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but +of as in Eq. (3.4). Here the Hultheu method need
not provide an upper bound while, as we have just
seen, the Kohn method is guaranteed to do so. In this
case, it is no longer true that the Kohn estimate must
be more accurate. Indeed, an example of the reverse
situation is provided by some of Seaton's' results.
Nevertheless, one would certainly use the Kohn prin-

ciple, since it possesses the very desirable minimum
property.

Similar considerations hold when more than one
bound state exists. If no bound states exist case (b) does
not arise and, as we have pointed out previously, ' the
Kohn method should be used to obtain the bound on
the scattering length.
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A configuration interaction calculation, involving thirty-seven configurations and including the (1s)'(2s)'
Hartree-Fock function, has been done for the ground state of atomic Be. Approximately ninety percent of
the correlation energy has been incorporated into the final total energy. The results indicate that the cor-
relation energy is associated with two eftects, namely that of the "correlation hole" as has been observed
for He and that of "orbital degeneracy" (which does not appear in the two-electron He case). The former
eRect is best handled by the Hylleraas approach and the latter by the con6guration interaction method, and
the results suggest that an admixture of the two methods would lead to the most rapidly convergent de-
scription of the exact four-electron wave function. The errors introduced by handling "high-lying" con-
figurations by second-order perturbation theory rather than by exact configuration interaction are also
investigated.

I. INTRODUCTION

HE Hartree-Pock formalism' yields approximate
solutions of the many-electron Hamiltonian.

These solutions are in considerable error if one wishes

to use them to predict almost any physically observable
quantity. Not only are the solutions in error, but small

improvements in the wave functions, as evidenced by
a lowering of the expectation values of the total energies,
will lead to poorer predictions of some of the observ-
ables. The lithium hyperfine interaction' is an example
of this. The two standard methods for improving on
the Hartree-Fock wave function are (1) that of
Hylleraas' where interelectronic coordinates (r,,) are
explicitly included in the wave function and (2) that of
con6guration interaction where the variational prin-
ciple is applied to a trial wave function which is a
linear combination of Slater determinants. The
Hylleraas approach has been very successfully applied
to the two-electron (three-particle) ions" where total
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energies and wave functions of accuracy sufhcient to
assist in supplying information concerning the nucleus
have been obtained. 4 The configuration interaction
approach has yielded much less accurate results for the
same problem. "

The difference between the He Hartree-Pock func-
tion and the exact eigenfunction for the two-electron
(nonrelativistic) Hamiltonian occurs because the
Hartree-I'"ock function inadequately describes the
behavior of the two electrons when they are close
together, i.e., the "correlation hole" is omitted. The
comparative success of the Hylleraas method, when
applied to He, is due to the fact that it supplies a more
rapidly convergent method for describing the "cor-
relation hole. "

Both methods increase in difficulty with increasing
numbers of particles. This increase is most serious for
the Hylleraas approach since the number of inter-
electronic r;; coordinates increases quadratically with
the number of particles while the number of inde-
pendent one-electron (r~) coordinates increases only
linearly. When going from the Hartree-Pock to more
exact eigenfunctions for systems of four or more
electrons there often is, as has been suggested by
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Nesbets and Jorgensen, ' a problem of "orbital de-
generacy" along with that of the "correlation hole. "
We will see that the "orbital degeneracy" problem is
important for the ground state of Be which in this
case involves the near degeneracy of the Be 2s and 2p
one-electron functions (orbitals) . The method of
configuration interaction is the more appropriate way
of handling the "orbital degeneracy. "

The writer has used the method of configuration
interaction for the '5 ground state of atomic Be. The
primary purpose of the work is to investigate the nature
of the problems one will face when attempting to deal
with electronic systems involving more than one doubly
filled shell. The calculation uses a set of orthogonal
Slater determinants (in turn constructed from an
orthonormal set of one-electron orbitals) with the
Hartree-Fock 1s'2s' function as the first or "ground"
configuration. The combining coefficients of the linear
combination of Slater determinants are just the com-
ponents of an eigenvector of a matrix eigenvalue
equation. For a finite set of Slater determinants, this
eigenvalue equation can be solved by standard methods.

The correlation energy is defined to be the diGerence
between the Hartree-Pock total energy and the true
nonrelativistic eigenvalue. It is convenient to measure
the quality of a wave function (superior to the Hartree-
Fock) by observing what percentage of the correlation
energy is included in the wave function's total energy.
We will use this yardstick in our discussion of Be.

