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Starting from the analytic structure of partial wave amplitudes predicted by the Mandelstam representa-
tion, relativistic formulas are derived for the energy dependence of the phase shifts for nucleon-nucleon
scattering, neglecting inelastic processes. These formulas depend on integrals over functions defined by a
(numerically) soluble integral equation whose kernel is determined from the absorptive part of the amplitude
in the nonphysical region. The contribution to this kernel from single-pion exchange is explicitly exhibited
and the contribution from two-pion exchange is calculable. A generalization of the formulas to include
phenomenological constants representing the unknown contribution of multimeson and other particle ex-
changes is given. The dependence of the phase shifts on these parameters is suKciently simple to allow the
formulas to be used for the least-squares fitting of empirical data. Further, these constants can be varied
independently, and as much empirical information as is desired can be incorporated into the formulas without
destroying this independence. In the case of coupled states, the phenomenological formulas satisfy unitarity
only approximately; this approximation can be removed by a subsidiary calculation, which destroys the
independence of the parameters for these states. Because of the neglect of inelastic processes, the range of
validity of the formulas is expected to be from 0 to approximately 400 Mev.

I. INTRODUCTION
" 'N order to make use of nucleon-nucleon scattering
~ - data at more than one energy to cut down on the
multiplicity of phase shift solutions often obtained when
analyzing data at a single energy, and to make use of
the charge independence assumption to assist in the
analysis of rt-p experiments for the isotopic singlet
phase shifts, it is necessary to make some assumption
about the energy dependence of the phase shifts. It is
clearly desirable that any formula used for this purpose
should: (1) allow any phenomenological parameters
introduced to be given a theoretical interpretation;
(2) allow these parameters to be varied independently;
(3) contain all that is currently calculable from meson
theory of the two-nucleon interaction; (4) be flexible
enough to incorporate new theoretical and experimental
information as it becomes available without requiring
recoding of the machine calculation used to determine
the phenomenological parameters from experiment. We
believe that the formulas developed below meet all
these criteria in a straightforward way. Although the
practical necessity which led to their development was
connected with the problem of using large electronic
computers to analyze scattering data, the formulas
exhibit in a very simple way the structure of partial
wave amplitudes predicted by the Mandelstam repre-
sentation. We will see that, although we deal with a
velocity-dependent interaction, its structure is ex-
pressible in terms of a simple function which in various
regions corresponds to the exchange of systems of
different mass, and which therefore can be roughly
pictured as giving both the strength and the localiza-
tion of the interaction energy in configuration space.
We therefore believe that this simplified discussion
may be of interest to those concerned with the two-

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

nucleon problem, even though some may not be di-
rectly interested in the problem of data analysis.

II. THEORY

It has been conjectured by Mandelstam' that two-
particle scatteriDg amplitudes can always be written
in terms of a double spectral representation whose
density functions are nonzero only in certain regions
which can be determined from the mass spectrum of
strongly interacting particles. Although this repre-
sentation has yet to be derived from the postulates of
local field theory, it is valid to at least sixth order in
perturbation theory' and many of the necessary con-
ditions for its validity have been proved to higher
orders. It is rigorously valid for the Schrodinger equa-
tion with any potential which can be represented by a
superposition of Yukawa potentials. 4 If one projects
out a particular partial wave amplitude from a system
of two equal mass particles, this representation pre-
dicts' that this amplitude is a real analytic function
of q', the center-of-mass momentum, except for two
cuts on the real axis. For q'&0 the discontinuity across
the cut (twice the imaginary part of the amplitude) is
known from unitarity up to the lowest threshold for
the production of an additional particle. Above this
threshold the 'unitarity 'condition will couple this
amplitude to !amplitudes for 'multiparticle systems
which we are at present unable to calculate. The funda-
mental approximation made in this approach is to
ignore this coupling. Fortunately we know from

' S, Mandelstam, Phys. Rev. 112, 1344 (1958).
2R. J. Eden, C. Enz, and J. I.ascoux, Bull. Am. Phys. Soc. 5,

284 (1960).' R. J. Eden (private communication).
4 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.

