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Approximate E-wave dispersion relations are derived, but not proved, for the processes Z+S —+ vr+Z
(or A) under the assumption that all pion-baryon and X-baryon interactions are of the odd intrinsic-parity,
Yukawa type. By comparing these equations with the analogous equations for pion-hyperon scattering, it
is shown that a low-energy resonance is likely to occur in a particular combination of the isotopic spin one,
I',*, ~+A. and ~+X scattering states, and this resonance should be recognizable in the m+7 production
processes. Despite complications associated with the unphysical region in the ~+I' production dispersion
relations, and with the fact that the E interactions are moderately strong, the resonance should occur in
the production process in a direct and simple way. Measurements of the cross section for production of this
resonance state can give information about the strengths of the strong interactions, particularly the pion-
baryon interactions. The present experimental evidence concerning the existence of such a resonance effect
in m+7 production is favorable, but inconclusive. A short discussion is given of the additional experimental
information needed to test the resonance hypothesis.

I. INTRODUCTION
' 'F, as is generally believed, the primary mechanism
~ ~ for the binding of A particles in light nuclei is the
exchange of virtual + mesons between the A and the
nucleons, the interactions of pions with A. and 2 par-
ticles must be among the strongest of all particle inter-
actions. Hence, a knowledge of the xAZ and the ~ZZ
interactions is essential to understanding the strange
particles. One of the best ways of investigating these
interactions is to study the processes E+iV —+sr+I'
(where ir denotes either a Z or A hyperon), since these
are the only reactions involving a two-particle v.+F'
state that can be produced copiously with present ex-
perimental techniques. The interpretation of these
sr+F production processes depends on the general
nature of the pion and E-meson strong interactions; in
this paper it is assumed that all meson-baryon inter-
actions are of the odd intrinsic-parity, Yukawa type.
It is further assumed that the spins of E particles and
hyperons are zero and one-half, respectively, so that
the initial and final orbital angular momenta are the
same in the n+ V production reactions.

The v.+l production amplitudes have poles at un-

physical values of the center-of-mass system energy
below the reaction threshold; the residues of these poles
involve the product of one of the pion-baryon coupling
constants (Ftrtr, Erq, or Fqq) with one of the E-coupling
constants (Gq~ or Gx~). Approximate values of the
E-coupling constants may be obtained from the analy-
sis of other processes, such as E-nucleon scattering.
Hence, if the v.+I' production amplitudes satisfy dis-

persion relations, it may be possible to determine Fzz
and F&z by applying these relations to experimental
hyperon-production data. Many authors have dis-
cussed the implications of the S-wave E pdata with—
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respect to the pion-hyperon interactions. ' Unfor-
tunately, it is dificult to relate the size of 5-wave
amplitudes to the strengths of coupling constants, be-
cause of the subtraction that must be made in deriving
5-wave dispersion relations. In this paper we are con-
cerned with the P-wave amplitudes for v.+I' produc-
tion. The strong pion-hyperon interactions are likely
to lead to a low-energy resonance in some P-wave state
of pion-hyperon scattering. Such a resonance should
appear in the corresponding pion-hyperon production
amplitude, in much the same way that the pion-nucleon
P; resonance appears in photopion production. The
measured characteristics of pion-hyperon production in
the resonance region would yield information concern-
ing the pion-hyperon coupling constants. This pro-
cedure for measuring Fpg and F~g has been suggested
previously by Capps and Nauenberg. '

In Secs. II and III of this paper approximate P-wave
dispersion relations are derived (but not proved) for
pion-hyperon production by generalizing the procedure
used for pion-nucleon scattering by Chew, Goldberger,
I.ow, and Nambu. ' The starting point of the derivation
is the fixed momentum-transfer hyperon-production
dispersion relations of Jin. The P-wave relations are
static in the sense that the particle center-of-mass
momentum is considered small compared to the aver-
age baryon mass; however, it is not assumed that the
E-meson total energy, m-meson total energy, or the
baryon mass-diGerence is small.

Methods of solving the P-wave equations are dis-
cussed in Secs. IV through VII. Since crossing sym-

metryy

relates the processes X+X—& sr+ Y and m+E ~
' See, for example, D. Amati and B. Vitale, Nuovo cimento 9,

895 (1958); Ken Kawarabayashi, Progr. Theoret. Phys. (Kyoto)
22, 451 (1959);R. H. Capps, Phys. Rev. 118, 1097 (1960).

2 R. H. Capps and M. Nauenberg, Phys. Rev. 118, 593 (1960).
This paper will be referred to by the symbol CN.

'G. F. Chew, M. L. Goldberger, F. E. Low, and V. Nambu,
Phys. Rev. 106, 1337 {1957).

4 Y, S. Jin, Nuovo cirnento 12, 455 {1959).
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E+F, and since unitarity relates 2r+F production,
m —I' scattering, and X—Ã scattering on the one hand,
and E+F production, nE.—scattering, and E Y—
scattering on the other, the dispersion relations are
coupled integral equations for all the above processes.
Fortunately, approximate solutions for the 2r+F pro-
duction amplitudes may be obtained by considering
only these amplitudes and the pion-hyperon scattering
amplitudes. These P-wave 2r+ F production dispersion
relations will be useful only if a resonance exists in
some m —I' P-wave state. The theoretical possibility
of such a resonance is discussed in Sec. VI and the
experimental evidence concerning the possible presence
Of a reSOnanCe effeCt in 2r+Y prOduCtiOn iS diSCuSSed
in Sec. VIII.

II. THE COVARIANT DISPERSION RELATIONS

We first express the reaction amplitudes and dis-
persion relations in terms of Lorentz-invariant combina-
tions of the momentum variables; later the relations
will be specialized to the center-of-mass Lorentz system.
We consider any strong reaction in which both the
initial and final states consist of one spin-zero meson
and one spin--,' baryon. The four-momenta of the
initial and final mesons are denoted by k; and k~, those
of the baryons by p, and Pi. The four-momentum-
transfer squared q' and the covariant energy parameter
v are defined by the relations,

q'= (P' Pr)'—
v= —(k,+kg) (p;+pg)

where the scalar product of two four-vectors is defined

by the relation n p= n Ii —n2p2. The constants A and c
are set equal to unity. If the relative parity of the re-
action is even, the covariant reaction amplitude T
may be written in the form,

T=A+ 2y (k,+kg)8, -

where p is the Dirac gamma-matrix four-vector, and T
is considered as operating between initial and 6nal
baryon spinors. The gamma-matrices and spinors are
deIIined in the manner of Schweber, Bethe, and de

Hoffmann.

