. However this point is not analyzed in detail.
A number of general techniques for discussing singu-
larities are used in the paper. Those developed else-
where are described briefly in Sec. 2 so that notation
and nomenclature will be accessible without constant
reference to other papers.

n

F= lim c dki dki g — . (2.1)
g-+Q+ J i=1 (gP —fs' +16)

The variable q, is the 4-momentum of the line i in the
corresponding Feynman diagram, and m; is the mass
of the particle in this line. The q; are linear functions of
the internal momenta k; and of the external momenta
pt. . The term F will be a function of the scalar products
of the pi, but these are not all independent. When the
collision process involves Fermions or pseudoscalar
particles there will be more complicated numerators in
Eq. (2.1).The form of amplitude for this case has been
described by Chisholm. 5 In this paper we are concerned
with singularities of the amplitude, and, apart from
possible complications or cancellations due to selection
rules (which can be taken into account in special cases),
it is sufhcient for this purpose to consider only scalar
particles.

When Ii describes a reaction,

1+2 -+ 3+4,
it will be a function F(s,t,u), where

(2.2)

s= (p,+p,)', 1= (p,+p4)', u= (p,+p,)', (2.3)

and
4 4

pI,
' ml. ', g——p1.=0, s+t+u=p mi'. (2.4)

I 1

The physical branch of F(s,1,u) where s, t, u are real is
defined by the choice e)0 in Eq. (2.1). The physical
sheet is obtained by analytic continuation of F in the
range

0 &args &2z., (2 5)

2. GENERAL METHODS

(A) Definition of the Physical Sheet

A term in the perturbation series for a collision ampli-
tude for scalar particles will have the form,

keeping t real. The variable u is defined by Eq. (2.4)
when s and t are given. Similarly the physical sheet
includes the region io which F is continued analytically
from its physical branch in the range of Eq. (2.5) with
I real, and

0&argt &2+, s or I real, (2.5a)

$(k)o.,s,1)=Pa;(qP mP+se)—
j.

(2.6)

The function P is a qua, dratic form in the internal mo-
menta k, . Let D(n, s,1) be the discriminant of P as a
function of the k;, and let C(n) be the discriminant of
the quadratic form tPo obtained from tP by putting
m;=0, s=0, t=0, and N=O. Then Chisholm shows that
the integral (2.1) becomes

(u —2/ —1)! t'
F(s,1) =c(im')' I dn, Idc.t„

(u-1)! &,

~(1—2 ~')L~(~)j" " '

[D(n,s,1)]"—" (2.7)

This integral representation of the terms in the
collision amplitude has been used by a number of
authors to study analytic properties. Particularly im-
portant developments have been made by Nambu, '
Nakanashi, t Landau Lsee part (D) of this section), '
Bjorken, ' and, from a diBerent representation, by
Symansik, " and Taylor. " For the applications in this
paper, we shall frequently use the method of coincident
singularities and end-point singularities first used by
the author" and later developed by Tarski, 4 and by
Polkinghorne and Screaton. " These occur when the
discriminant D(u, s,t) in Eq. (2.7) becomes zero for
coincident roots of one of the n;, , or becomes zero when
one of the o.; is zero.

' Y. Nambu, Nuovo cimeuto 6, 1064 (1957};9, 610 (1958).
7 N. Nakanashi, Progr. Theoret. Phys. (Kyoto) 1?, 401 (1957).' L. D. Landau, Nuclear Phys. 13, 181 (1959).' J. D. Bjorken (to be published)."K.Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 (1958)."J.C. Taylor, Phys. Rev. 117, 261 (1960)."R.J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952}.
'3 J. C. Polkinghorne and G. R. Screaton, Nuovo cimento 15,

289 (1960).

0&argu&2m, 1 or s real. (2.5b)

It will be noted that the term physical sheet is defined
here with a view to relating it to the Mandelstam
representation. The chosen definition is more con-
venient for the methods in this paper than that used
by Tarski. 4 The real s, t plane is on the boundary of
the physical sheet.

The transformation of Eq. (2.1) by means of Feyn-
man parameters and subsequent integration over the
internal momenta has been investigated by Chisholm. '
The transformation introduces Feynman parameters

, O.„and gives a denominator which contains the
function,
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(B) End-Point and Coincident Singularities

A function f(z), defined by

of the same function. We will consider now how to
obtain these diferent branches without carrying out
the integrations.

1

f(z)= jr dng(n, s)
0

(2.8) (C) Analytic Continuation of Integral
Representations

may become singular at s=x if either (a) g(0,s) is

singular as s approaches x, or (b) g(n, s) has two singu-
larities, one on each side of the path of integration,
which tend to coincidence as s approaches x. The first
condition is called an "end-point" or E singularity,
and the second is a "coincident" or C singularity. In
practice the singularities of the integrand are either
poles or branch points, and they appear always to cause
a singularity in the integrand when condition (a) or

(b) holds.
It is evident that if

D(n, s, t) =0, (2.9)

n;.)0, P n, =1, (2.11)

there will be either an E singularity or a double singu-
larity at each stage of the integration. If the double
singularities are in fact C singularities (and not both
on the same side of the contour), the integral F(s,t)
will be singular. "We will consider later the problem of
showing that Eqs. (2.9) to (2.11) lead to C singularities.

The boundary of the physical sheet (s and t both
real) is obtained by letting e ~ 0 in the terms (m;2 —ie)
of Eq. (2.1). This associates each frequency, for which
the lines in Eq. (2.1) are on the mass shell, with a
definite side of the contour of integration:

q =a[(m,'+q,'—ie)$l. (2.12)

These relations lead to singularities in the momentum-

space integration which may be either C or E. In the
physical scattering regions of the physical sheet, these
singularities can be directly interpreted. The 3-momenta
give E singularities so that they correspond to particles
at relative rest, and the sign of i& in Eq. (2.12) ensures
that singularities are coincident only when the particles
concerned have positive energy. It will be shown later
that these are the only singularities in physical regions.

If instead of Eq. (2.1) some of the internal masses
are written (m'+is), the singularities coming from
momentum-space integration no longer have a simple
interpretation in general, even in physical scattering
regions. Clearly, some of them will correspond to some
particles having positive and some negative energy
while at relative rest, but others will not require the
3-momenta to give a,n E singularity. The integral ex-
pressed in terms of Feynman variables will no longer
have the form of Eq. (2.7) but will be another branch

either BD/Bn, =0, or n, =0, i=1, , m, (2.10)

then F(s,t) given by Eq. (2.7) may be singular. If Eqs.
(2.9) and (2.10) hold for values of n; satisfying

An integral representation of a function, Eq. (2.8)
for example, can be analytically continued by varying
s in the integrand provided always that the path of
integration is suitably distorted so that no singularity
of g(n, s) crosses the path between n=0, n=1. It is
permitted that a singularity goes round an end point
of the path of integration to the other side of the con-
tour, and in general this will give a different branch of
the function. A number of possibilities are shown in
Fig. 1. The path of integration is from a=0 to e= 1 o~
the real axis for the physical branch of the function;
this determines on which side of the integration con-
tour the singularities lie if, for example, s= x+ie gives
the physical branch. Figure 1 (i) shows a typical C
singularity, where the location a and b of the singu-
larities depends on s. If s follows a path which causes
a and ti to move as in (ii) the final position is not a C
singularity. It will be noted that to remove the C
singularity, a has gone around n=0 which is an E
singularity. Figure 1 (iii) shows how a C singularity
may disappear when it passes through an E singularity,
and (iv) shows how it may be retained by taking a
around the E singularity. Figures 1, (v) and (vi)
illustrate how a singularity c, which may never enter
the range of integration 0(o,(1, may still lead to a
singularity in the integral corresponding to another
branch of the function. These analytic continuations
under the integral sign have been extensively used by
Tar ski. 4

and
either q =m ) or o.;=0, (2.13)

(2.14)

where q; is a 4-momentum in an internal line, and the
sum in Eq. (2.12) is taken over any closed circuit in the
diagram.

]f n;=0 for any line, the condition for a singularity
can be obtained from the reduced diagram in which the
line i is "short-circuited" (or reduced to a point). It
should be noted though that although the reduced dia-
gram will determine this singularity of the "parent"
diagram correctly, it will not determine other singu-
larities of the parent diagram so that it cannot be used
to determine the functional dependence of the integral
except nea, r the particular singularity concerned.

(D) The Landau-Bjorken Conditions

By considering the transformation from Eq. (2.1) to
Eq. (2.7), Landau' and Bjorken' have shown that the
conditions (2.9) and (2.10) are equivalent to the
conditions:
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a=0 OX a= l

bx

Total energy and momentum must be conserved in all
matrix elements. The intermediate states

~
zztns )

include any number of particles, whose total rest mass
satisfies

(P m, )'&s. (3.3)

QX ~r

b X~r——C—~

XO
CX XC

There may also be selection rules that further restrict
these states but they will not be considered here. It is
because we are considering the physical region (3.1)
that we can make the restriction (3.3) which implies
that each intermediate particle has positive energy
greater than its rest mass.

In a perturbation solution for R, the unitary condi-
tion is satisfied to each order in the coupling constant.
Thus if R~ denotes R to order l, we have

(V)

FIG. 1. Analytic continuation by moving singularities of the
integrand and distortion of the path of integration in the com-
plex n plane.

The Landau conditions determine the location of
singularities of all branches of the function associated
with a given diagram. Only when all n; for a particular
solution lie inside $0,1j, (with Ptt, = 1), will the
singularity lie in the physical sheet. Those solutions
with some n, outside $0,17 are analytic continuations
on to nonphysical sheets and are C singularities with a
suitably distorted path of integration (see footnote Sa).

Landau' and Taylor" have used conditions (2.13),
and (2.14) to construct dual diagrams consisting of
directed vectors of length I; which satisfy the "equi-
librium" condition. The dual diagrams were proposed
also by Karplus, Sommerfield, and Wichmanns in con-
nection with third- and fourth-order terms. In these
examples, the dual diagrams were used to investigate
the nearest singularities only. They can also be used to
determine the algebraic relations that given higher-
order singularities, not necessarily the nearest ones."
Mathews" and Bjorken' have also investigated equa-
tions similar to (2.13) and (2.14) using the analogy
with electric-circuit theory.