Trieman (to be published).' See G. F. Chew, Annual Reoiew of Nuclear Science (Annual
Reviews, Inc. , Palo Alto, CaKfornia, 1959), Vol. 9, p. 29 for a
general discussion and for references.
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Phillips that for the two-nucleon system the experi-
mentally determined inelastic amplitudes are small
enough so that the elastic amplitude may be accurately
described by real phase shifts up to about 400 Mev,
which gives us a useful range of applicability. It should
also be noted that if inelastic processes are consistently
ignored, the Mandelstam representation is rigorously
true to all orders in perturbation theory. '

For q2(0, the Mandelstam prescription tells us that
the cut will start at q'= —E2/4, where E is the lowest
energy state of the particle-antiparticle system with the
same quantum numbers as the scattering state we are
considering. If, as in the case we consider, this system
is a single particle, the discontinuity is just twice the
imaginary part of the relativistic Born approximation
with the coupling constant interpreted as the renor-
malized coupling constant. Additional cuts will start
according to the same prescription whenever more
massive states can be reached from the particle-
antiparticle system. In our case, the lowest state is the
pion; the next is the two-pion system, which can also
be treated by means of the Mandelstam representation.
Explicit formulas for the two-pion discontinuity have
been derived by GoMberger, MacDowell, Grisaru, and
Wong. ' The three-pion state which comes next is a
function of 6ve relativistic invariants and is beyond the
reach of present techniques unless we approximate it
by the bound state suggested by Chew' or the neutral
vector boson proposed by Sakurai. "We conclude that
for the present the portion of the cut beyond q'= —9ps/4
will have to be treated phenomenologically. This has
the comforting aspect that it is only this region of the
complex plane for which reasonable doubts still remain
as to the validity of the Mandelstam representation.
Further, for fixed angular momentum states and equal
masses, Bjorken" derived the analytic structure just
described to all orders in perturbation theory, without
restriction to elastic processes. Consequently, we con-
sider the present application to be largely independent
of the ultimate status of the more general theory. We
can also hope that this region may be represented by a
reasonably small number of phenomenological con-
stants for the calculation of scattering amplitudes over
an interesting range of energies —but this remains to
be seen.

In order to apply our knowledge of the analytic
structure just described to the calculation of partial
wave amplitudes, we need to know precisely which

partial wave amplitudes possess only the Mandelstam
singularities. This has been discussed in detail by
Goldberger, MacDowell, Grisaru, and Wong. They

R. N. J. Phillips (private communication).
7 S. Mandelstam, Phys. Rev. 115, 1752 (1959).

M. L. Goldberger, S. W. MacDowell, M. Grisaru, and D.
Wong (to be published).' G. F. Chew, Phys. Rev. Letter 4, 142 (1960).' J. J. Sakurai, Ann. Phys. (to be published)."J.Bjorken, Bull. Am. Phys. Soc. 4, 448 (1959).

q' t" Al(ps)
D(q') =1—— dp'

2r& s P(P'+M')'(P' —q')
(3)

where we have made use of the arbitrary constant given
us by taking a ratio to make a subtraction in the D
equation. Substituting the expression for X into the
equation for D, we obtain'4

il42

D(q') =1+q' dp'K(p' q')r(p')D(p2)

where

1
lt (ps q2)

s(s'+M') l (s'—q') (s' —p')
(3)

Lq'(P') —&(q')3,
p2 q2

2 tan 'p(p'+M')/( —p'))l
T(p') =—

~L—P'(P'+M') j' (6)

Although at hrst sight there might be singularity at
q2= —M2, the kernel and its derivatives are in fart
continuous at this point, and h has only the re-
quired Mandelstam singularities. Making the useful
change of variable q'= —ius/4y, D(q') =f(y), and r(qs)

u S. Mandelstam (private communication).
"H. P. Noyes and D. Y. Wong, Phys. Rev. Letters 3, 191

(1959).
'4 This kernel differs from the similar expression given by G. F.

Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); and
University of California Radiation Laboratory Report UCRL—
8728 (unpublished), in their discussion of the pion-pion problem
because the scattering amplitude is normalized at a different point.

conclude that it is true for [(q'+Ms)/q']&e" sin8 =h(q').
Since, according to our fundamental approximation, the
phase shift is real for q2)0, we have immediately that
Imh '= —q/(qs+M2)& for this cut. We also know that
Imh=2rr(q2) for q'& —stps, where r is some function to
be computed from meson theory. Since Mandelstam
has shown" that for a function with this structure (i.e.,
real phase on the right and a left cut), we can always
make the decomposition h(q2) =E(qs)/D(q2), where X
has only the left cut and D the right cut, we see that

qE(q')
g2+ 0 ~

(q'+M')'

XmN(qs) =2rr(qs)D(q') q'& —-'lis (1)

If we can assume that h vanishes at infinity (see below),
we can immediately write down the dispersion relations"

,r(p')D(P')
X(qs) =

~

dp'j P2 q2

and
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= —~~G'yR(y), we obtain

62~ ~1 ~(s) —~(y)
f(y) =1+ ds R(s)f(s)

4M~ p s y

t (s) =2s(M/p) f tan 'L4(M/p)'s —1]l}/

s L4(M/p)'s —1)'*.

Here 6' is the renormalized pion-nucleon coupling con-

stant, 3f the nucleon mass, and p the pion mass. Since
for q')0, q'T(q')=iq/(q'+M')&+L(q')

2q in(L(M2+q')-'*+qj/M}
I.(q') =

s (q'+M') 4
(8)

we can write down the phase shift in the physical region
in terms of the solution of the integral equation for
f(y) as

(q'+M2) &

tan5=

G' t R(y)f(y)dy

4 "e 1+4yq'/p, ' x(q')

G'q' l'Rb)f(y)~(y), t" R(y)fb)dy d(q')
,'L(q')—G'—

MIJ,'~ o 1+ 4yq'/y' ~ o 1+4yq'/p'

(9)

(q'+M') & ( 4q')
tangle~=~G' —ln( 1+—[,

4q' t. p2 )

Our theoretical problem is therefore reduced to com-
puting as much as we can of the function r(q')
= —t~yG'R(y), specifying the rest phenomenologically,
and solving Eq. (7). Experience shows that this equa-
tion is readily soluble numerically, so that in the future
the specification of a meson theory for nuclear forces or
of a phenomenological model could be considered to
consist of the specification of R(y) for each angular
momentum state. From the above discussion, we see
that the ranges of the variable y can be directly related
to the mass-energy of the quanta being exchanged;
therefore, by the uncertainty principle, they can be
roughly considered as specifying the range of the
interaction, while the magnitude and sign of this
function tells us the eBective strength of the interaction
at that range and whether it is attractive or repulsive.
Thus, although we have abandoned the static potential
picture of the interaction, we still have a model with
intuitively descriptive physical properties.

So far we have not discussed the convergence of the
integrals in our dispersion relations. Since we know that
6& must go to zero as q2t+i~ we can always make l su
tractions to guarantee this property; as one subtraction
insures convergence, even if the phase shift goes to a
constant value at infinity, the problem arises only for
S waves. The paper already referred to' shows that the
full triplet amplitude requires no subtraction for con-
vergence, and, if known, determines the value of the
singlet amplitude at q'= —3P. Therefore we can make
a subtraction at this point and determine the singlet
amplitude with no arbitrary parameters. This clears up
a puzzle which has existed about the relativistic Born
approximation. Since the one pion interaction function
for S waves is given by" R(y) = 1, the Born approxima-
tion to Eq. (9) Lobtained by letting f(y) = 1 and d= 1$
gives

rather than the relativistic Born approximation'5

(q'+M')'* p ) 4q )
tanbo ——~G' —ln~ 1+—

~

—1 . (11)
q 4q' ( p')

If we make the subtraction at q'= —M', using the
Born approximation for the value of the triplet ampli-
tude at this point, we obtain Eq. (11). Whereas Eq.
(10) gives an S phase which goes to zero as q (and in
fact is just the Born approximation for a static Vukawa
potential), Eq. (11) has the unreasonable threshold
dependence q'. From the above discussion, however, we
see that this is due to taking an unrealistic value for
the amplitude at q'= —3P. In practice, since the point
q'= —3P is well beyond the region where we can calcu-
late r(q') from theory, we will make the subtraction
instead at zero kinetic energy, fitting the empirically
known singlet scattering length and insuring correct
threshold behavior.