Configuration interaction calculations have already
been done for Be. Boys" obtained a ten configuration
Be wave function whose total energy included approxi-
mately one-half of the correlation energy. Boys did
not use a Hartree-Fock function as the "ground"
configuration. Kibartas, Kavetskis, and Yutsis" ob-
tained two-thirds of the correlation energy with three
eoeorthogomol configurations one of which being the
numerical 1s'2s' Hartree-Pock function of the
Hartrees. " Their (Kibartas, Kavetskis, and Yutsis)
better result was due to using the Hartree-Fock
function as one of the three configurations and to a
very good choice of the other two configurations. These
two configurations were a issPis and a 2ssPss. The Pi
was a numerical Hartree-Fock one-electron solution
for a P function in Be 1s'Pis where the 1s function of the
Hartrees' calculation was used and likewise Ps was a
solution for a 2s'Pss environment with a fixed (the
Hartrees' solution) 2s function. The pi resenibles a
Be 2p function and no such identification can be made
of the ps. Szasz" has used the Hylleraas approach,

s R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955}.' C. K. Jorgensen (private correspondence).
'0 S. F. Boys, Proc. Roy. Soc. (London) A201, 125 (1950).
"V. V. Kibartas, V. I. Kavetskis, and A. P. Yutsis, Zhur.

eksp. i teoret. Fiz. 29, 623 (1955} (translation: Soviet Phys. —
JETP 2, 476 (1956)g."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A150, 9 (1935);A154, 588 (1936).

'3 L. Szasz, doctoral dissertation, Ludwig-Maxmilians Uni-
versitat, Munich, 1959 (unpublished).

starting with a Hartree function and obtained similar
energy values.

In the course of the calculation it was discovered
that the published value of the Be correlation energy
is incorrect, and this is discussed in the following
section. This is followed by a description of the one-
electron orbitals and how they were obtained. There
is then a description of the configurations actually used,
a few details of the calculation and finally the results.

Q. THE Be CORRELATION ENERGY

As has already been indicated, it is convenient to
measure the quality of wave functions, superior to
Hartree-Fock ones, by observing what percentage of
the correlation energy has been incorporated into their
total energies. Accurate values of the correlation
energies are desirable in themselves since they aid in
our understanding of how exact eigenfunctions diGer
from Hartree-Fock functions.

Froman" reports a Be correlation energy of 0.087 a.u.
(1 a.u. =27.2023 ev. using the value of the rydberg
appropriate for Be) and Kibastas, Kavetskis, and
Vutsisu report one of 0.088 a.u. I have also computed
it and obtained a value of 0.0944 a.u. This disagreement
is due to two causes. First the earlier estimates rely on
the Hartree-Fock total energy obtained by the
Hartrees" and there are several values of the energy
available from their results. The commonly chosen""
value is in error. Secondly, and less in magnitude but
greater in interest, there are experimental uncertainties
which a8ect the estimate of the true eigenvalue.

The Hartree calculation was done using numerical
procedures and yielded numerical one-electron func-
tions. They obtained a total energy ranging between
—14.56 to —14.58 a.u. with —14.58 a.u. usually being
quoted. It is dificult to obtain an accurate value for
the total energy of such a function. This is particularly
due to errors associated with the kinetic energy integrals
and this problem has been a matter of some concern. "
Roothaan, Sachs, and Weiss" have obtained an
analytic Hartree-Pock solution for Be. The total energy
can be accurately evaluated for such a function but
the quality of the function is limited by the basis set
from which the function is constructed. Large basis
sets assist in avoiding this problem and Roothaan,
Sachs, and Weiss did calculations with a number of
large sets. The best total energy obtained was
—14.57302 a.u. which lies within the range of values
obtained by the Hartrees and which I believe is a more
accurate estimate than —14.58 a.u. The Hartree-Fock
solution used by me as the "ground" configuration is
also analytic and has a total energy of —14.57299 a.u.
or 0.00003 a.u. poorer than that of Roothaan and
co-workers.
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(195S)."C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss (to be
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Of greater interest than the Hartree-Fock total
energy is the true eigenvalue. For electronic systems
where all the ionization energies have been observed
(this is true for atoms through F) the energies are
added up arid relativistic corrections are subtracted
giving a nonrelativistic total energy. Unfortunately,
even for an atom as small as Be, the ionization energies
are not all accurately known. For the small atoms this
uncertainty is generally associated with the 1s''S to
1s'S ionization process, the value for Be being
~0.00044 a.u."To avoid this I have used Pekeris'4