'
Crossing symmetry relates the process M,+8,—+

M2j82 to the process M2+81~Ml+82, where M,
and 8; represent definite charge states of the mesons
and baryons, respectively, and M; is the antiparticle
Of M; (i.e., 2r+=2r 2ro=iro E+=E EO=Eo) HenCe
we define the crossed amplitude T" corresponding to
the amplitude T by the relation,

(Ml+Bl ~ M2+82) T(M2+Bl ~Ml+82) ~

If the amplitudes T are defined for complex values of
s in such a way that T is analytic in the entire upper

' S. S. Schweber, H. A. Bethe, and I'. de Hoffmann, Mesols and
Fields {Row, Peterson, and Company, Kvanston, Illinois, 1956),
Vol. 1, pp. 17—20, 46—59.

half s-plane, it may be shown by well-known methods
that the crossing symmetry for the covariant ampli-
tudes A and 8 is'

3"(v q') =3"(—v, q')

8"(v,q') = —8*(—v, q').
(&)

In order to express the crossing symmetry in terms of
hyperon-production amplitudes corresponding to defi-
nite isotopic spin states, it is useful to consider the
following three processes: (a,) E+p ~'2r'+Z', (b)
E +p ~ -2i'+A, and (c) E +22~ 2r'+Z . The ampli-
tudes for these three processes are given, respectively,
by 6 'To&, 2 ''T», and 2 'T&z, where the first subscript
denotes the isotopic spin, and the second denotes the
nature of the hyperon involved. ' By considering these
processes, one can show easily that the crossing rela-
tions for the different hyperon-production amplitudes
are:

T2~"= (2) '*(2T'-:~+T-:~),

TIE 3 T~Z 3 T-,'Z) (2)
2"i~"= —(-,') *&-;~,

Where Tvq, T;r, and T,*q refer tO the prOCeSSeS 2r+1V ~
E+F.

The residues of the poles of the hyperon-production
amplitudes explicitly depend on the nature of the inter-
actions between the particles. We assume the usual
five local, pseudoscalar meson-baryon interactions; the
dependence of these interactions on the charge states
of the particles is represented by the equation,

H=FN2i (X~1V)—iFZ22 (ZX&)
+P'&~ &X+Gi,(EIE)~+G,(E~N) &+H c

The quantities E and G are the m and E coupling con-
stants, ~ and X represent the isotopic vector m and Z
field operators, and ~ and 1 are the isotopic spin and
unit operator that operate between two isotopic spinors.

. Jin' has derived the fixed momentum-transfer disper-
sion relations for Z and A production, though these
relations have not been proved. Expressed in terms of
the quantities defined in this section, the 2r+F pro-
duction dispersion relations are:

Red;(v, q')

2 (222/ —222) g, (A) 2 (mg —m) b, (Z)

2(212—222N) g (.V) P p" ImA (v'q')dv'+-
V+VN 71 vp~ P P

P t" ImA "(v',q')dv'
(4a)

2t vNv V +V
6 Throughout this paper the relative phases of the different

charge states differ from those that correspond to the Clebsch-
Gordan coefIIcients of Condon and Shortley only in that the Z+
and sr+ phases are chosen opposite to those of this reference. See
E. U. Condon and G. K. Shortley, Theory of Atomic Spectra (Cam-
bridge University Press, New York, 1935).



D ISPERS ION RELATIONS FOR P ION —H YPE RON PRODUCTION

2S, (A) 2S, (~) 2e;(~~)
ReB, (v, q') = + - +

v+ viv

The center-of-mass pion-hyperon production ampli-
tudes may be expressed in terms of the baryon spin
matrices by the relation,

P t." ImB;(v', q')dv'

I
v+7r P P

T= T.(W, cos8)+Tp(W, cos8)e kto k, ,

P t.
" ImB "(v',q')dv'

v+v =k kf Q'ti+Pl+1 (cos8) Q tl Pi i (—cos8) (7a)
l=o l=2

where P denotes the principal part of the integral, and

j denotes the nature of the hyperon and the total
isotopic spin. The quantities m&, mz and m&r are the
masses of the A, 2, and nucleon, while m is the average
of the initial and final baryon masses. The values of
the energy parameter at the poles (vs, vz, and viv) are
functions of momentum-transfer and are given by the
formula, p~= 2m~ —m; —my —p; —Ij.y

—g' whele m~ is
the mass of the baryon denoted by e, and m;, mj, p;,
and p~ are the masses of the initial baryon, final baryon,
initial meson, and final meson. The coeflicients g, in
the Born approximation terms (pole terms) of the dis-
persion relations are given in terms of the renormalized
coupling constants of Eq. (3) by the equations,

(7b)Ts ——Q (ti ti~—)Pi'(cos8),
l=1

where the P& are Legendre polynomials and the prime
denotes differentiation with respect to cos8. The t~~
are the ~+ Ir production amplitudes for orbital angular
momentum 1 and total angular momentum /&2. The
partial wave amplitudes 3 for all processes discussed
in this paper (s+I' production, vr —V scattering, etc.)
are normalized in terms of the corresponding matrix
elements of the unitary S matrix by the equation,

2it= (S—l)(k;kt) &,

where 1 is the unit, diagonal matrix. This normalization
is not the most common one; it is convenient for P-
wave amplitudes, however.

We now give the relations between the covariant
quantities of Sec. II and the center-of-mass quantities
defined above. These relations, for the covariant
momentum-transfer and energy parameter, are4:

gpz(A) =6~FsGs, gpz(&) =0,
giz(A) =0, ciiz(Z) = —2FzGz,

/is(A) =0, /is(Z) =2'*FsGz,

gpz(E) = 6~FivGz,

ciiz(-V) = —2F~Gz,

/is(1V) = 2~F~Gs.