3. SINGULARITIES IN PHYSICAL
SCATTERING REGIONS

It will be shown in this section that the only singu-
larities in the physical scattering regions are normal
thresholds for real competing processes. We will con-
sider for definiteness the region

s) (mt+ ms)', Q&0, /&0. (3.1)

With S=1+R, the unitary condition has the form,

(pt psl (R'+R)
I p.~,p4)= &(pt pslR'lzz—tzzs

X (zz,zz,
~
R~ p„p,). (3.2)

R. J. Eden, C. Enz, and J. I ascoux, Bull. Am. Phys. Soc. 5,
284 (t'96O).

'5 J. Msthews, Phys, Rev. 113, 381 (1959),

(Rit+Rt)

P){P —Q Ri, t
~

zz, zz, ) (zz,zz, .
~
Rit), (3.4)

lj n1, n2, ~ ~ ~

where zt&(l —2), and Pz selects those terms on the
right-hand side which are of order l or lower.

Theorem 3A

s,= (P m, )', (3.5)

the sum being over all particles in the state which is
newly allowed as s exceeds s,.

It will be noted that this argument involves not only
analyticity of the matrix elements,

(d, c
~
Rt, ) ~P),

but also analyticity of the production amplitude,

(d,c)
~

Rt~t
~
zztzzs ),

(3.6)

(3 7)

for l~ & l. If the production amplitude were not an
analytic function of s, then we could consider the
equation

( dc( R& tt+R ftn, ,zz)
= —Ptz(P P (d,c~Rist~zzt'zz '

)
l2 N1 N2

&( (zzz'zzs'
~

R tz
~

zztzzs )), (3.8)

A necessary and sufficient condition for the ampli-
tude to have a branch point at s=s, in the physical
region (3.1) is that s, is a normal threshold for a com-
peting production process.

If R has a branch point at s=s„ let Rg be the term
of lowest order in the perturbation expansion to have
this branch point. Then the left-hand side of Eq. (3.4)
is nonanalytic at s=s, ~ Each term on the right-hand
side is analytic there since l&( /. Hence the sum must
change on the right-hand side so that an extra term is
included, thus giving nonanalytic behavior to match
that on the left. This extra term can arise only when it
corresponds to a new competing process. Hence, s, is a
normal threshold and we have
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and deduce that the production amplitude,

(d,c~Rt2t~e, 'n2' ), (3.9)

Theorem 38

If a diagram corresponds to a singularity in the
physical region where s is the square of the energy, it is
always possible to make at least one s-partition in which
every line cut by the partition corresponds to a particle
on its mass shell.

From the Landau conditions, if a diagram corre-
sponds to a singularity, either every line is on the mass

for /2&tt&&l was not analytic. By repetition of this
process, the production amplitude of lowest order can
be obtained. It must be nonanalytic at a point s=s, if
Rt& is not analytic there. But the lowest-order produc-
tion amplitude does not have any branch points.
Hence, in the physical scattering region all the matrix
elements of Rt& must be analytic except at production
thresholds.

Conversely if a new intermediate state is allowed on
the right-hand side of Eq. (3.4) at s=s„ let t be the
lowest-order term for which this competing process can
enter the sum. The right-hand side is nonanalytic;
hence, in order to make the left also nonanalytic R&

must have a branch point at s=s, . A branch point in
/th order cannot be cancelled by a branch point in
higher order. Hence R must have a branch point at
s= sc.

These singularities in the physical regions can be
interpreted in terms of the conditions for singularities
described in Sec. 2. This then permits an extension of
theorem 3A to give information about nonphysical
regions of the physical sheet. It is useful to introduce
some definitions:

An "s-partition" of a diagram is defined as a partition
along a single dividing line intersecting only internal
lines of the diagram across which Qows the total 4-
momentum (pi+ p2), where s= (pi+ p2)'. Similar defini-
tions are made for t-partitions and n-partitions, and
s, t partitions are illustrated in Figs. 2(i) and 2(ii).

shell, or the Feynman variables are zero for some lines
and the diagram can be reduced. The fully reduced
diagram has every line on the mass shell. Either an
s-partition can be made of the fully reduced diagram
or the 4-momentum (pi+p4) passes through a single
vertex. If the latter is true the position of the singularity
will be a function of t only, (or alternatively of u only),
and a t-partition can be drawn. However, from theorem
3A the only singularities are at s=s„so there cannot
be any that depend only on t. Neither can a t-partition
be made of the fully reduced diagram, therefore an s-
partition is possible. The insertion of lines at the ver-
tices of the fully reduced diagram does not affect the
s-partition and the theorem follows.

Theorem 3C

The fully reduced diagram corresponding to a singu-
larity in the physical region is always a "generalized
self-energy part" or a chain of these parts. [These are
illustrated in Fig. 2, diagrams (iii), (iv), and (v).$

This theorem follows from the fact that the fully
reduced diagrams (in which by definition a]1 lines are
on the mass shell) which give singularities at normal
thresholds in the physical regions must correspond to all
particles at rest relative to each other and with positive
energies [the latter is a "causality" requirement follow-

ing from the use in Eq. (2.1) of (m-' —ie)]. This ex-
cludes the insertion of lines on the mass shell which
change the self-energy diagram into a vertex diagram.
The possibility of accidental coincidences of self-energy
and vertex singularities is not considered as it would
occur only for very special values for the masses of
particles, which do riot appear to occur in nature. A
chain of self-energy parts must for similar reasons have
identical links. This type of singularity (of chain
diagrams) is related to the unitary Eq. (3.4), and corre-
sponds to a value of s for which an additional state
becomes allowed in the sum on the right-hand side, the
left-hand side is nonanalytic, and also the terms on the
right-hand side have branch points. It was to exclude
this complication that the proof of theorem 3A made
use of the lowest-order term which has the branch point.

To summarize: In the physical scattering regions
(a) unitarity and the positive energies of physical par-
ticles requires that all singularities (branch points)
occur at normal thresholds; (b) the use of (m' —je),
which is related to causality, requires that all singu-
larities correspond to fully reduced diagrams which are
generalized self-energy parts.

{v)
I'xG. 2. Diagrams (i) and (ii) show s- and t-partitions; (iii),

(iv} and (v) show a generalized self-energy part and chains of
these party,

4. THE EUCLIDEAN REGION

This region is defined by

s& (mi+m&)', t& (mi+m4)', u( (mi+m4)'. (4.1)

The definitions of s, t, and I in Eqs. (2.3) can be satisiied
in this region by taking the external 4-momenta to be
Euclidean vectors satisfying Eqs. (2.4).
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For the equal-mass case, it has been shown by
Mandelstam' that analyticity in the Lehman ellipses
can be used to show that inside the complex region (in
the physical sheet),

(4.2)

s+t+I =4m' (4.3)

the amplitude A(s, t,u) is analytic except for the ex-
pected poles at m' and branch points at 4m'. This
proves analyticity in the Euclidean region, and the
result is independent of perturbation theory.

An independent perturbation-theory proof of ana-
lyticity in the Euclidean region will be given in Sec. 8,
example (f). This proof is also restricted to the equal-
mass case, but it makes very plausible the possibility
that the amplitude will be analytic in the Euclidean
region in the general-mass case provided the fourth-
order term is analytic there. This result is also made
plausible by the work of Bjorken' and Taylor. " The
general mass case will be discussed in more detail in
another paper.

An independent proof in perturbation theory is
needed because Mandelstam's result does not imply
that each term of the perturbation series has the same
property of analyticity. In fact our later result shows
this to be true for all diagrams in which the masses
in the internal lines are not smaller than those of the
external lines. This is sufficient for all diagrams in the
equal mass case since reduction by short-circuiting
internal lines cannot reduce any masses.

(A) Lines of Singularities

These are de6ned as arising from singularities whose
position depends on one of s, t, u only. From the dis-
cussion of Sec. 3, normal thresholds correspond to lines
of singularities in the physical regions. These are given
by reduced diagrams which are generalized self-energy
parts or chains of these parts. The original diagram will
have all those lines on the mass shell which are cut by
one or more independent s-partitions. The Feynman
variables of these lines will all lead to C singularities.
Those for lines not cut by the s-partition will give E
singularities since the lines are not on the mass shell.
The location in the Feynman integrand of these C and
E singularities depends (for example) on s only; hence
they will remain C and E singularities as t varies into
nonphysical regions of the physical sheet. Therefore the
normal thresholds in physical regions extend to lines of

S. SINGULARITIES ON THE REAL BOUNDARY
OF THE PHYSICAL SHEET

We next consider singularities of terms in the per-
turbation series for an amplitude in the nonphysical,
non-Euclidean regions of the real s, t, I plane. This is
on the boundary of the physical sheet when all masses
are written (m' ie) in —the Feynman integral, s, t, I
being real.

singularities for all real values of t; this is the boundary
region of the physical sheet. They also extend to "planes
of singularities" for t complex, and s=s, , real.

There may also be lines of singularities which arise
from reduced diagrams that are generalized vertex
parts (or chains of these parts). The location of singu-
larities in the Feynman integrand depends on one vari-
able only, e.g. , s, and therefore if these lines are in the
physical sheet in one part of the real s, t plane, they
will remain in the physical sheet in all parts. But from
Sec. 3 we know that the only singularities in the
physical regions are normal thresholds. Excluding acci-
dental coincidences for special mass values, we conclude
that vertex parts cannot lead to lines of singularities
which enter the physical region. These results are sum-
rnarized in the following theorem.

