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short comp@red to the distance between the wormhole
mouths in the approximating Euclidean space. However,
as seen in I ig. 2, it is impossible to send a signal through
the throat in such a way as to contradict the principle

of causality; in effect the throat "pinches o8" the light
ray before it can get through. This pinch-o8 eGect
presents fundamental issues of principle which require
further investigation.
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A vertex closely related to the Bethe-Salpeter amplitude is discussed in the one meson exchange approxi-
mation by dispersion theory methods. Both scalar and spinor cases are treated. The relation between
anomalous thresholds and the Schrodinger equation is discussed in some detail. It is shown that dispersion
methods can be used to determine bound state parameters. An estimate is made of the asymptotic (D S)—
ratio fo'r the deuteron.

l. INTRODUCTION

' 'T has been customary in the field-theoretic discus-
sions of bound states to introduce the multiparticle

amplitudes of Gell-Mann and. I ow' and Schwinger. '
In the case of the two-particle bound state, which we
shall call a deuteron for definiteness, the relevant
amplitude is

&air(P P)l".(P))ID) (& ')
This type of amplitude and the integral equation

that it satisfies' have been used in discussions of the
relativistic corrections to the binding energies' and to
the electromagnetic structure' of bound states. The
amplitude in which the deuteron has been replaced by
a scattering state has been used in deriving, from field

theory, the interparticle potential to be used in a
Schrodinger equation discussion of nucleon-nucleon
scattering. ' This latter problem has not been satis-
factorily solved, due in part to the ambiguities con-
cerning the treatment of the relative time dependence
of the amplitudes.

The Fourier transform of the two-particle amplitude
depends on two variables, the center-of-mass and
relative momentum. Wick' and Cutkosky' have dis-
cussed the analytic structure of this amplitude in terms
of both variables and were able to solve the problem of
two scalar particles interacting via massless mesons in
the ladder approximation. The problem of scalar
nucleon and antinucleon system and massless mesons
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has been solved by Okubo and Feldman. ' It has proven
very dificult to extend this approach to more realistic
problems, although Wanders" has given a discussion
in the ladder approximation of the case with mesons
of finite mass.

We would like to point out that many of the prop-
erties of the bound state can be examined in terms of
an amplitude much simpler than (1.1). This new type
of amplitude allows the use of the powerful methods of
dispersion theory. In order to apply this approach to a
large class of 'problems it is necessary to know how to
handle dispersion theory in the presence of anomalous
thresholds. This problem has been recently clarified by
the work of Mandelstam and Nambu and Blanken-
becler. "" The spinor amplitude which we wish to
consider is

(&If.(o) ID),

where f~(0) is the proton current operator. This vertex
is a function of only one variable and satis6es a dis-
persion relation in that variable. It will be shown that
if one considers an unsubtracted dispersion relation
for this amplitude, then the deuteron parameters are
determined in terms of the masses and interactions of
the neutron and proton. Renormalization eGects are
easily dealt with. Thus, this work complements the
recent, work of Haag 13 Nishijima 14 and Zimmermanis
on the bound-state problem,

This vertex will be shown to be very simply related
to the Schrodinger wave function. The work of refer-
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ences i1 and 12 on dispersion relations and anomalous
thresholds will be clarified by showing that the wave
function for a bound state has nothing but anomalous
thresholds and that these two diGerent approaches
yield very similar results in the anomalous region. This
vertex allows an unambiguous definition of the nucleon-
nucleon potential for the calculation of bound state
properties. This potential is chosen so that when used
in conjunction with the Schrodinger equation, it will
yield the exact vertex (1.2). While there seems to be no
overwhelming argument to support this definition of
the potential, there seem to be no overwhelming
arguments against it either. This potential is very close
in spirit to the potential of Charap and Fubini, ' but
small diGerences occur.

Finally, a rough calculation of the asymptotic (D S)—
ratio for the deuteron will be carried out using dispersion
methods in the lowest approximation.