We can also clear up another question by this dis-
cussion. In con6guration space, the static approxima-
tion to single pion exchange gives a repulsive delta
function at the origin (the Fourier, transform of the
constant term) in addition to the Yukawa potential.
It has been conjectured that this repulsion might be
spread out by relativistic effects to form a "hard core."
However, since we now see clearly that this repulsive
interaction can only be revealed (roughly speaking) by
particles of sufhcient energy to explore dimensions of
the order of a nucleon Compton wavelength, it is much
too small to account for the physical effects tha, t the
hard core has been used to explain. Consequently we
expect that these effects have their origin in some
dynamical feature of the system, such as the three-pion
state or the appropriate neutral vector boson of
Sakurai, rather than coming from relativistic kine-
matics. We wish to emphasize in this connection that
the present treatment includes relativistic effects ex-

'5 R. CzifBa, M. J. Moravcsik, M. H. MacGregor, and H. P.
Stapp, Phys. Rev. 114, 330 (1959).
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actly, insofar as inelastic processes and electromagnetic
interactions can be ignored.

where the points y, must be less than —',, and E(y) is
now to be interpreted as that part of the interaction
which we can compute from meson theory. Since the
points y; are arbitrary, we can equally well take our
parameters to be n;=R,A;D( —ti'/4y, ). Then the func-
tion D becomes a sum of independent terms

D( t '/4y) =f(y)+—2' ~'g'(y), (13)
where f(y) is still the solution of Eq. (7) Lwith the new
interpretation of E(y)7, and the g; are defined by the
equations

t(y')-tb) G't ~' t(s)-t(y)
g'(y) = + « ~(s)g. (s) (14)

4M p s—y

The phase shift is then given by

where

(M'+q')-:
tan6=

E(q')+2' ~A(q')

G(q')+2' ~'&(q')

&(y)f(y)
E(q') = -'G' dy

1+4yq /&
'

1 r
" ~(y)g'(y)

J",(q')= +~iG' ~ dy-
1+4y,q'/ti' p 1+4yq'/ti'

G't q' p' &b)fb)t(y) (16)
G(q') =1+,i, , dy I (q')E(q'), —

3fp' ~ o 1+4yq'/ti'

III. PHENOMENOLOQICAL EXTENSION

We have noted that present techniques allow the
function r(q')= ——„'G'yR(y) which specifies the two-
nucleon interaction to be calculated only for y) 9.
Therefore we could introduce phenomenological pa-
rameters simply by specifying R(y) below this value
(e.g. , by power series). This has the practical dis-
advantage that whenever a parameter is changed, a
new solution for the integral equation must be calcu-
lated, placing the least squares adjustment of the
parameters beyond the reach of any electronic com-
puter likely to be developed in the near future. But
note that in practice the solution of the integral equation
is achieved by replacing the integral with a finite sum.
This is equivalent to replacing R(y) by P,A;E(y, )
)&6(y—y,), or replacing the continuous cut by a finite
number of poles. Therefore, if we wish to introduce a
finite number of parameters for the unknown part of
the cut, we can rewrite Eq. (7) as

~.D(—p'/4y') Ltb') —t(y)j
D( —

t '/4y) =1+
4&V '

G'ti p' t(s) —t(y)
~ d. Z(s)f(s), (12)

4M~ f)

4q't(y, )/t ' G't q' t' &(y)g'(y)t(y)
&'(q') = +

1+4y;,q'/ti' tlat't'"o 1+4yq'/u'

dy —/ (q')F, (q').

We see that this equation has the desired properties:
(a) the parameters n, are independent and (b) the
functions X&.", F,, 6, H; can be computed prior to and
independent of the least squares adjustment of the n, .
Of course the positions y; are still arbitrary, except for
the requirement that they lie in the range 0&y& p for
—,
' if we have not computed the two-pion R(y)j. If it
is indeed true that over some finite range of energies
the scattering amplitude is sensitive only to some aver-
age feature (or features) of the multiparticle cuts, our
predictions should be insensitive to these values. How
good this approximation is can only be tested by actual
calculation. Ke note that since the parameterization
corresponds to an even number of subtractions, we
have assumed that the phase shift goes to zero at
infinity. We can, however, obtain the case of a constant
phase shift at infinity by simply taking one of the y;
to be zero.