(3) Curves of Singularities: Preliminary
Discussion

Curves of singularities are obtained when the lines
cut by both an s- and a t-partition (or more than two
such partitions) give rise to C singularities in the
Feynman integration. The resulting curves of singu-
larities are on the physical sheet when the Feynman
parameters at the C singularities are in the range [0,17.
The number of s-partitions and t-partitions associated
with a given singularity give a measure of the com-
plexity of its structure. The simplest reduced diagrams
are obtained when just one s- and one t-partition is
made. These are indicated in Fig. 3, diagrams (a), (b),
and (c). The internal lines of these diagrams in the
equal-mass case may be any integral multiple of the
elementary-particle mass. It is instructive te consider

(a)

(cI) (e) (f)
FxG. 3. Examples of low-order, fully reduced diagrams.

Theorem SA

The only lines of singularities on the real boundary
of the physical sheet are (a) normal singularities meet-
ing the physical region at normal thresholds, (b) anoma-
lous singularities, which, if they are present at all, do
not intersect the physical regions but do intersect the
Euclidean region.

Corollary

In the equal-mass case the only lines of singularities
in the physical sheet correspond to normal thresholds.
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FIG. 4. Curves of singularities for diagrams (a), (b), and (c)
of Fig. 3. No scale is shown, as only the general form of the curves
is required.

these diagrams further, since they illustrate character-
istics which we shall later establish more generally.
Diagrams (d), (e), and (f) in Fig. 3 illustrate some of
the reduced diagrams associated with two s-partitions
and one t-partition.

In the equal-mass case, Fig. 3(a) has only one branch
in the physical sheet. The fact that the internal lines
have masses &m while the external lines each have
mass m is sufficient to exclude the possibility of anoma-
lous threshoMs. The form of the curve of singularities
is shown in Fig. 4 Lcurve (a)], though the location of its
asymptotes will vary with the values of the internal
masses.

In the general-mass case, Fig. 3(a) may give a curve
of singularities with anomalous form. '34 This can be
tested by reducing one of lines u, b, c, or d to a point
and considering whether the resulting vertex part has
singularities on the physical sheet. If diagram 3(a)
does not have anomalous form when its internal masses
are least, it will not have anomalous form at all. If
only the reduction of line a gives a vertex singularity
when b, c, and d have least masses, then Fig. 3(a) will

have anomalous form for all values of the mass in the
lines u, those in b, c, and d being 6xed. This shows that
some types of anomalous threshold remain to arbitrary
order in perturbation theory when they are present in
lowest order.

The diagram 3(b) can lead to a singularity for an
s-partition, and a t-partition, but not for a N-partition.
Its singular curve for the equal-mass case therefore lies
in the region s&s„t) t„where s, and t, are the singular
asymptotes obtained by reducing two of the lines

a, b, c, and d to a point. This curve can either be
evaluated explicitly, "or by the more general arguments
given later in this paper. It is shown as curve (b) in
Fig. 4.

For the general-mass case in diagram 3(b), the possi-
bility of anomalous thresholds must be considered.
These can be checked by considering the vertex part

in which one of a, b, c, or d is reduced. This vertex part
has no singularities in the physical sheet in the equal-
rnass case, so a further reduction must be made. It
will be noted that if Fig. 3 (a) does not give an anomalous
threshold, neither will Fig. 3(b) since the corresponding
vertex part of the latter has at least one internal mass
larger than the former. The same argument also applies
(more strongly) to diagram 3(c) where the vertex parts
will have two lines with additional mass and cannot
have any singularities in the physical sheet if Fig. 3(a)
is not anomalous (selection rules are not considered
here).

'A new feature arises with Fig. 3(c), since it can give
singularities for an s-, t-, or n-partition. The curve of
singularities therefore has three bra~ches in the physical
sheet. For a normal case, these are indicated by curves
(c) in Fig. 4. The same principle as before determines
the asymptotes for which pairs of lines (b,d), (a,c), or
(e,f) must be reduced to points. The indicated form of
the singular curve 4(c) will be justi6ed in more detail
later (Sec. 8(d)].

In the equal-mass case diagram 3(d) cannot give a
singular curve on the physical sheet wheo all interval
lines are on the mass shell and correspond to single
masses. This follows from the fact that it contains an
internal vertex part which has no singularities in the
physical sheet. Thus its only singularities involve the
wrong frequency condition (m'+ie) on one of its lines,
and this would impose the same requirement on 4(d)
itself. This result can also be obtained by an alge-
braic method given in Sec. 9.

Another type of singular curve to which special
attention must be given in considering general terms is
illustrated by the anomalous-thresholds curves from
the fourth-order term, diagram 3(a). In the general-mass
case, its regular form is shown by Fig. 4(a). Other pos-
sible forms of curve along which lim, OA(s, t, mP —ie)
is singular (analytic continuation with s and t real is
made before the limit is taken) are shown in Fig. 5,
curves (a) and (b).' Curve 5(a) has a single branch
which goes on to a different Riemann sheet at each
point of tangency to a line singularity. It should how-
ever be noted that the complex-conjugate amplitude
2+(s, t) will be singular on the broken part of the curve.
Therefore the continuous plus the broken part of the
curve form the boundary of the spectral function, For
this type of singular curve, the Mandelstam repre-
sentation still applies to the fourth-order term. ' Curve
5(b) illustrates anomalous thresholds of type II. It has
two branches in the physical sheet and the Mandelstam
representation does not apply to the fourth-order term
when this type of singularity occurs. '4

It has been noted by Tarski in connection with the
anomalous curves shown in Fig. 5 that the slope of the
curve F determines the relative sign of the imaginary
parts of s and t on the surface of singularities Z(s, t)
near its intersection with I'. Thus, when (ds/dt) is
negative along I'(s, t), the imaginary parts of s and t
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2 (a)(bj

t (Qb

FIG. 5. Anomalous thresholds of type I give a curve of singu-
larities of form (a); those of type II (super-anomalous) give
curves of type (b). The broken lines denote curves on nonphysical
sheets.

have opposite sign on Z(s, t). We shall later require a
particular investigation of points where (ds/dt) is zero
(or infinite) since at these "turning points" it is possible
for t (or s) to become complex while s (or t) remains real.

At the turning points illustrated in Fig. 5, one C
singularity has moved to o,;=0 so that it is also an E
singularity. At this point, therefore, the curve of singu-
larities coincides with the related line of singularities.
On the broken part of the curve, the singularity in the
integrand of A(s, t) has slipped off the contour of in-

tegration L0,1], as illustrated in Fig. 1 (iii). For the
complex-conjugate function A+(s, t) however, analytic
continuation will lead to a distorted contour as in
Fig. 1(iv).

D= 821

b1

a12 ~ b1

a22 b2 . (6 3)

Expanding by the last row and last column, we have

where

D= —P A;;(u)b, b, +C(u)c, (6.4)

depends on which pair is chosen. The symbol n will be
used to denote n&, o,2,

. -, o. , collectively. The masses
m, in Eq. (6.1) will not be assumed equal unless this is
explicitly stated.

The main technique to be used for discussing the
properties of D(u, s, t) is based on its invariance under
diGerent choices for the paths of the external momenta
through a given diagram and under diGerent choices of
circuits for the internal momenta. A second technique
to be used later is based on the relation between D(u, s, t)
and D(u, t,st) which can be obtained by substitution
from Eq. (2.4).

The left-hand side of Eq. (6.1) has the form,

Q agk, k,+2 Q b~k;+c (6.2)

The coeKcients a;;, b;, c all depend linearly on o,. The
a;; do not depend on other variables. The b, depend
linearly on the external momenta. The term c depends
linearly on the squares and products of external mo-
menta and on the squares of the internal masses. The
discriminant of Eqs. (6.1) or (6.2) is

0. PROPERTIES OF THE DISCRIMINANT, D(0.',s, t) C(u) a21 a22 a2l (6.5)

In this section the general form of the discriminant D
of the quadratic lt, Eq. (2.6), will be studied. The in-
formation obtained will be shown in Sec. 7 to be useful
in determining the absence (or existence) of turning
points in curves of singularities. The importance of
turning points is that sometimes they lead to complex
singularities in the physical sheet. Our main objective
is therefore to prove their absence under certain condi-
tions which will be described later.

The discriminant is defined by the transformation of
Eq. (2.6) to diagonal form,

1P=Q u (q' m'+2e) =P c,k "+—D(u, s,t). (6.1)

The 4-momentum q; in a typical internal line is a linear
function of the external momenta ps and the internal
momenta k, with coefficients 0, ~1. The coeKcients c,
are functions of the n, and are positive when all the n's
are positive. This follows from the fact that the left-
hand side of Eq. (6.1) excluding the mass terms is a
positive definite form in the internal-momentum vari-
ables. The transformed variables k on the right-hand
side of Eq. (6.1) are linear functions of the k; a,nd the
external momenta p, . The discriminant D can be ex-
pressed uniquely in terms of any pair of the invariant
energies s, t, st given by Eqs. (2.3) and (2.4). Its form

&21 ~22 822

Lenswu 6A

The discriminant D(u, s,t) is quadratic in each u;.
Choose the internal circuits for k, , and paths for the

external momenta so that a particular line, with mo-
mentum q1 say, has q&=k1. This is always possible for
diagrams with singularities depending on both s and t,
and we are not considering others here. Then we can
write

all ul+ $11 C C ulml )
2 (6.7)

where @11 and c' are independent of o.1, and no other

The coeKcient A,;(u) in Eq. (6.4) is the co-factor of
a, , in C(u).

The products b,b, in Eq. (6.4) involve either scalar
products of the external momenta or the squares of the
external masses. They can therefore be expressed in
terms of s, 3, and the squares of external masses, giving

D(u, s, t) =s "(u)+tg(u) —E(u m). (6.6)

Each term in Eq. (6.6) is homogeneous in the u and of
degree (1+1), where / is the number of internal-
momentum variables k;.
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-q
Hence we have

2qq'= t—-,'(gM, ') ——,'s. (6.13)

FIG. 6, Choice of
4-momenta in study-
ing the general form
of the discriminant.

term in Eq. (6.3) contains ni. This proves D(n, s, t) is

quadratic in o, &, and since this line was arbitrarily chosen,
Lemma 6A follows.

From Eq. (6.7) we also obtain Lemma 6B.