theoretical value for the Be++is' total energy. It is
accurate to several more digits than are of interest here
(and it falls within the stated experimental uncer-
tainty). Using the Pekeris nonrelativistic energy and
adding to it the observed Be' to Be++ ionization
energies one needs only make a relativistic correction
for the 2s shell. A crude estimate of this correction has
been obtained by using the equation for hydrogenic
functions;

a'Z4y 1 3 i
0 ~ ~

n' 5 j+1/2 4e)

where n and j are the one-electron quantum numbers.
A screening constant (Z) of 1.95, which was obtained

by Slater's rules, " was used. This yields a 2s shell
relativistic correction of 0.00002 a.u. , a Be total energy
of —14.66745 a.u, and in turn a correlation energy of
0.0944 a.u.

III. THE ONE-ELECTRON FUNCTIONS

The Slater determinants are constructed from an
orthonormal set of one-electron functions of the form;

The basis set is listed in Table I. The choice of the
number of functions for a particular l value, of the
screening constants (Z s), including the relationship
between Z, 's of diGerent l values and of the powers of
r (e, 's) relied heavily on earlier work on He. ' For
example, it had been observed that little was gained by
an extensive investigation where individual Z, s were
varied so as to obtain a best basis set so this was not
done for Be. Care was taken to make sure that no two
basis functions were too much alike with the resultant
errors that can occur, e.g. , if p9 had an appreciably
smaller valued Z; or g~ a larger one, the two basis
functions would overlap each other more and their
C;,'s would tend to become large in magnitude and
opposite in sign introducing errors in the integrals
involving P;s (which are obtained as linear com-
binations of integrals involving the basis functions).
Variation of the two s function Z s was done where a
Hartree-Fock calculation was done for each choice of
Z s and the Hartree-Fock is'2s' total energy was used
as a criterion of the quality of the choice. Iimited
variation of the other Z; s was also done with criteria
based on crude estimates of the configuration inter-
action that could be done with the resulting functions.

Having chosen the g s there was then the problem of
choosing the lt s (or I,'s) constructed from them. If

sof a give. n / value had been obtained, the next
was obtained by using the Schmidt process to orthogo-
nalize the g s to the e I s, observing which of the
orthogonalized q,-'s would be most eGective for con-
figuration interaction, choosing that one as the radial
part of f„+t and then repeating the process (with the
"principle" rl, of f ~t omitted) for lt„+s. When deter-

TABLE I. Be basis function parameters.

where the S; is a normalized spherical harmonic (with
quantum numbers f and mt) and X; is a spin function
with eigenvalues m, =+1/2 or —1/2. The ~, is a
normalized radial function which, so that integrals
can be easily and acclrately obtained, is of analytic
form, i.e. ;

(3)

where normalized basis functions of the form

+ .yl+n)'+1e —2)'r
'l2

For the construction of
s functions (l =0)
j n2 Zg

1 0 6.0
2 0 1.0
3 1 6.0
4 1 1.0
5 2 6.0
6 2 1.0
7 3 6.0
8 3 1.0
9 4 6.0

For the construction of
d functions (l =2)
j n7 Zf

For the construction of
p functions (l =1)
j nl Z1

10 0 9.0
11 0 15
12 1 90
13 1 1.5
14 2 9.0
15 2 15
16 3 9.0

For the construction off functions (l =3)
j n2 Z2.

have been used. The l is the angular quantum number,

Z, and ej are assigned parameters and X, is a nor-

malization constant and is given by

y
(2Z)21+2np+s,

((2i+2~,+2)!)
'~ Afomic Energy Levels, edited by C. E.Moore, National Bureau

of Standards Circular No. 467 (U. S. Government Printing 0%ce,
Washington, D. C., 1949), Vol. 1."J.C. Slater, Phys. Rev. 36, 57 (1930).

17 0 12 0
18 0 20
19 1 12.0
20 1 20
21 2 12 0

22 0 15 0
23 0 2.5
24 1 15.0

For the construction of
g functions (l =4)
j ni Zj

25 0 18.0
26 0 30
27 1 18 0
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TABLE II. The combining coeificiezzts (C;;) which define the one-electron functions (U;(r)) in terms of the basis set (~;).