2. THE DEUTERON VERTEX FUNCTION

In this section dispersion relations for a vertex
function closely related to the covariant two-body
amplitude will be discussed. We shall see that these
dispersion relations provide an integral equation
analogous to the Salpeter-Bethe' equation and to the
Wick~-Cutkosky' parametrization; in fact, these rela-
tions lead to the determination of the bound-state
parameters. In order to clarify the physical ideas
underlying our calculations and to illustrate our
treatment of the anomalous threshold, the cases of
scalar and spinor particles will be treated in detail.
The algebraically simpler scalar case will be treated
first.

A. The Scalar Vertex

In the following we will treat the neutron, proton,
and deuteron as scalar particles. Consider the vertex

FIG. 1. Graphs for the amplitude 3f ~vith one-nucleon
intermediate states.

M = (2D'2P2k') &&kl ( f~(0) (D). (2.3)

If the nucleon l is contracted and the equal-time
commutator neglected, M becomes

The absorptive part of M is

ImM=~(2D'2k')' &s((k I f~(0) I S)(S(f~(0) ID)
XS(I+k—S)—(k(f~(0) (S)&S(f~(0)(D)b(I+S—D)).

By neglecting rescattering corrections in the inter-
mediate state, we may then introduce the pion mass,
p, , and the coupling constant, g, defined by the following
matrix elements on the energy shell

state of interest is that of a nucleon and pion, and if we
restrict our attention to this particular state, the
absorptive part is

n(2DO)*
tImr(x) =- d'ld'k(0( f„(0)(lk)

(2~)»

X(tk( f~(0) (D)8(l+k D+N—). (2.4)

In discussing the second matrix element in (2,4), it
is convenient to introduce the invariant function,

(2Do2NO)y(N(f (0) (D) (2 I) gp= (2l'2k')l(0( f, (0) (1k), gp= (2p'2P)&(p(J, (0) (l).

where f„(0) is the current operator for the proton, and
we consider this vertex as a function of the scalar
variable x,

If only the one-nucleon states are retained, correspond-
ing to the graphs in Fig. I, and the vertex I'(x) on the
energy shell, F(M') =I'0, is introduced, then one 6nds

x = —(D—N)'. (2.2)

If the neutron is contracted, we are led to the expression

I'(x) =~(2D')'q d'r e ' '"&oILf~b) f.(o)10(ro) ID).

M= +pgi'p + . (2.6)
(I+k)'+M' (N+k)'+M'

The absorptive part of I'(x) then becomes,

This form suggests that I'(x) is an analytic function in
the lower-half x-plane, and the absorptive part of I'(x)
is given as

Imi'(x) = —7r(2D')' P, (0(f (0) (s)
X(s( f~(0) ID)5(s+N D), (2.3)—

Iml'(x)

p2g2p

p d'ld'k
6(l+k D+N)—

(2')' " 21'2k'

(/1k)'+M' (N+k)'+M'

where s is a complete set of states. The lowest mass

J. Charap and S. Fubini, Nuovo cimento 14, 540 (1959).

Introducing relative and center-of-mass coordinates
according to

P=/+k, Q=-,'(I—k),
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leads one to

Imr(x)

p g Fp
d4I'd4Q

(2m.)'"

Fxo. 2. Contour
for the dispersion
integral with an
anomalous threshold.

X - plane

X8(lp) 8(kp) 5 (-,'E'+2Q'+ M'+ p,')

M' —p' ) 1
I8(Z —D+N)

2 ) M' —x

The final result is
—1 I" ImI', (x')

r(x) = dx'
x' —x+zp

where, a M'+2)(4(z(+2a), n'=Mp, and

(2.9)

or
—,'(x—Mn'+M' —2z(')+2N'Qp —2N. Q

ImI', (x) =—g')(4zl'p —
I Q I

8Lx—(M+.y)'g

prlQ
f

4(2~)Pox~
+

,
M' —x A —2N Q.

where

~'IQI

(2pr)'gx x—M'

r~+2I Nf IQI y+ ln (2.7)
4INI IQI

Qp= (M' —z(')/2+x; Np= (M'+N')l,

4*l Q I'= (*—(M—)-')( —(M+ )'),
4x

I
N I'= (x—(Mn —M)P)(x —(MnyM)P),

2 =-', (x—Mn'+M' —2z(')+2NPQP.