Lemma 68

The term in D(n, s, t) which is independent of s and t

has the form

This equation shows that we can identify the coefficient
of t from the coefficient of 2qq' in formula (6.6) for D.
The 4-momenta q and q' occur only in the quantities b;
in D. [q' and P also occur in c but can be eliminated by
Eq. (6.10) in terms of s given by Eq. (6.12).j From
Fig. 6 we see that if o.; multiplies q it does not multiply
q. This is a consequence of our construction in Fig. 6,
where the lines carrying q and q' do not have any in-
ternal line in common. If there was an internal line in
common, qq' would apparently involve a coefFicient e~'
from that line. However from Lemma 6C, t and there-
fore qq' must only have coeKcients linear in 0.&, there-
fore this n~' term must cancel with another. For this
reason we shall restrict the q and q' lines to have no
internal line in common.

E{a,m) =P n, 'mPE;(n) —P n,m E,'(n)

4—Q E"(o.)M' (6.8)
j=1

in which m, denotes an internal mass, and 3f; an ex-
ternal mass. The coefficients E,(o.), E,'(n), and E,"(a)
are sums (or differences) of products of the n in which
no e& occurs more than once. They are homogeneous of
order (t 1), t, an—d (3+1), respectively. Similarly we
obtain Lemma 6C.

Le'rma 6C

The coefficients f(n) and g(n) of s and t in D(n, s, t)
are each the sums (or difference) of products linear in
each n and of order ((+1).

Further information about. the association of diferent
n; in y" and g can be obtained by a particular choice of
variables. This is illustrated in Fig. 6. The internal
variables are chosen so that the external momenta ap-
pear only in the lines shown in the diagram. The re-
maining internal lines are not shown, though the fact
that there may be junctions with the lines carrying
external momenta, across the diagram is indicated. In
each of the lines shown the external variables are com-
bined linearly with the internal variables. The points
of entry (or leading intersections) of the external lines
with the diagram are marked A, 8, C, and D.

Using mass shell conditions and definitions [Eq.
(2.3)], we obtain

Lemma 6E

The coefficient g(n) of t in D(n, m, s, t) is a sum of
products of n. Each product contains one e, from each
independent q line in the diagram. A q line is one of any
pair carrying the 4-momentum whose square is equal
to t.

It should be noted that there may be cancellation of
some terms so that Lemma 6E does not mean that
every o,; from each independent q line must occur in

g(n) This cance.llation will be considered further after
considering the relation of the form of D to the form of
the curves of singularities.

The form of f(n) can be studied in a similar manner

by interchanging the external vectors in Fig. 6. This is
necessary since, with the labeling of Fig. 6, the quantity
s occurs not only in products p', but also in q', q", and
qq', so that there is in general a lot of cancellation. Re-
labeling Fig. 6, we take now

This gives

pa= p+q~ pb= p

P~= P 5 P&= P+q

(6.14a)

(6.14b)

~= (p.+p~)'= (p+P')'=2PP'+2t+Z M2' (613)

Lemma 6D

Each o,; in the q line of Fig. 6 must be associated with
an n; in the q' line, in the product (q. q')n;u; . .. This
result holds for every independent pair of q, q' lines,
and gives Lemma 6E.

(p+q)'=M ', (p —q)'=My',

p2+q2 —i (M 2+M 2) p2+qf2 —i. (M 2+M 2)

2pq=-'(M '—Mg') 2pq'=-,'(M '—M ')
and

s=4p', t= (q+q')', n=- (q
—q')'.

(6.9)

(6.10)

(6.11)

(6.12)

The coefficient of s in D, namely j'(u), can now be identi-
fied from the p and p' lines which connect A to D and
8 to C, respectively, in Fig. 6.

We shall also require the form of D when expressed
in terms of u, s, or in terms of t and u. This may be
obtained in two ways and the fact that both must give
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the same answer gives further information about D.
The first way is obtained from Eq. (2.4),

d

t=Q M' s—u— (6.16)

Thus the coefficient of u in D(n, u, s) is given by the co-
efficient of (—2qq'). This is simply —g(n), as we had
already obtained by means of the transformation Eq.
(6.16) for Eq. (6.6) to Eq. (6.17). However new in-
formation will be obtained if we consider the coe%cient
of s ln

D(n, u, s),

h(n) =f(n) —g(n).

We must now choose variables in Fig. 6 so that

(6.20)

P~=p+5 Pb=p

P = P+n Pd= P'— —
(6.21a)

(6.21b)

Then the coefficient of s in D(n, u, s) is the coeflicient of
2pp' in the expression (6.3) for D. Hence h(n) is a sum
of products of the n variables. Each product contains
one n; from each line joining A to C, and one from each
line joining 8 to D. As before, not every n; from these
lines will occur as some may cancel. From Eq. (6.20)
we see that every product term in f(n) which does not.
contain an n; from each A to C line and each 8 to D
line, must also occur in g(n) with the same coe%cient
and the same sign.

Examples of these general properties will be given in
Sec. 8, and they will be further utilized in Sec. 9. We
will consider next in more detail the terms in D(n, s, t)
which is independent of s and t. It is convenient now
to restrict all external masses to have the same value

Then Eq. (6.6) gives

D(n, u, s) =u( —g(n) }+s{f(n) —g(n) }
K—(n m) g—(n) g M'. (6.17)

Similarly, we obtain

D(n t u) = t(g(n) —f(n) }+u(—f(n) }
—E(n,m) —f(n) P MP. (6.18)

It should be noted that the convention of Mandelstam
has been adopted in the notation of Eqs. (6.6), (6.17),
and (6.18).' The form of the function D depends on the
variables in the bracket; thus D(n, u, s) has not the
same form as D(n, s, t) but is related to it by Eq. (6.16).
When s, t, and u satisfy Eq. (6.16) the numerical values
of the expressions in Eqs. (6.6), (6.17), and (6.18) are
the same.

The second method of obtaining Eq. (6.17) is to
study the form of D(n, u,s) in terms of n products by
using diagrams similar to I'"ig. 6. From Fig. 6 itself we
obtain

d

u= (P.+P.)'= (q
—q')'= —2qq'+-', s+-,' p Mt2. (6.19)

M. Then from Eq. (6.6), we have

E(n,m) = —D(n, s=0, t=0). (6.22)

This can be evaluated, in princip)e, with the labeling
used in Fig. 6 and p=0, q= —q', giving

P~= Pb=p~= P&= A (6.23)

(6.24)

This form is consistent with Eq. (6.8), and from Lemma
68, Ei(n) and E2(n) are each homogeneous in the n
and linear in each o,

We can obtain Ei(n) by putting all internal masses
m, equal to zero; and E&(n) by taking all external
masses to be zero. Take first

ns;=0, i=1, 2

Then M'Ei(n) is the discriminant of

fi=Z nigF)

where, from Eq. (6.23),

and
e,=0 or &1, e;,=0 or ~1.

(6.27)

(6.28)

(6.29)

Each q; contains at least one internal momentum, and
some contain also the external momentum q. In the
discriminant M'Ei(n), the 4-momentum q will occur
only in the form q'=3P. Hence in considering properties
of the discriminant rather than the quadratic form we
can replace the 4-momenta k, by scalars x; and the
external 4-momentum q by M. This gives, instead of
Eq. (6.27),

P2
——P n, (Q (egx,+e;M)}'. (6.30)

When the n s are all positive, f2 is a positive definite
quadratic in the x; and must therefore have a positive
discriminant. Hence we have

Ei(n) &0 when n;) 0, i= 1, 2, ,n. (6.31)

A similar condition can be obtained for E2(n) by
taking

m, /0, M=0. (6.32)

Then Q n,m, 2K2(n) is the discriminant of

P3=2 n'(Z e;t&~)'+Z n,m, 2. (6.33)

and E2(n) is the discriminant of

A=K n*(Z e',~;)'. (6.34)

Since the internal masses occur only in the combination

Q n,m, 2, and the external momenta satisfy Eq. (6.23)
and Eq. (6.24), we can write E(n,m) in the form

E(n,m) =P n m, 2E2 (n) —M'Ei(n). (6.25)
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This is positive when the o. s are positive, and hence we
have

E2(a))0 when a,)0, i= 1, 2, ,tt. (6.35)

We consider next the relative magnitude of the two
terms on the right-hand side of Eq. (6.25). The masses
will now be restricted so as to include the general re-
duced diagram arising for equal-mass interactions. The
unreduced diagrams have equal masses m in every
internal line, and the external lines each have mass m.
The reduced diagrams may have larger masses than m

by a factor of an integer &1; their external masses are
unchanged. We therefore assume that P4 ——aixP+ P a,(P e;,x;)'.

i)2
(6.46)

Theorem 6A

The discriminant D(a,s, t) for any reduced or un-
reduced diagram in an equal-mass system, evaluated
at the point s=t=0, is always negative when all e's
are positive.

We consider next the values of the derivatives of
E(a,m) with repsect to a;, i= 1, . ,m. First we note
that E2(a), [or C(a)), is linear in each a,, and it is the
discriminant of Eq. (6.34). By a suitable choice of the
interns, l momenta, Eq. (6.34) becomes

(6.36)M&m s—1) 2 ~

The coefficient of ai in E~(a) is the discriminant of
The discriminant M Ei(a) of P2 in Eq. (6.30) is a Pi when xi=0 and is positive when the a are positive.
determinant of the form, Hence we have

g - 0 ~ ~'v

C

(6.37) E2(a))0, when a;)0, j=1, , I (6..47)

in which e;,=a;;, and for all o,;&0 we have

(6.38)

where C(a) is defined in Eq. (6.6). The b,' in expression
(6.37) is a special value of the b; in Eq. (6.4).