One feature of this choice of parameterization should
be stressed. If we consider the integrals in Eqs. (15)
and (16) to be replaced by finite sums, we have X poles
in the physical sheet of the Riemann surface and 2E
parameters, (i.e., their positions and residues). At
least in the nonrdativistic limit, there can only be Ã
poles on the unphysical sheet. If we had chosen instead
to determine the parameters directly by making sub-
tractions using empirical values of the phase shift, we
would have no such guarantee, and might end up with
more poles on the unphysical sheet than on the left
cut. Then, if we let the interaction go to zero, some of
these would remain, giving a finite scattering amplitude
and violating our physical assumptions. This situation
would correspond to the ambiguity pointed out by
Castillejo, Dalitz, and Dyson"; our parameterization
insures that this cannot happen. We do, however, have
to check that the values of a; determined from experi-
ment predict no poles other than those we have intro-
duced. These would be either ghosts or bound states,
depending on the sign of their residues, and would not
be consistent with our assumptions. [Of course we
should get the deuteron pole automatically if E(y) is
physically correct; in practice we could either intro-
duce this pole explicitly, or obtain it by our phemeno-
logical parameters. ] Note that since we have achieved
independence of the n, by not taking them to be simply
the residues of poles in h(q'), we will have to calculate
these residues if we wish to find out what approximation
to the multimeson cut our parameters imply.

It is perhaps of interest to point out the connection
of our formula with the at-first-sight entirely difkrent

"L.Castillejo, R. H. Dalitz, and P. J. Dyson, Phys. Rev. 101,
453 (1956).
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TAnrE I. Contribution of single pion exchange to the interaction function R(y) = —4r(q'}/yG'= —4 Iinks(g'}/nyG'
for 0&y&1; y= —g'/4q'.

State
CoeKcient

y4

1S
'po
1P

lD
3D2
1F
3F3
lG
'G4
'II3
31Ig

3Sl
gl

'Dl
3p2
Q2

3F2
3D3
Q3

'G3
3F4

4

3H4
'G5
~5

I5

1—1—3
0
1
0—3
0
1
0—3
0
1
2&

2—2/5—6&/5—3/5
9/7
3t(6/7)
12/7—4/9—5&(2/9)—5/9
15/11
30&(3/11)
18/11

6
1—6
9

36
6—20—30

90
15

—2&(3)
—3

3/5
6&(9/5)
12/5—36/7

-3&(108/7)
-60/7

10/3
5i(20/3)
20/3—180/11—30&(135/11)—315/ii

6
12—90—20
90

120—630—140

-6'(2)
—2

30/7
3& (300/7)
180/7—20/3—5t(100/3)—160/9
480/11
30&(1050/11)
1680/11

60
15—140—315

1680
420

—3&(30)
-30/7

35/9
5&(490/9)
280/9—840/11—30& (2640/11)—3780/11

70
168—1890—504

-5~(28)—14
378/11
304(3396/11)
3780/11

756
210

—30~(126)—1386/11

approach through dispersion relations at fixed angle
given by Cini, I'ubini, and Stanghellini" in the first
application of the Mandelstam representation to
nucleon-nucleon scattering. Since 1.(q') —+ 0 in the
nonrelativistic Limit, our formula states that q cot6 is a
rational function of q, which was the practical approxi-
mation they used. In fact, if we represent the one-
meson cut by a single pole at y= 2 with the appropriate
(y-average) residue, and the multimeson cut by a
single pole adjusted to fit the scattering length and
effective range, we obtain exactly their formula for the
'50 phase. Fubini and Stanghellini" have also given
similar expressions for the 'I' phases. While this method
is quite useful for giving simple formulas valid over a
limited energy range, we find that it is computationally
simpler to solve integral equations than the equivalent
algebraic equations if more than three or four poles
are used.

So far we have done nothing to insure that tanb~ goes
to zero as q"+'. lf we knew R(y) exactly, this property
would be guaranteed. Since we do not, we are at
liberty to determine l of our phenomenological pa-
rameters o,; by this requirement. As this is equivalent
to making l subtractions at q'=0 in our original dis-
persion relations, this will correspondingly suppress the
contribution of the (unknown) portion of the cut for
large q'. This is equivalent to the well-known fact that
higher angular momentum states are sensitive only to

the longest range part (lightest quanta) of the inter-
action. We can also determine additional a; by requir-
ing the phase shift to take on empirically determined
values at specific energies. This amounts to a redefini-
tion of the functions E, F, G, H in Eq. (15), and reduces
the number of parameters without destroying their
independence. Explicit formulas are given in the
Appendix. The values of R(y) for single-pion exchange
through J=5 are given in Table I. We note that if we
use only the l conditions at q'=0 and leave no free
parameters, our formulas give a straightforward answer
to the question of what unitary expression should be
used for the scattering amplitude due to single-pion
exchange.