The deuteron binding energy is e. In the following we
will neglect e whenever possible.

It is seen that
I
N

I
is pure imaginary in the unphysical

region and the discussion given in reference 11 instructs
one to analytically continue the absorptive part from
the physical region. Thus, defining

I Nj = —zzz, the
absorptive part becomes

g' 'r —IQf 1 r2 IQI)I r(*)=— +—t -'I
gp(gx x—M' 20 ( A )

At approximately @=3M', 2 vanishes, and the arc-
tangent passes through pr/2. This is the signal which
tells us that there is an anomalous threshold present, "
since for @&3M', the arctangent must be continued up
onto its second branch.

If there were no anomalous threshold present, the
dispersion relation would be of the form,

Imr(x')1
I'(x) =—— dx'

'x (~+p) 4 x x+zp

The procedure in the case of an anomalous threshold is
to deform the path of integration until the integral is
taken along the contour shown in Fig. 2. The anomalous
threshold is determined by requiring that the argument
of the logarithm in (2.7) vanish, i.e., 2'= 4

I
N

I

'
I Q I

'.

+—8(x—(z)8f (M+Z4)' —x$
2s

+—tan 'I I8Lx—(M+p)'j . (2.10)

This value of the anomalous threshold is the same both
numerically and physically, as one finds in perturbation
theory. " The branch of the arctangent is chosen sn
that it is ~ at x= (M+z )'.

For later comparison, let us consider ImI'(x) in the
anomalous region,

—gp Io
Imr, (x) = (2.11)

16+x
I
n

I 32ML(x —M'+2n')/2]-*'

It will be shown that this form is extremely close to
the value predicted by the Schrodinger equation with
a simple Yukawa potential.

It is also noted that (2.9) leads to an eigenvalue
condition if F(x) is evaluated at x=M, since Fp cancels
from both sides of the equation. In the present case,
this is a condition on g, M, and p for a bound state of
energy e. Since only the one pion exchange diagram
has been kept, this eigenvalue condition is, of course,
very approximate. However, there is every expectation
that if enough intermediate states were retained, this
condition would allow one to calculate accurate binding
energies in the dispersion theory formalism.

B. The Syiaor Vertex

We turn now to the more involved spinor case before
returning to a further discussion of the connection
between this approach, anomalous thresholds and the
Schrodinger equation. I.et us consider the spinor
amplitude,

F(x)czz(N) = (2IY'N'/M)l(NI f„(0)ID), (2.12)

where C is the charge conjugation matrix; the other
quantities are defined as before. "The matrix structure

7 R. Blankenbecler, M. Goldberger, and F. Halpern, Nuclear
Phys. 12, 647 (1959).
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Imr(x')
r(x) =—— dx'

x' —x+ip
(2.13)

We will make the bold assumption that no subtractions
are necessary in this dispersion relation for F(x), and
show that this leads to an eigenvalue condition for the
deuteron mass.

The absorptive part of F calculated in the canonical
way is,

ImF(x)Cu(N) =or(2D')& P, (ol f, (0) Is)
Xu(N)(s I f~(0) I D&b(1V+S D). —

Again keeping the lowest mass state of a nucleon and
a pion, we must evaluate

d'kd'l
Imr(x)Cu(N) =pr(2DP)'* Q

l spin sj -J (2pr)P

of F will be discussed later. In order to analyze F(x),
we contract on the neutron, and

F (x)Cu(N) =i (2Dp)'*~I d'y e ' ' pu(N)

x(oIL&(y),f.(0)j~&y )oID&;

the equal-time commutator makes no contribution.
This form for F(x) suggests that it is analytic in x, and
the dispersion relation is

Fp(1V) =Fpiy $+Gp)V $; (2.21)

and Fo and Go were evaluated in terms of the non-
relativistic deuteron parameters.