Expression (6.37) gives

3PEi (a) =c'C (a) Qb, 'b,'A;, , —
217

(6.39)

Hence, from Eq. (6.39), we have

(6.40)

where A;; is the co-factor of a;; in the determinant (a,,).
The second term in. Eq. (6.39) has a discriminant

From Eqs. (6.25), (6.39), (6.42), and (6.43), we can
write

E(a,m) =P a,m,2E2(a) —P a, (e,fM)'Eg(a)

+Q Aeb,h, (6.48)

=Q a;(mP —e 2M')E2(a)+Q A,,b,b, . (6.49)

We have shown already that the first term on the right
of Eq. (6.49) is positive [see Eqs. (6.35) and (6.44)j,
and increases with each a, [Eq. (6.47)j. The second
term is positive [see Eq. (6.40)]. In order to study the
derivative of this term we note that M2E, (a) given by
Eq. (6.39) is the discriminant of P2 given by Eq. (6.30).
We can choose the internal momenta and the path of
the external momenta of Eq. (6.23) through the dia-
gram so that we have

M'Ei(a) &c'C(a) when. a,)0, i = i, ,l. (6.41)

From Eq. (6.30) and expression (6.37), we obtain

P2 aixP+——Q a, (P e;,x,+e;M)'
2)2 j

(6.50)

c'= Q a, (e,M)'.
2=1

The discriminant of f& is of the form Eq. (6.39) in
which is clear from Eq. (6.50) that the b; will not de-
pend on ai. Hence the derivative,

From expression (6.5) and Eq. (6.33), we obtain

E2(a) =C(a). (6.43)

—Q A,,b,b, ,
80.'1 2 ~

(6.51)

From the definition of e,, and restriction (636) on the
masses, when all n,; are positive we have

will be the discriminant of the quadratic form

P a,(P e,,x;)',
$)2

(6.52)

Q a;(e;M)' &Q a,M'& Q a,mP. (6 44)
in which x, is put equal to zero. This is positive definite
when the a's are positive, and we obtain for a positive

using the definition in Eq. (6.25), we obtain (since ai was chosen arbitrarily)

E(a,m))0, for a,&0, i=1, ,n.

'Pje state this result. as a theorem,

(6.45)
,,A, b)be,

BQtf,

(6.53)
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Since both terms on the right-hand side of Eq. (6.49) zero along the curve of Eq. (7.2). Hence we have
increase with n;, we obtain Theorem 68.

dD(n, s, t)
0=

Theorem 6B

The discriminant D(n, s, t) for any reduced or unre-
duced diagram in an equal-mass system, evaluated at
the point $=t=0, is a negative and decreasing function
of each n;, when all the n's are positive.

In terms of X(n,nt), this gives for n,)0, j= 1, ,n,

(6.54)

The next section will describe the determination of
some general characteristics of the curves of singulari-
ties from the discriminant D. Some of the properties
of D obtained in this section will be illustrated in
applications in Sec. 8, and used further in discussing
the general term in the perturbation series in Sec. 9.

BD(n, s, t)/Bn, =0, i = 1, ,n, (7.1)

where D(n, s, t) is the discrirninant for a fully reduced
diagram. Since these equations are homogeneous in n,
they lead to a condition on $ and t which is the equa-
tion of the curve of singularities, say

t= t(s). (7 2)

When Kq. (7.2) is satisfied, the actual values of the n

at a singular point are obtained by solving Kq. (7.1)
together with

(7.3)

These give each o., as a function of $:

n, =n;(s), i= i, ,n. (7 4)

Since D is homogeneous and of order / in the o., we have

BD(n, s, t)
g n,— = tD(n, s,t).

Bn;
(7.5)

Thus Kq. (7.4) gives a fun. ction D[n(s), s,t) which is

V. SINGULARITIES AND THE DISCRIMINANT

(A) Turning Points in Curves of Singularities

A turning point in a curve of singularities is defined
as a point where the tangent to the curve is parallel to
one of the coordinate axes, $, t, or N. Their importance
is due to their connection with complex singularities in
the physical sheet. This will be described later in this
section [Part (E)].

The curves of singularities are obtained in principle
by solving the equations

BD(n, s,t) BD(n, s, t) dt BD(n,s, t) dn;
+ —+2 (7 6)

8$ d$ ~ & 8n; d$

Hence along the curve of singularities, we have

«/ds= f(n)/g—(n).

This leads to Theorem 7A.

(7.8)

Theorem 7'A

If a curve of singularities has a tangent, t= constant,
in the $, t, plane, then the coefficient of $ in the dis-
criminant D(n, s, t) must vanish at the point of tangency,

BD(n,s, t)/Bs =f(n) =0. (7.9)

This theorem applies to the general-mass case.
The point of tangency will be called a "turning

point. " Theorem 7A has a similar form for turning
points $= constant in the $, t plane, and analogs for
turning points in N.

There are two distinct ways in which the turning-
point theorem 7A may be satisfied. These will be called
"anomalous turning points, " and "spurious turning
points. " The former are so called because they are
always associated with anomalous thresholds. The
latter are not associated with any thresholds at all. It
is important to distinguish between these two types of
turning point.

(8) Anomalous Turning Points

These will occur if, along a curve of singularities
I'(s, t) in the real s, t plane in the physical sheet, f(n)
becomes zero because sufFicient C singularities become
also E singularities. From Lemma 6E this requires at
least that all the n; in f(n) which are associated with a
particular p or p' line (in the sense of Lemma 6D)
become zero at the turning point. Let us assume there
is such a turning point. Then when this set of n, is zero
(denoted by n'), we will have

D(n", n'= 0, s, t) = tg(n") —E(nt, n"), (7.10)

where n" denotes those n's which are not included in n'.
Since the turning point is on P (s,t), the right-hand side
of Eq. (7.10) will satisfy the Landau conditions with all
the o.

"giving C singularities. But this expression is the
discriminant for a reduced diagram that depends only
on t. Hence it gives a line of singularities which is in

The last term in Eq. (7.6) is zero on the curve, from
Eq. (7.1), and D(n, s, t) has the form from Eq. (6.6),

D(n, s, t) =sf(n)+tg(n) K(n,—nt). (7.7)
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the physical sheet if the turning point is in the physical
sheet. Clearly at the turning point the line of singu-
larities is tangent to P(s, t).

We know that in the general-mass case, the diagrams
whose singularities depend only on t must, when fully
reduced, have the momentum (q+q') passing through
a single vertex somewhere in the diagram. It must
therefore reduce to a vertex part or chain of these parts
at least (possibly of course to self-energy parts). This
permits us to extend Lemma 6E, giving Lemma 7A.

Lemma 7A

The coefficient f(n) in D(n, s, t) is a sum of products
of o.. Each product contains one e; from each independ-
ent "s-path" in the diagram. An s-path is any con-
nected set of lines which when reduced to a point gives
a reduced diagram depending only on t.

No o., occurs more than once in any product. The
sum of momenta in all independent s paths is (p,+pb)
Similar lemmas hold for g(n) and t paths, and h(n) and
I paths.

From theorem 7A and Lemma 7A we obtain Lemma
78.

Lemma 78
If a curve of singularities in the physical sheet has a

turning point with tangent parallel to the s axis where
the e in just one s-path becomes zero, the curve changes
from the physical sheet to a nonphysical sheet at the
point of tangency.

This lemma follows from the fact that f(a) is an odd

fuoction of those values of n which are zero at the
turning point, and f(n) changes sign since (dh/ds)

changes sign. Hence, some o. values become negative,
which means we have a nonphysical branch on one side

of the turning point.

(C) Tangency at Normal Threshoids

In the equal-mass case, there are no anomalous
thresholds in the physical sheet. Hence the only lines

of singularities at which a curve may have a turning

point are the normal thresholds. At a normal threshold,
(=constant, all the e, in f(n) become zero except those

(if any) which are in the self-energy part of g(n). It
can be verified in any example that this causes f(n) to
go to zero faster than the right-hand side of Eq. (7.10)
(a self-energy part now), in the neighborhood of the
normal threshoM. Hence s must tend. to infinity at the
point of tangency. This will also be true for normal
thresholds in the general mass case.

Lemma 7C

Tangency at normal thresholds occurs only asymp-
totically.

(D) Spurious Turning Points

When there is a sufficient degree of symmetry be-
tween s and I paths, it will be possible to have

f(n) =0, (7.11)

without any of the n's becoming zero. This leads to a
turning point which, since it involves no E singularities,
is not associated with a line of singularities 3=constant.
An example of such a turning point is given by curve
(c) in Fig. 4 in the region u) 0, s)0. The factor which
become zero at this point is given in Sec. 8, example (d).
When Eq. (7.11) holds, the expression (6.17) has the
form

du/ds= —1. {7.13)

Any curve of singularities of the normal form in the
u&0, s&0, spectral region will at some point satisfy
Eq. (7.13), and will have a tangent line t=constant.
This line does not give a. threshold value. These spurious
turning points in t for t &0 occur in fourth-order per-
turbation theory and do not prevent the proof of the
Mandelstam representation in that order. We will
consider later their implications for higher-order terms
(Sec. 10).

A more dangerous possibility is the occurrence of a
spurious turning point at /=constant&0. These will be
considered in some specific examples in Sec. 8 and will
be proved not to occur. They will be considered in
Sec. 9 for the general term in the equal-mass case and
an argument for their absence will be given, but not a
proof. The particular danger from them will be indi-
cated in Part (E) of this section.

(E) Turning Points and Complex Singularities

A general diagram has the discriminant, Eq. (6.6),

D(n, s, t) = sf(n)+tg(n) K(a,m). (7—.14)

The path of integration over the variables n in Eq.
(2.7) is from 0 to 1 along the real axis, unless analytic
continuation forces a distortion of the path of integra-
tion. We consider the circumstances in which s can
become complex with a small imaginary part while I,

remains real. We take

s =s]+zs2~ (713)

and let s~ be small enough to consider first-order terms
only, but large compared with any imaginary parts of
K coming from (m' be) Then —if D .remains zero, and
the amplitude singular, when s becomes complex while
t and o. remain real, we must have

j(n) =0. (7.16)

D(~ N, s) =~{—g(~)}+s(—g(~) }
—K(n, m) —g(n) P M'. (7.12)

Theo we can write
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This result can also be obtained by considering the
intersection of the two-dimensional surface Z(s, t), in
the four-dimensional space (s and t complex) with the
curve I'(s, t) for which s and t are real. ' Both Z and I'
satisfy the equation

4 27

(a)

t= t(s). (7.17)

The derivative (dt/ds) is independent of the direction
of differentiation, and hence if t remains real on Z(s, t)
near I'(s, t), we must have (b) 5 (c)

dt/ds= 0.