The limits of integra. tion vs and vent in Eqs. (4) are
given by the formula v =2(m +ti )'—m,'—mt' —ti,'
—p~' —q'. It should be noted that the lower portions of
the dispersion integrals refer to unphysical energy regions
below the thresholds of the E+cV —+ s-+V and ir+E
—+ E+I' processes.

If one takes the energy parameter v in Eqs. (4) to be
negative, and makes use of the crossing relations fEqs.
(1) and (2)j, then Eqs. (4) become the dispersion rela-
tions for the processes m+1V —+ E+F'.

q'= p,' pr'+2k —p,k pt
—2k "kt, —

i =2W' m' mrs —ti ' —ptz —q'— —
(9a)

(9b)

The relations between the covariant and center-of-mass
amplitudes may be found by well-known methods, ' and
are given by the equations„

(E,+m;) *(Et+mt)-
Ta 7 Q I

IIL THE P-WAVE EQUATIONS

where tII is the angle between the directions of h, and
kr. The expansions of T and Tp in terms of partial
wave amplitudes are":

(4b)

In order to write approximate dispersion relations for
P waves we must express the various quantities in
terms of center-of-mass system parameters. We use the
following notation for the particle center-of-mass mo-
menta and energies in any of the various meson-baryon
production and scattering reactions: k; and kt, three
momenta of initial and final mesons; ko,', kof, and ko,
initial, final, and average meson energies; E;, Ey, and
E, initial, final, and average baryon energies; W= E+kp,
total energy. Henceforth k; and k~ denote the magni-
tudes of k, and kq, rather than four-momenta. The
most important energy parameter to be used (denoted
by oi) is defined as the average meson total energy plus
the average baryon kinetic energy, i.e.,

~ =—t'A —B(W—m) j, (10a)

Tb— 7

(E,+m, )'(Et+mt) i

rp= L
—A —B(W+m) j. (10b)

4mItlt

One may write fixed momentum-transfer dispersion
relations for the center-of-mass amplitudes T and Tb

by taking the real parts of Eqs. (10), expressing ReA

' These equations are equivalent to Eqs. (2.18) and (2.19) of
reference 3.

See R. H. Capps and G. Takeda, Phys. Rev. 103, 1877 (1956),
Appendix A.
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and ReB in terms of the covariant dispersion relations,
[Eqs. (4)), and then using the inverses of Eqs. (10)
to express ImA and ImB back in terms of ImT and
ImTb. A variety of dispersion relations for different
combinations of the partial wave amplitudes may then
be derived by multiplying by different Legendre poly-
nomials in cos8 and integrating over cos8. However, in
order to obtain simple equations involving only I'-wave
amplitudes, some sort of static approximation must be
made. Since the E-meson mass is not small compared
to the baryon masses, the usual procedure of neglecting
all terms of order co/m is not satisfactory here. We
follow an alternate procedure, choosing as expansion
parameters the two quantities,

Ey= (kP+kr2)/(2com) and &2= (k;kr)/(corn),

which are considered to be of the same order. (The
symbol e will often be used to denote either of these
quantities. ) These two parameters remain fairly small
in the low-energy region for the reactions E+X~
~+Y, e.g. , at 420 Mev/c lab E-meson momentum, each
of the two parameters is about 0.14 for m+2 produc-

tion, and about 0.17 for m+4 production. The approxi-
mation of neglecting ~& and e2 compared to unity will

be termed the "small-momentum approximation. "
The parameters v' and v'& v occurring in the disper-

sion integrals of Eqs. (4) can be expressed in terms of
the center-of-mass variables co', co, and k; kr by the
relations:

dv'= 4(m+co') dco',

v' —v=2(co' —co) (2m+co'+co),

(11a)

(11b)

v'+ v=4m(co'+co) [1+O(e))+4k,' kr, (11c)

where O(o) denotes a quantity of order c& or o2 that
depends only on co (i.e., is independent of cos8). In
deriving Eqs. (11), explicit use is made of the fact that
the momentum-transfer is 6xed. We now write the
fixed momentum-transfer dispersion relations for the
rr+ Y production amplitudes by following the procedure
described above, i.e., by making use of Eqs. (4), (10),
and (11).For simplicity the relations are given for the
amplitudes r, and r& of Eqs. (10) rather than for T,
and Tb, and the isotopic spin index j is suppressed.

P r
" dco'(m+co') Im[(2m+co+co') rc, (co')+ (4m2) ~(co—co') r, (co'))

Rerg(co) =B A +. .—
+my —m (co' —co) (2m+co+ co') (m+co)

P t" dco'(m+co') Im[(2m+co — c)or t( c)o+( 4m) '(4m—+co+co')r "(co'))
(12)

J„.+„„ {(co'+co)[1+O(e))m+k,' ky}2 (m+co)

P ~co

Rer. (co) =B.A.+—
dco'(m+co') Im[(2m+ co+co') r, (co')+4m'(co —co') r~ (co'))

(co' —co) (2m+co+co') (m+co)

P t
" dco'(m+co') Im[(2m+co' —co)r,"(co')—4m'(co'+co) rc,"(co'))

(13)
mJ v~+m~ —m ( (co'+co) [1+0(e))m+k; kg}2(m. +co)

where the amplitudes are all evaluated at a 6xed
momentum-transfer q'. The Born approximation terms
in these equations (denoted by B.A.) have not been
written out; they may be computed easily from the
Born terms of Eq. (4), by making use of the following
relations,

v —vr ——2[co—(mr —m)) [m+mr+ co),

v+vN=2[~+(m~ m))[m+—m~ ~)[1+O(.))
+4k,"k,, (14)

where Y denotes either the Z or A particle. Nothing has
been neglected in writing down Eqs. (12), (13), and
(14); the only small terms not written out explicitly
are represented by the symbol O(e).

In the small-momentum approximation the ampli-
tudes 7-, and 7b in the dispersion relations may be
replaced by T, and Tb. In order to obtain simple equa-
tions some assumption must be made concerning the
relative magnitudes of the t~~. We shall use the Born
approximation as a guide in making such an assumption.