Since (2.6) shows that M is analytic in the upper-half
l-plane, and by making use of the Dirac equation,

As before, this matrix element will be approximated by
retaining only the one-nucleon state q. Thus

ImM =pr(2D'2ko) & Q, {u(N)(k I fv(0) I q)u(l)

x&ql fi(o) ID&3(l+q —D)+u(l) &k I fi(0) I q&

Xu(N)&ql &(0) ID&~(N+q —D) } (2 19)

Introducing the coupling constants as the following
matrix elements on the energy shell,

(2koqo/M) &u(N)&kl f~(0) I q&

=igu(N)go(r" T)u(q), (2.20)

( 2D' q/ M)'u(N)&ql f~(0) ID&= u(q)rp(v) cu(N)

we find

ImM= go. Qo (M/q') {u(iV)ihip(r T)u(q) u(q)
Xrp(l)Cu(l)b(i+q D)+u—(l)iyo(o T)

Xu(q) u(q)r p(N)Cu(N)b(N+q D)—}
An evaluation of Fp(n) has been performed in reference
17, to which the reader is referred for a discussion of the
deuteron spin in terms of the pseudovector $„. The
matrix form of Fp(N) was found to be

x(ol f,(0) I
&-'ik&u(N)(&-'1kl fx(0) ID&

I
u(N)imp(r T)iy krp(l)Cu(l)

X5 D—N —l —k. 2.14
(1V+k)'+3P

The pion-nucleon vertex is readily evaluated. Since
the state llk( —)) must be a E;,s state, and since the
rescattering eGects should be small, this matrix element
will be approximated by its value on the mass shell,

u(l)iy, (r T)iy krp(N)Cu(N)

(l+k)'+M'
(2.22)

and finally
3prg'

t
d'kd'l

6(l+k D+1V)—
(2 ) ~ 2ko21o

(ol fp(0) Ilk' '&=+ig(M/l'2k')**y (r T*)u(l), (2.15) I r( )C (N)
where r and T are the isotopic spin operators of the
nucleon and meson, respectively. The structure of the
vertex, expressed in terms of the P;,; phase shift, will

be taken into account later.
In discussing the second matrix element which

contributes to the absorptive part of I'(x), it is again
convenient to introduce the invariant amplitude

-
i~ kr, (N) r, (l)i7 k—

X (M+ip. l) + Cu(N)
(l+k)'+M' (N+k)'+M'

The first term is recognized as a renormalization term
and the second contains the structure of the bound
state.

It is now an easy manner to discuss the general
matrix form of F(x). It is clear that it must have the
structure

M(k, l,D) = (2D'2k'1'/M)'*u(N)&ikey &

I fiick(0) ID&. (2.16)

Contracting the nucleon, we are led to

M=i(2Do2ko)* d'y e "pu(N)u(l)

x(k I {fi(x),f~(0)}e(*o)ID), (2.17)

r(x) =F(x)i~ g+G(x)N g

+(M+iy (D N)]/H(x)iy (+I(x)1V—$j (2.23)

and then, which reduces to (2.21) on the mass shell.
We shall be primarily interested in u(F) r (x)Cu(N)ImM=pr(2D'2k')'*2, {u(N)&kl fis(0)ls)u(l) on the mass s ell ~h~~~ F D N a„d x M I„ th;s

X&slfi(0) ID&~(l+S—D)+u(l)&klfi(0) ls& case the terms H(x) and I(x) will not contribute, and
Xu(N)&sl f~(0) ID&5(l+k —S)}. (2.18) in the following we will restrict our attention to F(x)
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and G(x) exclusively. Formally, we ca.n write

u(D 1V)—Imi'(x)Cu(1V)

= u(D —1V)$1mF(x)iy $+ImG(x)1V $]Cu(h')

3~g' p d'kd'l
6(i+k D+—1V)

(2or) P g 2ko2lo

u(D —1V) (—p,')I'p($) Cu(1V)
X

(l+k)'+MP

N. Q =
f
N

f f Q f », B(*)=& (*)/2 f
N

f f Q f,

we obtain
dQ

u(D 1V)—Iml'p(x)Cu(1V) =+
S(2~)pgxfNf & B—»

Xu(D —1V)LS+V Q+Q T Q]Cu(1V), (2.29)

3x'g

where

Returning to (2.24), and using (2.21) and the
definitions

u(D —1V)iy ki'p(l)iy. kCu(iV)

(1V+k)'+M'
(2.24)

Ke will denote the contribution of the first term in
(2.24) to Iml' by the subscript 1, and the second by 2.
Thus

S= —Lu'iy g+-,'M1V $—Mgpgo —ypgo1V $
+27ogogo']Fo —

f pu'& $+u'gogo]Go,
V= PM—(+'1V h 2'(.-Q v 2v.g-GF.