Theorem 78

(7 18)

Singularities on curves in the real part of the physical
sheet do not extend into the complex part of this sheet
(one variable real) except at turning points.

It is not always the case that turning points lead to
complex singularities in the physical sheet. For example
in fourth order for one type of anomalous threshold,
the turning points do not lead to complex singularities
in the physical sheet, but for another type they do.
Evidently in the former case the C singularities, which
become also E singularities, fall oG the contour of
integration as s goes complex. In the latter they drag
the contour with them.

The absence of anomalous turning points in the
physical sheet excludes the possibility of one type of
complex singularity. We have therefore to consider
those from spurious turning points, and also to con-
sider the possibility of complex singularities that are
not connected to any singular curve in the real part
of the physical sheet. These will be discussed further in
Sec. 10.

5 7
(d)

Flo. 7. Diagrams studied in worked examples. The numbers indi-
cate labeling by Feynman parameters nl, n2, ~, +10.

If we write p'=s, the discriminant is

n n Ql ~ ~ ~+

D(n, s) =n2422 42 s—Q n, m;2 P (8.2)

The coeKcient of s gives a simple illustration of
Lemma 6E.

From Eq. (8.2) we obtain
n

D(42,s) (42i422. . n„(s—(p m;)2) (8.3)
l

for n;&O, i=1, m. It is clear that for

s((P m;)', we have D(0. (8.4)

When s is greater than (P m;)' there is a region in n
space in which D is positive. Hence there is a singularity
of the amplitude at

8. APPLICATIONS AND EXAMPLES
s=s, = (P m;)'.

1
(8 5)

In this section the general theory is illustrated by
examples that are selected so as to bring out a number
of features characteristic of more general diagrams.

(A) Normal Thresholds

A generalized self-energy part, with m lines joining
two vertices, has an integrand giving, under trans-
formation to Feynman variables, a denominator

n—1

g =42&(k,—P)2++ n;(k, k;~2)2+n„k„'—Pn, m, 2 (8.—1).

This is the normal threshold above which production of
particles with masses ml, no~, m is allowed.

I

(B) Simple Ladder Diagrams

These are ladder diagrams which do not contain any
crossed lines. Label the lines as in Fig. 7(a), giving

p=n2(k2+ p)2+n4(k2 —k2)2+u2(k3 —k2)'+
+422(kl+q) +423(k2+q) + ' '

+423 (kl q') +2(4k223—q')'+ . —p n,m '2. (8.6)
l

The discriminant is

D(42,s,t) =

422+422+423+424
—

CX4

0

&2p+c42q 423q

—Q'4

424+~3+423+422

nqq —n6q

Q7

422+

422p+a2q —
423q

a;5q —noq

(8.7)

From Eq. (6.14), we have

s=2qq'+ ', t+ ,'Q M,2, -- (8.8)

and

4p2 (8 9)
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The coefIicient of t in Eq. (8.7) is simply evaluated by
Lemma 7A, which gives, in the notation of Eq. (6.5),

g(n) = nia4ni ' ' 'n3 +i. (8.10)

s= s„when 0.3;+~
——0,

for some values of j, or at

(8.14)

The coefficient of s is the coe%cient of 2qq' in Eq. (8.7).
This gives

J (a) =n2n8d23+asnsd56+ ' ' '
I (8.11)

where d~~, d~6, are positive when the o.'s are posi-
tive, and

d23= Q (4,5,6,7) (7,8,9,10)(10,11,12,13). . (8.12)

Each term in the sum is a product n,o.;n& - i/ j, i/k,
j4k, , with i taken from the first bracket, j from
the second bracket, etc.

Since both f(n) and g(n) are positive when the a' s
are positive, we obtain the result: if a fully reduced
simple ladder diagram has a curve of singularities in
the physical sheet, then along the curve we have

dt/ds(0 when n;)0, i=1, 2, 3, . . . (8.13)

From this result and Theorem 7A, we obtain Lemma SA.

Lemma h'A

Curves of singularities in the physical sheet and corre-
sponding to simple ladder diagrams do not have turning
points except possibly at end-point singularities.

End-point singularities may occur at

For our present purpose we need only know that the
curves of singularities in the physical sheet have certain
characteristics if they exist. It is therefore not necessary
to consider the form of IC(m, n) in general. For the equal-
mass case a fully reduced diagram which may be ex-
pected to have a curve of singularities is shown in Fig.
7(b). Like all diagrams in this class its discriminant is
derived from Eq. (8.7) by taking some of n» and n»+2
to be zero. Since g(n) and f (n) remain positive when the
other n's are positive, condition (8.13) still applies,
with 0,; now referring only to the nooreduced lines of
the diagram. The fact that there are no anomalous lines
of singularities means that dt/ds becomes zero or in-
finite only asymptotically. The asymptotes for the
curve from Fig. 7(b) will be

s=9m', t= (7m)'. (8.17)

E(m&n) =—16m a in 2n3n4

(D) The Symmetric Crossed Diagram

This diagram is shown in Fig. 3(c). It is obtained
from an eighth-order diagram with some reduced lines.
It leads to a discriminant

D (a,s, t) =4n,n, (ngn6 —n2n4) s

+4nga4(nga6 nina)t —E(n,m—) (8.18).

The parameters n~, n~, ,o6 correspond to lines
a, b, ,f in Fig. 3 diagram (c) taken in the same order.

Kith external masses m and internal masses m~, we
have

t=t„when a3, ——0 and (or) n3;+2
——0 (8.15) +4 P n,n, ni, gn&mP. (8.19)

s=4m', t= (em)', (8.16)

and the curve has negative slope everywhere in the
physical sheet. More generally, if the diagram has been
reduced, these asymptotes will involve higher integer
multiples of m.

(C) Partly Reduced Ladder Diagrams

For many of these diagrams there will be no curve of
singularities in the physical sheet; an example is given
by diagram (d) in Fig. 3 which was discussed in Sec. 5.

for all values of j. These singularities will occur only
for particular values of the masses. It is clear from Sec. 5
that the only singularities in the physical sheet have
s)0 and t)0. This could also be proved by explicit
consideration of E(n,m) given by Eq. (8.7), or by the
method of Sec. 9(b).

For equal internal and external masses, in the original
unreduced diagrams, it has been shown (see the corol-
lary to Theorem 5A) that the only lines of singularities
in the physical sheet are given by normal thresholds.
For these, we have either all a»+i ——0 in Eq. (8.14), or
all na; and n»+&

——0 in Eq. (8.15). These give the
asymptotes

s)0 and 3)0, (8.22)

AgX6) 0!g&4.

Similarly, when Eq. (8.22) holds, we have

0;5n6) nyn3.

(8.23)

(8.24)

Hence, along the curve of singularities in the region of
the physical sheet given by Eq. (8.22), we have

dt/ds = —f(n)/g (n) (0, (8.25)

For mi) m, we have, from Eq. (8.19) or from Theorems
6A and 68,

E(m,n) )0, and BE(m,n)/Bn, )0, for n,)0 (8.20.)

This condition is satisfied for all diagrams of type (c)
in Fig. 3, which are formed by reducing higher-order
diagrams in the equal-mass case.

Now Eq. (7.1) holds on a curve of singularities and
we have

BD/Bni= 4n3(nqn6 n2n4)s 4aga—4n3t BE—/Bn i (8—.21).
From Eqs. (8.20), (8.21), and (7.1), for n) 0 and
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where f(n) and g(n) are the coefFicients of s and t in
Eq. (8.18).

The result Eq. (8.25) proves that in the region given
by Eq. (8.22) the only turning points are at E singu-
larities. But the only E singularities are given by normal
thresholds for the equal-mass case, and these are
asymptotes. Applying similar arguments to the regions
N&0, s&0 and t&0, u&0, we obtain the curve ofsingu-
larities having the three branches marked (c) in Fig. 4.

At the turning point (dt/ds)=0 in the region t&0,
the curve of singularities connects to a surface of
singularities on which for t real s becomes complex.
However, this is a feature also of the fourth-order
diagram in which the internal lines are crossed when s
and t are positive and t negative. In this region the
double-dispersion relation is obtained by working in
terms of variables s and I and not s and t. Then the
diagram (c) of Fig. 3 has

Hence the only turning points in this region must occur
at E singularities if any. But from Secs. 3 and 4 there
are no such E singularities. Hence we have

dt/ds&0, for s)0 and t) 0 (8.34)

in the physical sheet.
A similar result can be proved for the region s&0,

N&0 in which we have

D8a=s{Q2Q3,(Q4+Q5+Q6+Q7)+Q3Q4Q6+Q2Q5nl G1Q6Q7}

+u{ni(n4n5 —n6Q7) }—E,„(n,m). (8.35)

However in the region t&0, u&0, we have

D4~= t{nin6Q7 Q3Q4Q6 Q2Q5Q7 Q2Q3(Q4+Q5+Q6+Q7) }
+u{nln4Q5 Q3Q4Q6 Q2Q5Q7 Q2Q3(Q4+Q5+Q6+Q7) }

—E4„(a,m). (8.36)
We obtain

du/ds &0

along the singular curve, since in this region we have

(8.26) BD4~/BQ3= (u+t){Q4Q6+Q2(Q4+Q5+Q6+Q7)}
BE4„/—Bn3. (8.37)

and
nyn3& nbn6,

nqn3& n2n4.

(8 27a) This is clearly negative for u) 0, t)0, and n) 0. Hence
there are no singularities in the physical sheet in this

(8 27b) region.

For a general diagram it is still necessary to show that
singularities in all three spectral regions from one dia-
gram do not prevent application of Cauchy's theorem.
This problem will not be considered further here.