We have so far ignored the coupling between triplet
states of the same j but different /. In terms of the
"nuclear bar" phase shifts defined by Stapp" with the
simplified notation 6,~»,;—=6~, e&=—e, we must discuss
the amplitudes

h~(q') = (e"'+ cos2e 1) (M'+—q') */2i q,

h&(qs) (ei(5++5 ) sin2e)(M2+q2) —*'/q (17)

We see that if we neglect the coupling parameter t. as
a first approximation, the h~(q') are precisely of the
form already considered, so we can compute 8~ and 6

by the method developed above. As has already been
noted by Wong, " the Stapp form for the coupling

' M. Cini, S. Fubini, and A. Stanghellini, Phys. Rev. 114, "H. P. Stapp, T. Ypsilantis, and N. Metropolis, Phys. Rev.
1633 (1959). 105, 302 (1957).' S. Fubini and A. Stanghellini (private communication). "D.V. Wong, Phys. Rev. Letters 2, 406 (1959).
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amplitude then tells us this function has a known cut
on the left and a known phase on the right. But our D
functions have the negative of this phase on the right

and are real on the left, so following Omnes" we can
immediately write down an exact expression for hp(q'),
and sin2e.

(q'+3P)
sln2& =

1+4yq2/p2

(q2+3P) sinb+ sin8 ~P' r
' E(y)D+(—w2/4y)D (—v2/4y)

dy
q2E~X ~ 1+4yPq2/p2 "0

(q'+3IP) sin8+ sin5

q21V~
+~(q')+2 ~"~"(q')+2 ~' &"(q')

' 1+4ygq2/p2 '4 'b

+P n,+a; H;20(—q2) . (18)

In this expression 1V" or D+ are defined by Eqs. (13)
or (15), and E', ll', G', H' by

~' &(y)f'(y)f (y)
+0(q2) —iG2 -dy,jp 1+4yq2/p2

P,p (q2) —XG2
aJ p

'~(y)c"b)f b)
dy,

1+4yq2/p2

~' ~(y)f'(y)r' (y)
G;0 (q2) = -,'G' dy,

J p 1+4y q 2 / p 2

(19)

E'(pp, q2) =- ' dS2
2 sin 26

1+
cos28 cos2e —1

~(2'+~')'(~' P') (21)—
The equations can then be solved to obtain better
values for 8 . Since Imh+ ' diverges as q/sin20 as q' ~ 0,
we cannot use this method as it stands without a
mathematical investigation of the meaning of the con-
tour integral defining E. Alternatively, for either 8+ or

we can use the nonlinear integral equation

Rehg(q2) =-', (q2+M2) l sinpbg cos20/q

«(p') & r" dP'
dp2

p'-q' ~jp p

(P2+M2)'(cos25~ cos20 —1)
(22)

(P' q')—

t' &(y)g'+b)g' (y)
H, '(q') =-,'G' t dy.

1+4yq'/v'

Having now a erst approximation for the phase shifts
and coupling parameter, we can make use of the exact
unitarity condition for the coupled states. For 8 we
can use

Imh~ '(q')
—sin 2e

, 1+ q2) 0 (20)
(q2+3P) ' cos28 cos20 —1

to compute a new kernel for the D+ equations, namely,

which can be solved by iteration, assuming we know e

and the residues of the phenomenological poles in
r(q'). Knowing 8+ and 8, we can then compute sin20
from Eq. (18), and repeat the procedure until con-
vergence is obtained. However, for the least squares
adjustment of the n; we must clearly remain content
with the first approximation given above if these pa-
rameters are to be varied independently. After the
adjustment to experiment has been carried out, we can
then carry through the iteration procedure just de-
scribed and discover whether further adjustment of the
parameters to conform to the unitarity condition is
required. As before, we can insure the correct behavior
at g'=0 and can fit the phase shifts and coupling
parameter at specific energies by a redefinition of
E, Ii, G, H (see Appendix).