It is easily shown from Eqs. (4) and (14) that in Born
approximation, tt~ is proportional to the /th power of
the expansion parameters e, i.e., k,k~t&~=FGm '(o)'.
Hence, we assume that the actual amplitudes for all
angular momenta greater than one are smaller than the
I'-wave amplitudes by at least one power of e. We
further assume that the imaginary parts of the D
amplitudes are smaller than the imaginary parts of the
I' amplitudes by a factor of c', since this condition is
true in perturbation theory.

Similar assumptions are made concerning the partial
wave amplitudes t~~" that refer to the "crossed"
processes ~+)V ~E+Y. The threshold for E+Y pro-
duction is suf6ciently high that the small-momentum
approximation is not. accurate in the physical region for
these processes. However, in the low-energy dispersion
relations for m+ Y production, the only large contribu-
tions to the crossed dispersion integrals are expected
to come from the E+Y production amplitudes in the
low-energy part of the unphysical region, where the
small-momentum approximation is valid. We further
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assume that the 5-wave quantity sk;kits"/m' is small
compared with t&+", since this quantity must be small
compared to a large P-wave amplitude, and only large
P amplitudes are expected to contribute appreciably
to the "crossed" dispersion integral.

In the small-momentum approximation the dis-
persion relation for the P-wave spin-Rip amplitude
tIs= (tl —tl+) may be derived simply by neglecting all
terms of order e in Eq. (12), and making the above
assumptions concerning the relative sizes of the t~+.
The result is

Ret;, I, (co)

4(m,m, )&(m+~) t ~—(m, —m)]

4(m;mf)'*(m+co) La&
—(mz —m)]

g;(S) (3m —mIv+(o)

4(m,mf) &(m+aI) (m+mIv )aIL—a&+ (mIv —m)]

dM Imt& I~(co )

m'~ ttt~+mg —m

P t" da)' Imt, "(aI')
(15)

Il ~ p~+rnIV —m M +M

7l p~+mp —m

7P~ p~+m~-m

dM Imt~ I+ (M)'
daI' ImLt, ,I~'*(aI')+2t I "(aI')]

3 (a'+eI)
(16)

If the energy co lies in the unphysical region
(eI(tIlr+mIr m) for the pro—cess t;, a slight modiflca-

where j again denotes the nature of the hyperon and
the total isotopic spin, and the II, are given in Eq. (5).

The dispersion relations for the amplitudes t~+ may
be derived by multiplying Eq. (13) by cos8, integrating
over cos8, and dividing by 3k;kf, Terms of order e may
then be neglected. In carrying out the integral it must
be kept in mind that 8' (the angle corresponding to ar')

and 8 refer to the same momentum-transfer q2 and
hence are related to each other by the equation

k, kf cos8 —kp; kpf =k kf cosO —kp'kpf.

The resulting small-momentum approximation dis-
persion relations for t~+ are,

Ret, ,+((u)

2(m mf)ig;(cV)

3(m+~) (mmmm~ —~)' L~+ (m~ —m)]

tion of the above procedure is required. In this region
the momentum in the E+1V state is positive imaginary
kIr=i! ka!, so that the I'-wave term of T, is equal to
i!kryo!k (3 cos0)t;, I+. Hence, one writes the dispersion
relation for —iT, rather than for T, multiplies by
cose and integrates over cos0 and then divides by
3!kz! k . The result is identical in form to Eq. (16).

Equations (15) and (16) also apply to the Ir—I',
n- —E, E—V, and E—E elastic scattering processes if
the constants g, , intermediate baryon masses (mIv, mI. ,
and mz), and the limits of integration are suitably
modified. If the equations are applied to x —E scatter-
ing and aI/m is neglected, the equations become identical
with the usual static equations, except that the energy
variable is co= 5'—m rather than the meson energy. '

IV. THE UNITARITY CONDITIONS

The approximate P-wave dispersion relations of Sec.
III can be used to study the possible behavior of the
hyperon-production amplitudes only after the real and
imaginary parts of the various amplitudes are related
by means of the unitarity condition. In applying uni-
tarity to inelastic processes, we assume that the phases
of the various states are so chosen that the scattering
matrix is symmetric in the angular momentum repre-
sentation; the time reversal invariance of the strong
interactions assures that this can be done. "This phase
choice already has been made implicitly in the original
derivation of the covariant dispersion relations in
reference 4.

We denote by t e the amplitude for the process n -+ P,
normalized as in Eq. (8), (n and P may refer to the
same state). A~Iultiple meson processes and all weak
processes are neglected, so that n and P and all states
coupled to them are two-particle P-wave states. It may
be shown directly from Eq. (8) that the unitarity con-
dition in the physical region for the process n —+ P is,

Imt p=Ql, kl, 't ~*tp~, (17)

where the sum is over all open channels, and k„ is the
momentum in the state y. All amplitudes refer to the
same total energy.

Ke will assume that this unitarity condition remains
valid in the unphysical energy region below the thresh-
old for the process a -+P. This assumption has not been
proved. However, a similar condition, used in the un-
physical region of the process %+X-+2Ir by Fraser
and Fulco," has been justified by Mandelstam on the
basis of a few plausible assumptions and the known
analytic properties of Green's functions and reaction
amplitudes. "

If n and P differ, and if only these two states con-
tribute to the sum over y, Eq. (17) implies that the

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
F. Coester, Phys. Rev. 89, 619 (1953).

"W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1@59)."S.Mandelstam, Phys. Rev. Letters 4, 84 (1960}.
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phase of the inelastic amplitude t a is equal (within aii
additive factor of m) to the sum of the real parts of the
phase shifts for elastic scattering in the channels o. and
P. Such a phase relation applies in the physical region
of the I=0, ir+ I' production amplitude, and is approxi-
mately valid for production in the I= 1 state also, pro-
vided that the two I=1,m+I' states are chosen in
such a way that the amplitude for transitions between
them is small. In the unphysical region below K+iV
threshoM the %+X state does not occur in the sum
over y, in which case no X—S phase shift appears in
the phase condition.

Pion-hyperon production, 7|-—Y scattering, and K—iV

scattering are coupled by the unitarity conditions, as
are E-hyperon production, x—Ã scattering, and E—I
scattering. Hence one must write dispersion relations
for all these processes in order to get a closed system of
equations for the P-wave amplitudes. All these P-wave
dispersion relations may be written in the form of Eqs.
(15) and (16) if the Born approximation terms and the
limits of the dispersion integrals are changed appro-
priately. The Born approximation terms are given for
pion-nucleon scattering by Chew, Goldberger, Low, and
Nambu' and for pion-hyperon scattering in CN.