(E) Crossed Rungs in a Ladder Diagram

A simple example in which only a single pair of rungs
is crossed is shown in Fig. 7 diagram (c). The discrimi-
nant is

D(n, s, t)
= s{Q2G3(Q4+Q5+Q6+Q7)+Q3Q4Q6+Q2Q5Q7 Qin4Q5}

+t{ni(n6n7 —n4n5) }—E,4(n, m), (8.28)

D(n, s=0, t =0)= —E„(n,m) &0. (8.38)
'A similar result holds when we put N=O, t=0, in

D(n, u, t) = (4m' —t—u) f(n)+tg(Q) —E,4(n, m). (8.39)

Hence, we have

4m'f (n) —E,4(n, m) &0. (8.40)

From Eqs. (8.38) and (8.40), for 0&u&4m2, we can
write

(F) The Euclidean Region

From Theorem 6A, for a general diagram, with n&0,
we can write

where E„(n,m) is written with the suffixes s, t to denote
the form of D with which it is associated. From Eq.
(8.28) and Theorem 68, we see that

(4m' —u)f(n) —E,4(n,m) &0.

Similarly for 0(/&4'', we have

(8.41)

BD(Q s t)/Bni= 0 (8.29)
tg(n) —E., (a,m) &0. (8.42)

which gives

s(n4Q5)+t(a6a; —n4Q5) BE,4/Bni —0, (8—.30)——

leads to the inequality

n6n7 —n4Q5)0, for s)0, t) 0, and a) 0. (8.31)

Similarly, by diGerentiating with respect to n4, we

deduce

+n2Q3Q3nQ,6n5)0, for s)0, t)0, and a)0. (8.32)

Writing s for (4m' —u) in Eq. (8.41) and combining
Eqs. (8.41) and (8.42), we obtain

D(a,s,t) =sf(n)+tg(n) —E,4(a,m) &0, (8.43)

provided that
0&s+t&4m'.

This gives an independent derivation of the result of
Sec. 4, namely, Lemma SB.

Inequalities (8.31) and (8.32) show that for s)0, t)0,
g,nd n)0, we have

f(a))0 and g(G)) 0.

L,emma 8'8

For the equal-mass case, there are no singularities in
(8.33) the Euclidean region of the physical sheet.
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g(u) —(u9u4 u1u2) (u9um u7u8))

and

(8.46)

—E(779,u) (0, fOr u) 0. (8.47)

The asymptotes of the curve of singularities (assum-
ing the curve to have a branch on the physical sheet-
if it does not the diagram can be ignored) will be given,
in the equal-mass case, by

{6) The Double-Crossed Ladder Diagram

This diagram is illustrated in Fig. 7(d). It can either
be eighth-order with all masses equal or a higher-order
reduced diagram with internal masses larger than the
external masses. The discriminant is quite a lengthy
expression, but in order to study it not every term is
required. Either by direct evaluation, or using the
methods of Sec. 6, we obtain in D(u, $,t)

f(u) = (posltlve tel ms) u1u2ugum u9u4u7uS (8.45)

Q&Q4QgQ1p. From the symmetry of the diagram, the two
factors in g(u) will be equal on the curve of singu-
larities, and hence g(u) is positive.

Although f(u) is positive on the curve near $=$„ it
is not immediately evident that it cannot become nega-
tive elsewhere. However by the symmetry of the dia-
gram on the curve of singularities, we must have

Q2 Q7 —Qs Q3 =Q4= Qg =Q1p,
' and Q&

——Q6. The nega-
tive terms in Eq. (8.45) then cancel with two of the
positive terms, for example with Q&QgQ1Q8 and Q4Q]pQ2Q7,

We conclude that both f(u) and g{u) are positive on
the curve of singularities in the region s)0, t)0 of the
physical sheet. Hence there are no spurious turning
points in this spectral region. The other spectral resions
can be examined similarly.

9. THE GENERAL TERM FOR EQUAL-MASS
INTERACTIONS

(A) A Simplification Formula

arid
s= s,=4' 7

t= t,= 16m2.

(8.48)

(8.49)

Any diagram whose singularities depend on both s
and t can be labeled so that the quadratic in the 4-
momenta has the form

Near s=s„only Qs and Q6 are appreciably different
from zero; near t= t, only Q3, Q4, o5, and Q6 appreciably
differ from zero. Near $=$„f(u) will be of second order
in the small u, , g(u) will be fourth-order, and E(777,u)
will be second-order. Near t= t„ f(u) will be of second
order in the small f;, and g(u) and E(779,u) will be inde-
pendent of them.

We see that near $=$„f(u) will be dominated by the
positive term containing Q5Q6 as a factor. It is clearly
positive, as indeed it must be if the amplitude is to be
singular on the asymptote. Near t=t„ it is also clear
that g(u) is positive, since it is dominated by the terms

tt =u1k79+ p u;7t79 —Q u, 779t9.

j =2 j)1
Here (as in Sec. 6), we have

(9.1)

g;=P e;,k,+P e;7'P7,
5=2

(9.2)

with e,, appropriately chosen as 0, ~1 for the internal
circuits, and e, ~' similarly chosen for the external mo-
menta. The discriminant from Eq. (9.1) is

,x Z (., )';j)2
P e;7e;~,

D(u, $,t) = 7(2

P e;7e;9u;
j&2
2 (e79)'u'

j&2

~ . P e;7e;4 u;p4
j&2

(9.3)

P e;1e;7'u;p;
j)2

=$f(u)+tg(u) E(u,7N)—

~ —Q u,et9
j&1

(9.4)

Since Q1 occurs only in the erst row, erst column, and
in the last term of the last row, last column, D can
readily be differentiated with respect to Q1. This gives

BD(u&$~t)/Bu1= D(u&S, t
~ u1 )

—u1m79E(u; u1 ') —m19E9(u). (9.5)

The notation Q1 ' indicates that the line labeled Q1 is
to be removed before evaluating the expression con-
cerned. The removal may leave another line previously
internal as part of the external line; in such a case the
line plays no part in the diagram and its label is re-
dundant. The removal may alternatively leave two

lines as part of the same internal line when they were
previously distinct. In this case the parameters must
be added and both retained. The line u1 in Eq. (9.1) can
be any line in the diagram.

From Eqs. (9.4) and (9.5) we see that

8f(u)/Bu;= f(u,u, '), -

Bg (u)/Bu, =f(u,u, '). —

(9.6)

(9.7)

819(u)/Bu;= h(u, u,—'). (9.8)

Expressing the discriminant as a function of t and I
(see Sec. 6), we obtain similarly
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Since f(n) is homogeneous in the n, of degree /, Eq.
(9.6) gives

1 Bf(n) 1
ni n~ni

8ni
(9 9)

Similar relations hold for g(n) and h(n).
The procedure of removing a given line from a dia-

gram will be called "simplification" of the diagram.
This is to distinguish it from "reduction' of the dia-

gram in which one or more lines are reduced to points.
Since we have shown that end-point singularities do
not lead to anomalous curves in the equal-mass case,
we are concerned now only with curves of singularities
for diagrams that are fully reduced and for which all
the parameters n are positive.

(8) Singularities Not in the Physical Sheet

From Theorem 68 and Eqs. (9.6) and (9.7) we obtain

BD(n,s, t) BE(n,212)

=sf(n n ')+tg(n n -') —— —, (9.10)

(C) Spurious Turning Points

For some diagrams, the result (9.9) is sufhcient to
prove that on a curve of singularities, with ni&0, we

have
f(n)) 0, and g(n)) 0, (9.12)

for s)0 and t&0. Ke require that every term in

f(n, n, ') shall be positive for positive n. This holds for
all simple ladder diagrams, and provides an alternative
method for obtaining the results of Sec. 8(B).

A more general situation has been illustrated by the
symmetric crossed diagram in Sec. 8(D). If the simpli-

fication procedure of removing one particular line leaves

the "dangerous factor" of f(n) in the term f(n,n; ')
and only the associated negative term in g(n, n, '); we

can deduce from

in which the last term is negative.
Since Eq. (9.10) must be zero on any curve of singu-

larities it is necessary that

sf(n, n; ')+tg(n, n; '))0, (9.11)

on the curve. Hence in order to show that there is no
curve of singularities in the physical sheet in the region
s)0, t) 0, it is sufhcient to show that, for n;) 0,

~ ~ 0 g

f(, ,-1)&O and g(n, n,-') &O, (9.11a)

for any one of the e possible simplified diagrams. This
is sufhcient to show, for example, that a ladder diagram
contributes to only one spectral region. It will show

similarly that some diagrams have no singularities

anywhere in the physical sheet Dor example diagram

(d) of Fig. 3].

that for s)0, t&0 we have

f(n,n, '))0. (9.14)

n1 n2 ' ' nl--1 {nln2s+n2n4t}, (9»)

This shows that the dangerous factor in f(n) is positive.
With a little ingenuity this method appears to apply to
all sixth- and eighth-order diagrams and could be used
to prove the absence of spurious turning points in the
"positive" spectral regions to this order. Spurious turn-
ing points will occur in the "negative" spectral regions.
For example a turning point in t(s) will occur for several
of these diagrams in the negative spectral region s&0,
t&.0 but not in the positive spectral region s)0, t&0
(nor in I)0, t) 0).

In the remainder of this section a "plausibility
argument" will be given for the absence of spurious
turning points in positive spectral regions for a general
term in perturbation theory. The unbelieving reader
may be able to devise a rigorous proof along the lines
indicated; he is also advised that a counter example will
invalidate the Mandelstam representation. The basis
of the argument is that the dominant terms in f(n) and
g(n) in the region s)0, t)0, are those associated with
the asymptotes. Since these asymptotes are normal
thresholds, the Feynman parameters in the dominant
terms must correspond to the lines in the generalized
self-energy parts that determine the asymptotes. The
other Feynman parameters tend to zero near the asymp-
tote. The Feynman parameters can be divided into
four classes for any given diagram:

(a) Those that do not tend to zero at either asymp-
tote. These will be denoted by n, , and they correspond
to lines that are in the generalized self-energy parts for
both asymptotes. An example is given by the pair
n2, n4 Of SeC. 8(D).