For single-pion exchange it is possible to include
static Coulomb eGects, the charged-neutral pion mass
diGerence, and difI'erences between the renormalized
charged and neutral coupling constants, as will be
discussed in a separate paper by Wong and Noyes. "

CONCLUSION

Ke have shown that it is possible to give explicit
formulas for the nucleon-nucleon phase shifts in terms
of functions which are readily calculable from an in-

tegral equation. This equation depends on meson theory
through a single function for each partial wave, which
is exhibited for single-pion exchange and calculable for
two-pion exchange. Phenomenological parameters may
be incorporated to fit threshold behavior and empirical
phase shifts; the formulas can still be expressed in
terms of functions which can be calculated without

knowledge of the parameters. The parameters are
therefore suitable for a least squares adjustment to
empirical data. The formulas are relativistic and uni-

tary, onsofar as inelastic processes are negligible. Any
field-theoretic description of the two-nucleon inter-

action compatible with the Mandelstam representation
can be incorporated into this framework.

O' R. Omnhs, Nuovo cimento 8, 316 (1958).
"D. Y. Kong and H, P. Noyes, Bull, Am. Phys, Soc. $, 50

(196Q),
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APPENDIX

Assume that (q2+M2)'* tanl/q is to go as q"+' as
q'~0 and to take on E—/ values Xz, at energies
qk2(i+1&k&K). Assume further that we have intro-
duced I phenomenological poles, I&E. Then we can
rewrite Eq. (15) as

where the matrix 5&; whose inverse appears in Eq.
(A-3) is defined by

SI, ——Ii '—' 1&k&k

=F;(qk2), l+1&k&E, (A-4)

1

Ek 1—lG2~ ( 4y/p2)k 1+(y)f(y)dy
0

(A-5)
~1

F,k—1—( 4y, /+2) k 1+1Q2 ( 4y/p2) k—1+(y)g, (y)dy

and Ek ', F,k ' denote the (k—1)st derivatives of
E(q2) and F;(q') evaluated at q'=0; that is

(q2+3P)
tan8=

2 (q')+Q n„B„(q2)
r=1

~(q')+& ~ D (q')

where X=I—E and

~ (q') =E(q')+2 P.F'(q'),

&.(q') =F.(q')+2 O'.F'(q'),

C(q') =G(q2)+P P;H;(q2) L(q2)A (q')—,

(g—1), gk —1

p'. = 2 (~ ')'kP'k&x+. (qk') —F.(q') j
k=Z+1

Z—Q (& ') kFx

D (q') =&.(q')+2 P'.&.(q') —L(q') &.(q').
~1

The coefficients P, and P,„are given by

P;= 2 (~ '),kt xkG(qk') —&(qk')]

(A-1)

(A-2)

(A-3)

The expression for the coupling parameter [Eq. (18)j
can be similarly redefined to insure that sin2e goes to
zero as q"+' and to fit experimental values of sin2k/
sinb+ sinb . In this case, we must assume that the values
p;+, p;,+ have already been obtained by the method
given above. The resulting formulas are lengthy and
not particularly illuminating. Explicit equations in-
cluding Coulomb and mass difference effects are now

being prepared, and will be supplied by the author on
request.

The above approximate formulas for the coupled
amplitudes contain an additional defect beside the
approximate treatment of unitarity. Although the
uncoupled amplitudes have only the Mandelstam singu-
larities, as asserted, Goldberger et a/. ' find that the
coupled amplitudes have an additional kinematic
branch cut starting at q'= —M', if one goes beyond the
one-meson exchange approximation. This does not
alter the validity of the above formulas, but in practice
requires that the iteration which is needed to make the
phenomenological poles consistent with unitarity mouM
also have to include a calculation of this additional
contribution to R(y). Under these circumstances it
would be more elegant to use the helicity amplitudes,
which do not suGer frm this defect, rather than the
Stapp amplitudes. The above parameterization could
equally well be used for the helicity amplitudes, but the
unitarity condition would take a diferent form. An
iteration scheme for this case is given by Goldberger,
MacDowell, Grisaru, and Wong. '