V. OUTLINE OF METHOD FOR
SOLVING EQUATIONS

When the unitarity conditions are all specified, the
dispersion relations for the various P-wave processes
are a closed system of coupled equations for the ampli-
tudes. If explicit values are assumed for the coupling
constants of Eq. (3), some type of successive approxi-
mation procedure can be used to seek approximate
solutions. For illustrative purposes we outline below
an iteration method that is useful if the ratios of E-
coupling constants to x-coupling constants are small.

The pion-hyperon and pion-nucleon scattering equa-
tions are first solved, with the contribution of E-
particle processes neglected in the unitarity conditions.
Appropriate linear combinations of the I= 1, ir+h. and
ir+Z states are chosen so that the n.—F' scattering is
diagonalized, approximately. One then solves the equa-
tions for m+l' and K+I' production, neglecting the
Id—3l and K—I' scattering phase shifts in the uni-
tarity conditions. Since the unitarity conditions specify
the phases of the hyperon-production amplitudes, the
method of Omnes" should be convenient for solving
these equations. Because of the crossing terms, even
this step involves an iteration procedure, i.e., one first
solves for the ~+ 7' and K+ V production amplitudes
by neglecting crossing terms; these amplitudes are then
inserted into the crossing terms and the equations are
solved again, etc. The result of this sub-procedure gives
the first approximation to the general iteration method
for the m+ I' production amplitudes.

The second approximation is carried out in the fol-
lowing way. The results of the first approximation for

'3 R. Omnes, Nuovo cimento 8, 316 (1958).

ir+l production are now included in the unitarity
conditions for the m —I' scattering equations, and these
equations are solved again to give a second approxima-
tion to the x—I' scattering amplitudes. A simultaneous
step is the solving of the K—Ã scattering dispersion
relations, including in the unitarity condition only the
K+X-+m+T amplitudes calculated in the first ap-
proximation. One then uses these X—iV phase shifts,
and the improved +—I' phase shifts, in the hyperon-
production dispersion relations to calculate the second
approximation for ~+7' production. One could con-
tinue in this manner to higher approximations. The
eRective expansion parameters in this general procedure
are the squares of the coupling constant ratios G/F
LSee Eq. (3)] so that the procedure is expected to be
convergent if the pion-hyperon interactions are of
comparable strength to the pion-nucleon interaction.
The fact that the K+&V rest mass is larger than the
sr+ F rest. mass also helps the convergence.

The existing experimental data is so sparse that a
lengthy calculation using the above-outlined method, or
some similar method, is not justified at present. Fur-
thermore, because of the neglected high-energy con-
tributions, the solutions to the disperison relations are
expected to be reliable only for a channel in which a
low-energy resonance occurs. The considerations of
Sec. IV and this section are useful primarily because
they can be used to show that a P-wave ir+ F resonance
should produce easily recognizable eRects in the
X+X-+7r+l amplitudes, despite the complications
of unphysical regions, moderately strong E coupling,
and many coupled channels. In the next section we will
discuss the possibility of such a resonance and the
information obtainable if one exists.

VI. A POSSIBLE RESONANT AMPLITUDE

We now consider the questions of whether or not a
7r+F P-wave scattering resonance exists, and in which
angular momentum state it may occur, using as a guide
the static x—I' scattering dispersion relations of CN,
and neglecting E-meson effects. Throughout the rest
of this paper, the 2—A. mass diRerence will be neglected,
and the hyperon mass taken as the average of the ex-
perimental Z and A. masses.

In order for a low-energy resonance to exist, it is
necessary that the Born approximation terms for the
elastic scattering amplitude in question be positive, i.e. ,
represent an attractive interaction. The signs of the
Born contributions to many of the x—Y amplitudes de-
pend on the value of the coupling constant ratio Fq/Fi„
several authors have listed the various states which

may be resonant for different values of this ratio. " If
the coupling constant ratio is in the range —', ((Fa/Fq)'

' Michael Nauenberg, Phys. Rev. Letters 2, 351 (1959);
A. Komatsuzawa, R. Sugano, and Y. Nogami, Progr. Theoret.
Phys. (Kyoto) 21, 151 (1959); Yukihisi 1Vogami, Progr. Theoret.
Phys. (Kyoto) 22, 25 (1959);D. Amati, A. Stanghellini, and B.
Vitale, Nuovo cimento 13, 1143 (1959).
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&2, it may be seen from Table I of CX that a w —Y
P-wave resonance is possible only for angular rno-
mentum —, and isotopic spin 1 or 2. The possibility of a
P~ I=1 resonance is most easily investigated if or-
thogonal combinations of the a+A and 7r+Z states are
chosen in such a way as to approximately diagonalize
that part of the scattering matrix referring to these two
channels. For simplicity we choose the states (denoted
by lt „and lt,) that lead to diagonalization in the Born
approximation; the coeKcients relating these states to
the a.+A and a.+Z states may be determined from
Table I of CN, and are given by

(Fz'+2F~') 9r=~F~4t~, t++Fzftz, ip, (1&a)

(Fz'+2F~')*'fs=Fzft~, t+ '/2F~&—iz, ty. (18b)

Even though the amplitudes are expected to dier
markedly from the predictions of the Born approxima-
tion, we believe this choice of P„and P, approximately
diagonalizes the actual scattering, for the following two
reasons: (i) In the first approximation for the solution
of the x—I' scattering dispersion relations, in which the
crossing terms are neglected, diagonalization is achieved
by the same choice of states that produces diagonaliza-
tion in Born approximation. (ii) Even if the crossing
terms are included, this choice of f„and it, leads to
diagonalization in the three special cases F~——0, Ii~=0,
and the global symmetry case F+=Iiz."