+y'Go(,
T= —2iy(F p.

(2.30)

3m'g2p, 2 p d3kd3l

(D—1V) I r (*)C (1V)=-
(2pr)' " 2k'2P

u(D —1V)I'p (1V)Cu(1V)
X8(l+k —D+1V)

( )

Introducing center-of-mass and relative momentum
variables as before, we must evaluate

+3%/ p f

u(D —1V) Imr, (x)cu(1V) = d'Pd'g
(2m-)' ~

X 5 (P—D+1V)8 (—,'P'+ 2Q'+3P+ p') 8 (k') 8(io)

u(D —lV) I'p (1V)Cu (1V)
X&(—P Q —»M'+gp') . (2.25)

M'
Comparing with (2.24), we find

The result of the angular integration in (2.29) is
conveniently expressed in terms of the quantities

a=S+-'fQ f'(TrT) —-'f Q f'(N 7 N)/f Nf'

p= fQfV N/fNf, (2.31)
p=-,o fQf'(N T N)/fNf' —-'fQf'(TrT).

Then
3»'g'u(D —1V)

u(D 1V) Iml'—p(x)Cu(1V) =+
4(2~)pv'x INI

t B+1~
(n+PB+yB') ln

f

&B—1)

2(P+VB)—Cu(1V) (2 32)

ImFg(x) ImGg(x)

GpPp

2gpi '
fFo

MpS= p'Foie $——1V $ —
f

1—
2 &

where
f Q f'= (x—(M —u)')(x —(M+@)')/4x. A calcu-

lation of F&(M') and G&(3P) will require the integral

In order to obtain expressions for ImF2 and ImG2 we
must express (2.31) in terms of (iy $) and (1V $). The

3gp~p Q
0(~—(M+@)') (2.26)

necessary results are

8»gx(x —M')

1 I
" L(x' —(M—p)')(x' —(M+@)')]'

J1=— dS
(~+a) ' x'(x' —M')'

1 pMy
(2.27)

2»M' (2p&
Using J1 we have, therefore,

+-..'v'Go
f

1+
gx) '

V N=1V $[ 2MFo(1+—1Vo/gx)

X (1—2Qo/gx)+ p,'Go(1+1Vo/gx)],

(TrT)= 2Fpiy $—(2M—/x)FpN $,

N T N= —2MFo(1+1Vo/gx)'1V $

(2.33)

Pp Gp

Fg(M') Gg(M') 3g2p2

~1
16~

3g (p ) $M)=+
32pr' (M) (2p)

Finally, the combination of (2.23), (2.32), and (2.33)
yields expressions for ImF& and ImG2.

The total imaginary part of F(x)L=F&(x)+Fp(x)],
denoted by ImF, (x), is obtained by performing the
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analytic continuation to the physical Riemann sheet,

—3g ~o
ImF, (x) =

8~+x
+ |t(x—(M+p)')

.M' —x 4e'

+L~'+lQI'(1 —&')j ~(x ~)e((M+~)' x)—
2n

+—tan —'l le(x —(M+p)'), (2.34)E~)

and 6 is the relevant pion-nucleon phase shift.
In contrast to the scalar case, Eq. (2.34) is not

convergent, due to the term 2
l
Ql/4m', and thus does

not provide an eigenvalue condition for determining
the binding energy. This is not surprising since it is
well known that a zero range wave function will lead to
divergences for the expectation value of the Hamil-
tonian. It will be shown that our approximate expression
for the absorptive part of F is closely related to a zero
:range approximation in Schrodinger theory. We would
therefore expect that such difficulties would disappear
if F(l) rather than Fp(l) were inserted into Eq. (2.22),
since this is equivalent to keeping some of the higher
meson exchange effects. This should then permit a
consistent calculation of the binding energy. However,
the one pion exchange approximation allows a determi-
nation of the asymptotic (D S) ratio p for the deu--

teron. In particular, the dispersion relation for G(x)
will permit us to express G(x) as a linear function of
Fp and Gp, and thus obtain the ratio Gp/Fp which is
directly related to p. This calculation will be presented
after a discussion of the nonrelativistic limit of the
vertex.