(b) Those that do not tend to zero near the asymp-
tote s=s„but do tend to zero near t=t, . We denote
these as p, . An example is the pair n1, n2 in Sec. 8(D).

(c) Those that tend to zero near s=s„but not near
t=t, . We denote these by p;. An example is n2, n4 in
Sec. 8(D).

(d) Those that tend to zero near both asymptotes.
We denote these as B,. An example is n4, n2 in Fig. 7(b),
example (E) of Sec. 8.

We seek to show that any pair of parameters giving
a negative term in f or in g can be associated with a pair
having the same coefficient but having a positive sign
and dominating the negative term. The coefficient of
any set of four lines 1, 2, 3, 4, can be determined by re-
peated application of the simplilcation formula (9.10).
If the removal from the diagram of a set of lines
a&, a2, ,a~ & leaves only the lines 1, 2, 3, 4 arranged as
in Fig. 8(a), then Eq. (9.10) shows that sf+tg will
contain a term

'

g(n, n; ') &0, — (9.13) (Note that the n, do not yet have the meaning indicated
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FIG, 8. Residual diagrams
obtained by repeated differ-
entiation of the general dis-
criminant.

(b)

(c)

in (a) above. ) By summing aU such terms we obtain

sj'+ fg+ 4324 {uiu3$+u2u43) . (9

sj +fg+c24 {(ulu3 u2u4)3 u2u4 ) (9.18)

These expressions are best obtained by first evaluating
the contributions to D(u, 24, 3) and D(u, s,24) of diagrams

(b) and (c), respectively, in Fig. 8 and then transform-
ing to D(u, s,t) as described in Sec. 6.

It should be noted that there is a lot of freedom of
choice in pairing negative terms with positive ones in

f and g. This is because most terms are positive [as
can be seen from part (B) of this sectionj if there is a
curve of singularities in the physical sheet for s& 0, t)0.
We now use the notation u, P, y, b as described above in
the paragraph preceding Eq. (9.15). An u line must be
dominantly associated with positive coefficients near
each asymptote, and will occur in combinations similar
to lines 2, and 4, in Eq. (9.17), or 1 and 3 in Eq. (9.18)
since only these lines in Fig. 8 can contribute to both
asymptotes. A P line may occur in combination of lines
1 and 3 of Eq. (9.16) or 1 and 3 in Eq. (9.17).The former
gives a positive term, so it need not be considered in
that arrangement of terms in D. The latter gives a
negative contribution to )' and also to g, and this
contribution does not tend to zero near s=s,. In g we
have the term from Eq. (9.17),

b24"3(u2u4 —M3), (9.19)

The symbol Q means "contains the term, " and a34i2

is the sum of products of parameters that have the
property of the' set in Eq. (9.15), namely that remova, l

of their lines leaves Fig. 8(a). Similar results are ob-
tained for those sets of lines whose removal leads to
Fig. 8(b) or to Fig. 8(c). Let b34" and c34" denote the
appropriate sums of products of parameters. Then we
have

sj+tgpb2433{ —ulu3s+ (u2u4 —uiu3)&), (9.17)
and

in which 524" is positive on the physical sheet. At the
asymptote 1=t„ the parameters pi and p3 are zero; at
the other asymptote they tend to equality and to
equality with 0.2 and o.4. Thus near one asymptote the
expression (9.19) is certainly positive, while it tends to
zero near the other asymptote. It is plausible that this
change takes place monotonically since it requires a
change from perpendicular to parallel 4-momenta in
the lines 2, 4 and 1, 3 in diagram (b) for Fig. 8. The
term (9.19) would then be positive. For many (but not
all) diagrams this can be proved directly by differentiat-
ing D(u, s, t) as in examples 8(d) and 8(e).

In addition to Eq. (9.19) which gives part of the
coefficient of t, we have a term b24 pl—p3s. However
the diagram must contain a positive term to balance
this, otherwise BD/Bpl would be negative. Therefore the
discriminant D can be rearranged so that plp3 is paired
with a different two lines from u2u4. Since p, and p3 con-
tribute to the asymptote s= s„ their product must have
a positive coe%cient near this line. Therefore we can
find a term such that

(l366 b24 )PlP3 (9.20)

is positive near the asymptote. Clearly the difference
between the lines in a56" and b~6" causes a twisting"
of the lines 1 and 3 so that their directions are reversed
when the "b-lines" are removed, but not when the
"a-lines" are removed. This can be achieved only if the
a-lines and b-lines contain a crossed pair. By fixing our
attention on this crossed pair instead of on pl/3, we can
obtain a term similar to Eq. (9.19) but now in f and
having the lines pl and p3 as coeKcients. Again this
term changes from a positive value to zero along the
curve, and it seems likely to be positive throughout the
range. Similar arrangements of products appear always
to be possible for any negative terms in y" and g coming
from y or 8 lines.

It should be noted that the difficulty in making the
above argument rigorous is associated with the occur-
rence of many positive terms in y". and g rather than with
the negative terms. If there is a minimal number of
positive terms as in example 8(d), the method of con-
sidering the first derivatives of D suffices to prove that
the negative terms can be adequately paired against
positive terms. AVhen there are many positive terms, it
is very plausible that they will more easily dominate
the dangerous negative terms, but it is not possible to
prove dominance in a single pairing. Instead one has
to use the multiple pairing described in the above
paragraphs.

10 FURTHER REQUIREME1VTS OF THE
MANDELSTAM REPRESENTATION

The Mandelstam representation' (denoted M.R.)
contains Born terms, single dispersion integrals, and
double dispersion integrals. Ke will be concerned only
with the latter and will indicate some of the assump-
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s+t+ zz = 4zzz', (10.2)

in the equal-mass case. The integrals in Eq. (10.1) are
over a part of the real s, t plane. Small positive imagi-

nary parts of s, t, u specify how the surface of integra-
tion passes the singularities of the integrands.

From Eq. (10.1), single dispersion relations can be
derived. For example, we have'

1 t."Ai(s, t')dt' 1 t."Az(s, zz')dzt'
A (s,t, zz) =—' +—' . (10.3)

m' ~4~2 Q —zt

The assumption of a real domain of integration has
the following consequences:

(1) A(s, t,zz) is analytic when s, t, zz are real except
(a) at points of discontinuity of A&(s, t') as a function
of s, or Az(s, m'), and similar points with respect to t

and to zz; or (b) on curves of discontinuity of A»(s, t)
as functions of s, t or A2z(t, u) or A;, ,(t,s).

(2) A (s,t,zz) is analytic when s is real and t complex
with 0(argt- 2m, and similarly for other pairs of
variables.

From these it follows that A(s, t,m) is analytic when

one of s, t, or u is real and the others are limited by
cuts in their complex planes from 4m'- along the real
axis to infinity. This region. is called the physical sheet.

We have shown for the equal-mass case that the only
singularities of A whose location depends on one vari-
able are given by normal thrcsholds. For s, t, u real,
the singularities lie on curves having normal thresholds
as asymptotes. For s real, none of the singular curves
for which t is real are connected to singularities for
which t is complex except possibly at spurious turning
points.

Let us consider a spurious turning point as a function
of t(s) but with t &0. In order to approach this spurious
turning point by analytic continuation we need to pass
the asymptotes s=s, and u=u, of the curve, which

tions which are implied by this form of integral repre-
sentation. We will then consider to what extent these
assumptions have been justified in perturbation theory
by the preceding sections, and will indicate some further
points that require study before the representation can
be proved.

The double dispersion integrals are

1 t t A»(s', t')
A (s,t,l) =—

I
ds'dt'

" (s—s')(t —t')

1 ( t
Azz(t', zt')

4 du
zrz~ ~ (t t ) (Q ——zz )

1 t. t. A, g(zz', s')
dzz'ds', (10.1)

zr'& & (zz —zt')(s —s')
where

themselves determine singular points and which lie on
the cuts in the s, u planes. If we keep t real, s can become
complex with a posi. tive imaginary part at the spurious
turning point. But, from Eq. (10.2), this will cause zz to
pass through the cut in its plane on to a nonphysical
sheet since it must acquire a negative imaginary part.
Similarly if u gets a positive imaginary part, s will go
off the physical sheet. This aspect of spurious turning
points certainly requires more detailed consideration,
but this suggests that they will probably not give any
serious trouble to the validity of the M.R.

If, however, a spurious turning point was to occur in
the region s) 0, t) 0 for a curve t=t(s); when s be-
comes complex above its branch cut, t could remain
real while A(s, t, zz) was singular. Now N would acquire
a negative imaginary part, but would not go off the
physical sheet since its real part would be below the
onset of the branch cut. This would cause complex
singularities in the physical sheet and would inva1idate
the M.R. For this reason it is necessary to extend the
discussion of spurious turning points in positive spec-
tral regions so as to exclude them rigorously to all
orders in perturbation theory.

The only other major point that has been consciously
omitted from this paper concerns complex singularities
that are disconnected from the real part of the s, t,, u
plane. Singularities are determined by the vanishing of
D(n, s, t), where

D (n, s, t) = s~t" (n)+ tg (n) —E (n, zzz). (10.4)

If t and o, are real and s complex, then D is not zero
unless f(n) is zero. But Jt(n) can be zero only on normal
thresholds t,=t„where s can be complex without in-
validating the M.R., or at a spurious turning point.
This suggests that spurious turning points must be
eliminated also for complex s. A second way for D(e,s, t)
to become zero is that when s is complex some of the
o, 's are also complex. This requires that a C singularity
has dragged the contour into the complex plane of one
(or more) of the n variables. It seems unlikely that this
will happen without there being a connection with a
corresponding singularity with s real. However, al-
though neither of these possibilities seem very likely,
they both require further investigation before the M.R.
can be proved. It is hoped that some of these points
will be discussed in later papers.
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