We denote the x—Y elastic scattering amplitudes by
t, ,~~, where j indicates the isotopic spin and the nature
of the initial and anal hyperons. If the P-wave equa-
tions of CN are written in the form used in Sec. III of
this paper (i.e., to/m terms included) and mz —mq neg-
lected, the equations for the P';, +—Y scattering am-
plitudes become

Ret;, t+ ((o)

2mzF, 1 P ~" d~' Imt, , &+ (co')
—+—

3(mr 1(o) (2'~ —co)' co

P
t
"da7 Immit; t~~ "(co')+2t; t "(~')]

(19)
a'Jy~ 3(co +&8)

where to= W—m& (W is the total center-of-mass system
energy). The constants F,, in the f„—P, representation
de6ned by Eqs. (18)& are &» Fz'+Fz2 F„= Fz'—— —
and the oB-diagonal term P„, is zero. From these values
of 5, it is seen that the state P, cannot resonate but f„
is of the resonance type. In the case of global symmetry
the state P„is analogous to the (e2, z3) pion-nucleon state. "
However, it may be seen by comparing the above result
with the x—E dispersion relations that, for any value
of Fz/Fq, the Born term for scattering in the state P„
may be obtained from that of the resonant x—E ampli-
tude by replacing m~ by mv and F~' by & (F~'+Fzz).

In order to see how a resonance in the state lt „may
'5 D. Amati and B. Vitale, Nuovo cimento 9, 895 (1958).

appear in z —I' production, we must compare the corre-
sponding dispersion relations for m —I' scattering and
production. The amplitude t, for production of the
state P„ is the linear combination (Fz'+2Fq')'t„
=U2Fqttg, t++Fzt&z, &+, the dispersion relation for i„ is
the corresponding linear combination of the relations
given in Eq. (16). In order to compare the dispersion
relations we write the average baryon mass of Eq. (16)
in the form m=2(nzr+m~). Furthermore, since the
unitarity condition relates the amplitudes at the same
total center-of-mass system energy t/t/', we express the
a.+Y production energy parameter co = W' ——,

' (ns&+m&)
in terms of the m —V scattering energy co= H/' —m& of
Eq. (19), i.e. , co= ~+2 (mr —m&). The dispersion rela, —

tion for the production amplitude t„ is then,

2(mmmm~) l 1
Ret, (to) =

3(my+a)(2m~ —co)' (o

2F~(FgGg FzGz) P—p" d(u' Imt„(to')
X +

(Fz'+2F2) ~"~. cv' —o

+crossing term. (20)

Since the only amplitudes discussed in the remainder
of this section and Sec. UII refer to P; states, the angu-
lar momentum subscripts 1+ will be consistently
omitted.

In order to illustrate the basic connection between
the a.+Y production and scattering amplitudes, we

make the simplifying assumptions that only the terms
of lowest order in the E to x coupling constant ratios
(G/F) need be kept, and that the crossing terms in all
the dispersion relations may be neglected. LA correction
for the appreciable size of the (G/F) is made in Sec.
VII.j The terms of lowest order in G/F of the unitary
conditions of Sec. IV for scattering and production in
the state lt, satisfy the relations, Imt„= k '

~
t„„~' and

P,=8, provided that the z.—Y scattering is approxi-
mately diagonalized. The quantities P„and b„denote
the phase of t„and the real part of the phase shift for
the elastic scattering process t„.The phase condition
applies to the a+ Y' production amplitude both in the
physical and unphysical regions, so that it is not neces-
sary to distinguish between these two regions in solving
the equations for small (G/F). Since the ratio of the
inhomogeneous terms (Born terms) of Eqs. (19) and
(20) is nearly energy-independent in the low-energy
region, it is seen from these equations and the phase
condition @„=8„ that the ratio of the amplitudes t„
and t,.„ is nearly energy-independent and is given
approximately by the Born terms. If we set (mz/ser)'*
&( (2m' —a)'/(2&m~ —co)'= (mv/no~) l = 1.36, and make
use of the condition P„=Fz'+Fz', the proportionality
relation becomes

2F~(F~G~ —FzGz)
t„=ft„; (21)

(F~'+Fz') (Fz'+2F~')'
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Hence, in this approximation, a scattering resonance in
the state P,. appears in the zr+ I' production in a direct
and simple way. If such a resonance exists, three dif-
ferent types of information concerning the coupling
constants can be obtained from the following three
types of measurements in the resonance region.

(A) Ratio of resonant Z to A prodzzctiom It. is seen
from Eq. (18a) that the relative probabilities of zr+Z
and zr+h. pairs in the resonant state depend on the
coupling constant ratio Fz/Fz, . Hence, if protons are
bombarded with E at energies in the resonance region,
the ratio of zr++Z+ production to zro+A production in
F*, states is a measure of Fz/Fz, . (The process K +p ~
zr'+20 corresponds entirely to isotopic spin 0 and thus
should show no resonance. )

(8) Width of resozzazzce If t.he energy dependence of
either the zr++Z+ or zr'+A production cross section in
the resonant state can be measured, it is easy to use the
proportionality of Eq. (21) and the known relations be-
tween the center-of-mass momenta of the zr+I' and
E+X states to compute the shape of the zr —I' scatter-
ing cross section in the resonance state. The magnitude
of the energy at the peak of the resonance cannot be
related directly to coupling constants, but if this reso-
nance energy is known, the width of the resonance is a
measure of Fii'+Fz'. Measuring the resonance width is
equivalent to extrapolating the amplitudes to the zero-
energy poles; this could be done by means of an effective
range plot, similar to that used for m —E scattering. '

(C) Height of prodzzctiozz resozzazzce The size o.f the
zr+F production cross section in the resonant state at
energies near the peak of the x —Y scattering resonance
is a measure of the coupling constant ratio of Eq. (21).
If the four constants F~, F~, Gg and G~ are all appreci-
able, this ratio is very sensitive to the relative signs of
the constants. " If global and cosmic symmetry were
both valid, i.e., Fp=F~ and G~=G~, the resonance
would not appear az al/ in the zrjI' production process. '"

If the zr+ 7' production cross section in the resonant
state is large, one should include effects of higher order
in G/F. These effects and the contributions of various
crossing terms may be calculated by using the pro-
cedure discussed in Sec. V. However, if such corrections
are important, the relations between the coupling con-
stants and the experimental data are not as simple as
they are in the above illustration.