3. THE NONRELATIVISTIC WAVE FUNCTION

The connection between the vertex F(x) and the
Schrodinger wave function p has been discussed in
reference 17 and more generally by Blankenbecler. "

' R. Blankenbecler, Nuclear Phys. 14, 97 (1959).

where, as before, E= its an—d a=M'+2p, (p+2n). Of
course, an analogous expression can be obtained for
ImG, (x).

In the foregoing discussion, we have neglected pion-
nucleon rescattering effects in the intermediate sta, tes.
It is a simple matter to include these rescattering
corrections, at least in an approximate manner, as

.follows. It is clear that only one angular momentum
and isotopic spin state is relevant, the P;; state. An
approximate expression which satisfies unitarity and
retains the structure of the Born approximation is
obtained by replacing g' in the absorptive part by
g' expL2 Red (x)j, where,

dx'S(x')
~a(x) = (x—M'), (2.35)

& ( +„)' (x x—ie) (x —MP)

In particular, it has been shown that, aside from trivial
normalization differences,

F (*)= (y+ ')4 (y) = d'q V(p —q)4 (q'), (3.1)
(2s)' ~

where, x=M' —2(y+n'), y is the square of the relative
momentum, and n'=Me. From the dispersion relation
for F(x), P(y) is expected to have a cut for y (—(@+a)'.
It will be shown that this is the case for a restricted
class of potentials.

It is clear that the type of potential yielding results
in closest agreement with Geld theory is the Yukawa or
a linear superposition thereof. Therefore, let us try to
solve the Schrodinger equation (3.1) with a wave
function and potential of the form

1 p" ImI'( —y')
(y+~')0(y)=F(y)=- ' dy'

7l p~ y'+y
(3-2)

I'(y) = —(2~)'~Ly+p'3 '.

Defining ImI'( —y') =-~(y' —n')o. (y') leads to

(3 3)

0(y) =
E;." o.(y')

dy'
y+ Js' y+y

(3 4)

where the asymptotic normalization E has been dehned
as

dy' ~(y'). (3 3)

which shows that indeed, I'(y) has the representation
(3.2). Thus it is seen that the bound-sta, te
function has a pole at y= —n' and a cut from (—p')
to (—~).

The equation for 0 (y) is easily determined to be

y&(y —n')0 (y)8(y —P') =m-X t dy'
0 p2

Xo (y'){&(y—(u+n)') —8(y —((y')&+y]')). (3 7)

It is clear that p=p+n, a result in agreement with the
anomalous threshold found in the field theory case.
It is interesting to note- that one can derive a very

This relation will yield the eigenvalue condition for the
Schrodinger equation.

Substitution of (3.4) into (3.1) and performance of
the angular integration yields

Qcj

~
1 pQO

F(y) =2prX ' dy' o (y') ds dq
Js. ~, J,
X{Lq'+ys(1 —s)+p's+cx'(1 —s)j—'

—Lq'+ys(1 —s)+u's+y'(1 —s)l-'), (3.6)
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similar held theoretic equation if in the evaluation of
the scattering matrix M, Eq. (2.6), Po is replaced by
t.he appropriate P(x) in each of the two terms. The
resulting dispersion relation is analogous to the Bethe-
Salpeter equation in the ladder approximation. This
replacement also improves the convergence properties
of the dispersion relations as discussed at the end of
Sec. 2.