Title Principal
of configu-

i function rationa

1 1s
2 2$
3 SI
4 srr
5 srrr
6 srv

7 pI
8 prr
9 Prrr

10 prv
11 pv

2$~$I2
1s2srP
2$~$III2
2s~srv2

1s~pr2
2$2PII2
2$&prrr~
2$~Prv2
1$2pv2

12 dI 1$2dr~
13 dr r 2smdrr'
14 drrr 2s~drrr'
15 drv 2s~drv2

16 fr 1s2fr~
-1 7 frr 2s2hrm
18 frrr 2s' frrr2

19 gr 1$2gr&
20 grr 2$2grr~
21 grrr 2$2grrr2

j=i
0.4848470—0.0811293—0.9541767—0.0677193—2.3388370—2.9639258
j =10

0.0018150—0.0002912—0.0003976
4.6212002—1.1619175

2 =17
0.0266365—0.0004037—0.0008029
6.0010095j=22
0.0180241—0.0009270
3.1698447j=25
0.0000000
0.0000000
3.4667482

2
0.2176069—0.1473455—0.4130058
0.1087583—1.1340586-1.2260328

11
0.6344460—0.1017717-0.1389909—0.0858183
1,4598108

18—0.6000319
0.0090939
0.0180874
0.0140180

23
1.0012089—0.0514960
0.0639022

26
1.0000000—0.0323967
0.0391222

3
0.2641661—0'.0511496-0.5189231—0.0281226
4.7935430
8.6993974

12-0.0110284
1.0145531—2.6698253—8.4893539
2.9832901

19—0.0826493
1.0013675—2.9984135-11.227852

24—0.0313172
1.0029326—3.0113646

27
0.0000000
1.0005246—3.3204254

—0.2683019
1.3329117
0.3510279—1.5781781
2.2736416
0.4300532

13-0.1694747
0.0271855
0.0371276
0.0229240
0.4827560

20
1.5380263—0.0233099—0.0463623—0.0359314

Cif

5
0.1682250—0.0410639
1.9029536
0.3466395—2.2116885—8.1693479

14
0.0200795—0.00322 10
2.8894414
4.5872141—2.5193588

21
0.0949354—0.0014388
3.1608514
5.9176949

6
0.1675844—0.3867802—0.2805105
0.4265845—1.0811843—0.6874241

15
0.6245963—0.1001917—0.1368331—0.0844860—1.7791890

7
0.0451277—0.0075224—0.0888150—0.0063392—0.2176680—0.2758978

16—0.0222008
0.0035612
0.0048636
0.0030030
0.0632400

8—0.0452875
0.2248252
0.0592733
1.3292953—0.1344083
0.7048398

9
0,0668827—0.0276480-0.1293635
0.0113010—0.3351465
3.8915850 '

' As predicted for the function by second-order perturbation theory.

mining which orthogonalized g, was most e6ective for
configuration interaction, the sets of '5 1s'g,', 1s2sq,',
and 2s'q, ' functions were constructed and second order
perturbation theory was then used to observe which
set had the greatest eGect on the Be total energy.
Successive P s were obtained until further ones had
predicted energy contributions of less than 0.00005
a.u. Except for the 1s and 2s, P, 's are labelled with
roman numerals and are numbered in the order they
were obtained.

With a method for obtaining successive tp, 's there
remained only the choice of the first for each / value.
There was no problem for /=0 since 1s and 2s orbitals
were obtained from a Hartree-Fock calculation.
Investigation showed that, other than the 1s' 2s', the
most important configuration is a 1s'p' where the p
function resembles a Be 2p function. The pz (in ac-
cordance with the labeling system) used in this con-
figuation was a Hartree-Pock solution f'or a p function
in an environment consisting of a Be++ 1s' ion. This
led to a p function which is similar but not identical
to the p function of Kibartas, Kavetskis, and Yutsis
in their 1s'pzs configuration. Second order perturbation
theory predicted that dz, fq and gz functions which were
also Hartree-Fock solutions for a Be++ ion environ-
ment would yield the best configuration interaction
energy contributions so such functions were used as
the first of each of their respective / values (actually a
rough approximation to such a solution was used for
gz) . In all, six s-like (including the 1s and 2s), five
p-like, four d-like, three f-like and three g-like one-
electron orbitals were constructed. In general their
charge densities are concentrated either into the region
where the 1s is concentrated or into the region of the
2s. The ones (g) concentrated in the 1s region were
chosen for their effectiveness when used in 2s'x' con-

figurations where the overlap of x and the 1s in large
part determines the e6ectiveness of the configuration
for configuration interaction. The other one-electron
functions, with their charge densities concentrated in
the. 2s region are (according to second order per-
turbation theory) of greatest importance for the
construction of 1s'x' configurations. Table II lists the
combining coefficients (C,,) which define the I,'s or
P s in terms of the g, 's. The third column of the table
designates the second order perturbation theory
prediction of whether the function is more important
when used in 1s'x' or in 2s'x' configurations.