The proposed resonance might also show up in elastic
K—E scattering. In order to study this possibility we
write the dispersion relation for the I=1, I'; K—l'lt

scattering amplitude tj in the small-momentum ap-

'6 The relative phases of the Z, A, and %+X states may be
chosen so that the signs of Fg, F~, and Gg are the same. The sign
of Gz is then fixed, and must be determined by comparison with
experiment.

'7 It is also true that the I=), 7f+E~ K+2 amplitude, which
is of the same isotopic spin as the m —Ã resonance, vanishes in the
case of simultaneous global and cosmic symmetry. This has been
pointed out by A. Pais, Phys. Rev. 110, 574 (1958), Eq. (26).
Pais shows that this assumption (Fg=Fg and G~=Gp) is con-
tradicted by experimental data.

proximation, again using the energy variable ~= t/t/' —my
(rather than the natural X—.&V scattering variable
W —mid). The equation is

P I
"d(u' Imtix((v')

«ti (~) =— +crossing term. (22)
P zr CO

—M

The unitarity condition for t&~, to the lowest order in
G/F, may be obtained by omitting the K+X channel
from the sum in Eq. (17). The condition is then the
same in the physical and unphysical regions, and may be
written ImtP=k '(~t„~'+ ~t, ~'), where k is the mo-
menturn in the zr+ I' states. If the contribution of the
nonresonant state P, to this condition and the crossing
term of Eq. (22) are neglected, then this equation ex-
presses tj directly in terms of t,.

The Born approximation terms vanish for the ampli-
tude ti~ as well as for the E~„E—l7 elastic scattering in
the isotopic spin 0 state. " Therefore, any low-energy
F; resonance in the strangeness (—1) states must be
"driven" by the pion-hyperon interactions, rather than
the E interactions, even if the x and E interactions are
comparable in strength. This circumstance lends addi-
tional support to the general method of approach used
in this section and in Sec. V.

VII. RESONANT PRODUCTION AMPLITUDE FOR
SPECIFIC CHOICE OF COUPLING CONSTANTS

(MODERATELY SMALL G/F)

In this section we assume a m —I' scattering reso-
nance does exist in the state P„. In order to determine
the possible magnitude of zr+Y production in P„we
set the coupling constants equal to the following values,
Fz Fz —F~= (14)'*, G——q =——Gz ——(2.2) ~. The propor-
tionality constant $ of Eq. (21) is then equal to 0.62.
Since this ratio is not small we will correct the uni-
tarity condition for m —I' scattering to include the
effects of the K channel. The phase condition on the
production amplitude will not be corrected, i.e., we
continue to assume that the phases of the production
and scattering amplitudes are the same. The mass
difference m~ —mq and the crossing terms in all dis-
persion relations are still neglected. The proportionality
of Eq. (21) then remains valid, and may be combined
with Eq. (17) to give the modified unitarity condition
for the scattering,

Imt„„=k~'~ t„„~'P; /=1+@(kx/k )'zz(id), (23)

where zt(&o) is the step function defined to be unity at
energies above the E+X threshold and zero at energies
below.

' This may be understood from the following argument. The
Born approximation terms for any of the amplitudes discussed
here are all associated with one-particle intermediate states either
of the process itself or of the crossed process. Since the baryon
spins are ~, only the intermediate baryons associated with the
crossed process can contribute in the case of a Pg amplitude. How-
ever, there are no one-particle intermediate states associated with
X—X scattering, which

'

is the crossed process for Z —Ã
scattering.
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For simplicity we neglect terms of order cu/m in the
s —7' scattering dispersion relation, Eq. (19), and solve
this equation and Eq. (23) in the effective range
approximation of Chew and Low. ' The result of this
procedure is,

t,„"(o)=
t't s(o&„—~—sI'p)&

t.(~)=8- (~),

k '(Fs'+Fx') ~,
(24a)

(24b)

where /=0. 62, P is given in Eq. (23), and ~„ is the
resonance energy, assumed to be arbitrary. The cross
section for s.+F production in the resonant state
calculated from Eqs. (24) is shown in Fig. 1, for two
different choices of the resonance energy.

The inclusion of the E-meson effects (j' term) in
Eq. (23) is important because it leads to cross sections
that are consistent with unitarity; the predicted elastic
cross section is never larger than the maximum con-
sistent with the predicted value of the inelastic cross
section. The effect of the moderately strong E coupling
has been omitted from the unitary condition on the
inelastic amplitude, however. Despite the crude nature
of this calculation, it is believed that Eqs. (24) should
provide a reasonably accurate indication of the type of
energy dependence to be expected if a P; resonance in
the state if„exists.

)5
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FIG. j.. Total calculated cross section for production of the
resonant Pg, I=1, 71.+F state lt|„ from X -mesons incident
on protons, as a function of the E' lab momentum. The cross
section is calculated from Eqs. (27) and the relation cr=4skxk '
X ~t~~s. The quantity E denotes the assumed resonant energy
in terms of the pion kinetic energy in the hyperon rest frame in
Mev. The peak of the E =165 curve is shifted to the right of the
indicated resonance position because of the k~ dependence of the
cross section, while the E =295 curve is shifted to the left of the
resonance position because of the k and P dependence.

VIII. THE EXPERIMENTAL SITUATION

We continue to assume that orbital angular mo-
menta greater than one may be neglected for E mesons
of lab momenta less than 500 Mev/c incident on nu-
cleons. If the target is unpolarized the angular dis-

tribution for any E+X—+rr+F process is given in
terms of the S and P amplitudes by the equation,

(I -'I x) '«/did=
I
«I'+

I
tr+ I'+

I
tr- I'

—2 Ret,+st, +cosHL2 Rets*(2t~++tr )j
+cos'eL3

~

t,+ ('+6 Ret,+*t, g. (25)

It is seen from this equation that a large cos'0 term in
the angular distribution indicates a large P; amplitude.