It is possible to determine the solution to (3.7) in a
simple iterative form. It turns out that in order to
calculate 0(y) on the left-hand side of (3.7) for, say
(IV+1)p+n) y') IV44+n, iV=1, 2, , it is suflicient to
know 0.(y) under the integral for y*(lVI4+n Th. us
knowing 0(y) in the lowest region in y enables one to
calculate it in successively higher regions by simple
quadratures. The boundary conditions to be imposed
on 0(y) are obviously that it must be chosen to be
continuous and to suffer discontinuities in slope at
y*=iVp+n. Physically, of course, this would corre-
spond to the anomalous threshold for the exchange of
S mesons.

For (244+n))y') (p+n), we have

(y —4i') o (y) =7r7iE/y l. (3 g)

Comparing this relation with Eq. (2.11), which ex-
presses ImF(x) for scalar particles, shows that they are
of identical form for small y. An analogous result holds
for the spinor. case. Thus the one-pion exchange
contribution yieMs just the Yukawa potential in the
nonrelativistic limit. Corrections to this result will be
discussed shortly.

It is to be noted that the bound-state wave function
g agrees with the field theoretic result in the anomalous
region and further, p has nothing but anomalous
thresholds. This should be the case, since the Schrod-
inger equation is expected to be a valid description
only if real particle production (or physical thresholds)
are unimportant. Thus, the fact that the bound-state
Schrodinger wave function is purely anomalous is to
be expected.

Nambu has pointed out a very interesting example
of the importance of anomalous thresholds in assuring
a Schrodinger or Dirac description of a system. If one
tries to calculate the electromagnetic structure of the
hydrogen atom by the usual dispersion approach, there
exists an anomalous threshold until the hydrogen atom
mass 3fH, the proton mass 3f„, and the electron mass
M, are related by Mn'=M„'+M. 2. This requires that
the charge on the proton be 137e, in the static limit.
Thus the breakdown of the Dirac equation and the
disappearance of the anomalous threshoM are two
ways of describing the same phenomena. Therefore it
would seem that a, hydrogen atom with Z) 137 must
be described field theoretically. It is tenipting and
perhaps not unreasonable to infer from this discussion
that the vertex description would provide a calcula-
tional scheme for all Z.

ImP( —y) =4r(y —n') (y). (3.10)

If it is assumed that the potential can be written in
the form suggested by Charap and Fubini, "

1
I
" v(M')

V(y) = —(2n.)9 —+ dM' —,(3.11)
y+p' ~4„2 y+M'

then the Schrodinger equation for y')2ii+n leads to
[compare with (3.7)]

1(u'—e) ~

y'(y —n')0 (y)/4' =1V 1+)| dM' w (M')
4p 2

(w&—s)'
dy' (y') 1+0([y'—(y')'j' —4~')

' (v+~)'

tu'-' —(u') ~12

X I dM'n(M') . (3.12)
LJ4 2

"P. Noyes and D. Wong, Phys. Rev. Letters 8, 191 (1959),
have also noticed a similar condition for the partial wave scat-
tering amplitudes.

The boundary condition stating that I' of infinity
must vanish does not permit the complete neglect of
the negative cut."It is interesting to see what happens
if one approximates the effect of the negative cut in
the wave function by an appropriately placed pole.
According to (3.4), p then becomes

e(y) =lV(v' —~')[(y+~') (y+v') j ', (3 9)

which is recognized as the well-known Hulthen deuteron
model. It is found for this model that one must choose
y = 7e, which places the pole at the onset of the
two pion cut, a most reasonable result. One could
attempt to generalize this to the relativistic case
by replacing the cut in x by a pole chosen to agree with
(3.9) in the nonrelativistic limit, thus yielding a
covariant Hulthen deuteron model. An obvious irn-
provement would be to take the one pion cut into
account exactly and to simulate the e8ects of the higher
meson exchanges by a pole.

Thus it is possible by this scheme to calculate the
deuteron wave function, and hence, the triplet potential,
by dispersion methods. This formulation provides not
only the potential but also the equation in which it is
to be used, at lea, st for the calculation of bound-state
properties. There seems to be no ambiguities con-
cerning a velocity-dependent force if one accepts (3.1)
as a, definition of the potential, Hence we are proposing
a potential which is chosen to yield the bound-state
properties, not the low-energy scattering properties, of
field theory.