Although the present s+ F production data is
sparse, the Berkeley hydrogen bubble-chamber experi-
ments provide definite evidence for a large P wave in
the processes E +p —+7r++Z+ at 400 Mev/c lab E
momentum. "The total E +p absorption cross section
at this energy ( 38 mb) is much greater than the
maximum possible for 5 waves ( 20 mb). Further-
more, the differential cross sections for both the s.++2
and the s. +2+ processes are much larger in the front
and back quadrants (~ cos8~ )0.5) than in the central
quadrants, indicating large cos'8 terms. In fact, this
experimental data is consistent with the assumption
that almost all the s++Z+ cross section (about 9 mb
for each process) occurs in the I'*, state. Although these
cross sections are based on a total of only 42 events,
it is extremely unlikely that the large cos'8 terms will

disappear with the accumulation of further data. Thus,
these limited measurements suggest a total P; cross
section for charged s+Z production in the range 10—18
mb. There is a slight hint of smaller cos'8 terms in the
IC +P —+ m++Z+ measurements at 240 Mev/c. rs Other
than this there is no evidence concerning the energy de-
pendence of the P~ cross sections.

The fact that the P; parts of the charged Z cross sec-
tions appear to be about equally large is consistent
with an I=1 resonance, since the I=1, s.+Z state
occurs with 50% probability in each of the rr++Z
and s. +2+ states. H these cross sections result from a
resonance in the state lt „Lsee Eq. (18a)$, the E +P~
s'+A angular distribution should also contain a large
cos'8 term, while no such term should occur for the
I=0, E+p ~ s'+Z' proces's. The angular distribu-
tions for these two processes are not known, but the
total cross section at 400 Mev/c is about 7-,' mb for
s'+A production, and about 6 mb for s'+Z' produc-
tion. This ratio of s'+A to s'+Z' events is in strong
contrast to the corresponding ratio of ( st) that exists
at threshold. "

The angular distribution for E pelastic scattering-
at 400 Mev/c also appears to contain a large cos'll

term, and is consistent with the assumption that most
of the ( 50 mb) cross-section results from scattering
in the P~ state. ' This is additional evidence for a reso-
nance eBect. However, since the resonance proposed in
this paper is "driven" by the rr —F interactions (see
Sec. UI) such a large E pelastic scattering —cross sec-

'~I. W. Alvarez, Proceedings of the 1959 International Con-
ference on Physics of High-I, n|;rgy Particles at Kiev, July, 1959
(to be published).
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tion is consistent with the proposed resonance only if
the resonant E +p —+ ~+F cross section is quite
large, on the order of 15 mb or larger.

It is seen from the above discussion that the existing
data is insufhcient for one to conclude that the front-
back peaking of the ~++2+ production data results
from the resonance process predicted here. In order to
test the resonance hypothesis, one needs to know the
approximate energy dependence of the P; cross section.
If future measurements verify that this energy depend-
ence is of the general type predicted by Eqs. (24) then
information concerning the coupling constants can be
gained. Of the three measures of the coupling constants
discussed in Sec. VI, the relation between the resonance
width and the sum F&'+F+' probably is the least
sensitive to some of the eRects neglected in Secs. VI
and VII, such as the contribution of the state $. and
the I=0 state to the P;, m++2+ amplitudes, the effect
of the 2—A mass diRerence, and the contributions of
the crossing terms in the dispersion relations. Thus,
measurements of the energy dependence are crucial,
not only to verify the resonance hypothesis, but to
make it useful. More accurate angular distribution
measurements of the E +p —+m++2+ processes for
E lab momenta in the range 200—500 Mev/c are espe-
cially needed. It would also be interesting to see if the
postulated large P; cross section were present for the
process E +p —+ ~'+A.

If we assume that future measurements will verify
the existence of a large P*,, ~++X+ production cross
section with a resonance-type energy dependence, then
the present experimental data suggest the following
conclusions. These conclusions are related to the eRects
(A) and (C) discussed in Sec. VI.

Ratio of Fr to Fq. The ratio of the ~+X and ~+A
contributions in the resonance state P„depends on the
coupling constant ratio Fr/Fz. In fact, Eq. (18a) im-

plies that the experimental ratio fo.(Z+)+o.(Z )]/o(A)
is equal to —,'F~'/Fq', for ~+F production in the reso-
nant state. If this relation were taken at face value, the
experimental indication that the P;, charged ~+2 pro-
duction cross section is greater than the total x+i1.
cross section at 400 Mev/c would imply that Fz') 2F&'.
Such a quantitative conclusion is not justified, however,
because the ratio of charged Z to A. production cross
sections may be influenced greatly by effects we have

neglected. Nevertheless, we feel that a large resonance-
type P;, m++Z+cross section implies that ~Fr,

~

is not
small compared to

~
Fq ~. (We recall from Sec. VI and

CN that if Fr, is small, the states m+2 and ~+4 nearly
diagonalize the I=1, P'g part of the scattering matrix,
and the ~+I state is chars, cterized by a repulsive
interaction. ) This conclusion concerning Fx is significant
in view of the fact that the existence of hyperfragments,
which is the one solid piece of evidence we have for
strong pion-hyperon interactions, tells us essentially
nothing about Pg.

The E to 7r coup/ing ratio (magnitude of ~+F pro
duction at resonance) Th. e magnitude of the resonant
~+F production near the resonance peak is a measure
of the coupling constant ratio of Eq. (21). The expres-
sions of Eq. (24) are too crude to be used for a quanti-
tative estimate of this ratio, even if the size and shape
of the resonance were well known. Nevertheless, the
apparent large P;, m++Z+ cross sections are evidence
for a large value of Ii~G~ —Ii~G~. If F~ and F~ are of
comparable magnitude, and if Gp and Gq are of com-
parable magnitude, a large resonance effect in the pro-
duction of ~+F pairs in the state f„ implies that one
of the coupling constants has the opposite sign from
the others "

The experimental determination of the P; ampli-
tudes is difficul at E rnomenta less than 400 Mev/c,
because of the large S-wave contributions to the ab-
sorption processes. In the cases of Z+ and A production,
the separation of the 5, P;, and P; amplitudes may be
facilitated by polarization measurements on the hy-
perons, since the decay asymmetries of these particles
provide direct measures of their polarizations.

The formalism and conclusions of this paper depend
upon the assumption that the +ZAN, EXA, and ESZ
parities are all odd. If this parity condition is violated

by the K interactions, but not by the +ZAN interaction,
the P, resonance in the state P, could just as easily

exist, but might be difficult to detect in the E+iV~
~+F process, since D, waves of the E+iV system
would be involved.
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