In detail, one would calculate the potential as
follows. From dispersion theory the absorptive part of
I'(x) is calculated, which involves the analytic continu-
ation process described in reference 12. Then from the
definition of o (y), we have
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If we restrict our attention to the two-pion cut, (3p+e))y~) (2p+a), then this reduces to

(V&—0:)~

y&(y —n')0 (y)/~XÃ=1+ ~ dM2n(M')
4 2

be retained, however, because they tend to compensate
for the errors incurred in taking the nonrelativistic
limit. Returning to (2.32) and (2.33), we 6nd for the
terms contributing to G:

(~+I&+v&') 0
(u&—e) ~ dy'

"(.+-)* (y')'*(y' —~')
3 (y+p')'= —MF0 ——— +y'Go

y 4 y2
(4.2)

=y ImI'( —y)/vr9, 1V. (3.13)

A calculation of ImF in this variable range then
determines the triplet potential weight function n(M')
in the two pion exchange region. Because of the effect
of the normal threshold at x= (M+@)', which occurs
in the two-pion exchange anomalous region, this
definition of the potential would be expected to yield
physically difI'erent results from the CF potential.
This difference should be small except for small dis-
tances, where, of course, an evaluation considering
only two-pion eGects is poor. Apart from this small
effect, which tends to weaken the one-pion force at
small distances, the potential considered here is very
close in spirit to the CF potential. The essential point
is that one subtracts from the S'-pion exchange contri-
bution, the iterated eRects of all smaller number of
exchanged pions. Finally, if one were to approximate
the higher meson exchange contributions by a pole,
the eGect on the potential is easily calculated.

4. CALCULATION OF p PARAMETER

In order to illustrate that the preceding discussions
leads to an evaluation of the various bound state
parameters, we shall obtain the asymptotic (D—S)
ratio, p, for the deuteron. As mentioned at the end of
Sec. 2, if we had evaluated the higher meson exchange
contributions, we could also calculate the binding
energy, but in the present approximation this would
not be a meaningful result.

As pointed out earlier, we begin by determining Go

as a linear function of Fo and Go, and thus the ratio
Go/Fo, which is related to p by"

Gp/Fo= —3p/2e+ (p'). (4 1)

Rather than working with the entire expression for
ImG(x), we propose to evaluate p by keeping only the
Schrodinger limit. This means we take the nonrelativ-
istic limit of ImG(x) in the anomalous region and
extend it to infinity. The renormalization eGects will

where x=M'+2(y n'—) W. e will neglect certain n'
terms, and thereby commit a small error. Thus, setting
p = 3Q')

3 (y+~')'
Go= —MFO-

32Mvr "p„*)3 y~ 4 y'

or

p+ RG

2p

3g' ( p ~' ]My
(

—
/

Go In( —
/, (4.3)

32~2 EM) (2„)

Go —1.40 g' (p ) g'—1+ (0.24)
~

—)—
Fo Sltl, 4' ~ M) 4m

y2g2
+(0.146)

I

—
~

— . (4.4)
&M) 4~

Finally,

p =+0.030

for g'/4s =14. This result is in rough agreement with
other estimates of the p value based on investigations
of the two nucleon scattering problem. "

A more accurate evaluation of the dispersion integral
using the relativistic absorptive part leads to a p value
approximately ten percent smaller than that obtained
above. The rescattering corrections of Eq. (2.36), on
the other hand, tend- to increase this value by about
five percent for a reasonable phase shift. Therefore the
net eGect of these corrections is a slight reduction of the
asymptotic (D S) ratio given above-.

It is interesting to note that the result (4.4) depends
only on fundamental parameters describing the pion-
nucleon system, and the deuteron binding energy. This
is to be compared with the results of reference (20)
which explicitly contain experimentally determined
nucleon-nucleon scattering parameters.

"D. Wong, Phys. Rev. Letters 2, 406 (1959); M. Goldberger
and S. MacDowell (to be published).