The technique of building up a set of localized one-
electron functions, useful for configuration interaction,
by successive applications of the Schmidt orthogo-
nalization procedure is moderately effective if a realistic
method is used to determine which of a set of i/i, 's is
most important for use in configuration interaction.
%e will see that second order perturbation theory was,
unfortunately, not an adequate measuring device.

IV. THE CHOICE OF CONFIGURATIONS

Except for the case of two doubly occupied s orbitals,
such as 1s'2s~ or 2s'si', a single Slater determinant is
not a 'S state for a four electron system. It is most
convenient to deal with the 'S functions which are
constructed from sets of Slater determinants which
differ in only their one-electron zzz& and nz, values (i.e.,
with fixed assignments of i and i) Such zS funct. ions
have been illustrated elsewhere' for the two-electron
case. With a few exceptions, which will be discussed
below, only one unique '5 four-electron function can
be constructed with a specific assignment of i's (here
denoting the Roman numeral values) and i' s. Such
functions are, except for a phase factor of ~1, uniquely
defined when the four i and four l values are given. In
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this work the phase factor has been chosen so that the
Slater determinant where all the vs~'s equal zero is of
positive sign in the 'S function. This differs by a factor
of minus one from the convention used for two-electron
determinants involving p and f functions in reference 6.

One hundred and seventy-seven 'S functions or
configurations can be constructed for which two or
more of the electrons are 1s and/or 2s and the remainder
are chosen from the other nineteen P, 's. Hundreds of
'S functions can be constructed in which the 1s and 2s
appear once or not at all. A calculation which utilizes
more than a small fraction of these configurations would
unduly tax both the digital computer used in the
calculation and the person responsible for the calcu-
lation. As a result, one stage of the calculation becomes
a search for the 'S configurations which will be most
important for use in configuration interaction. Before
indicating the history of this search it would be well
to review the types of 'S configurations which can
occur. One useful way to catalog configurations is by
the number of P, 's which differ from those in the
"ground" 1s'2s' configuration. The resulting four types
are discussed below. In this discussion x and y are used
to denote f, 's other than the 1s and 2s.

Single Substitution Con6gurations

The 1s'2sx and 1s2S'x are the two types of configu-
rations of this category. In order to be 'S functions,
x must be an s-like orbital. Because the 1s and 2s are
Hartree-Fock orbitals and since x is orthogonal to
them, the configurations have zero valued matrix
elements connecting them to the 1s'2S' configuration.
Second order perturbation theory would thus predict
that their inclusion would have no eBect on the con-
figuration interaction energy. Since these states have
appreciable matrix elements connecting them to other
(than the 1s'2s') low-lying configurations, it is possible
that their inclusion would have some effect. Several
single substitution configurations were included in a
calculation where all elements of the configuration
interaction matrix were computed and then the matrix
was diagonalized. These configurations produced energy
eGects of less than 0.000001 a.u. , e8ects so small that
configurations of this type have not been included in
the final configuration interaction calculation.

Double Substitution Con6gurations

This type of configuration plays the leading role in
configuration interaction. It takes the form of 1s'xy,
2s'xy and 1s2sxy where x and y may have di6ering or
identical / and i values. These configurations have
nonzero matrix elements with the ground configuration
and it was with these that the second order perturbation
theory investigation was done. Except for the 1s2sxy,
with x and y of differing i (their i values cannot differ
for a 'S configuration), only a single 'S function can be
constructed for a given assignment of i and l values.

The 1s2sxy of diGering x and y plays the smallest role
in configuration interaction and only one, the 1s2spipzz,
has been used in the final configuration interaction
calculation. Two linearly independent 1s2spzpzz '5
functions can be constructed and only one has been
used. It is

+(1s2spzpzz) = 3[1sn2sppz apzz g
—-,'[1sn2sppzznpzz zp] —-', [1sn2sPp,

—
zapzzz0]

+3 [1sP2snPzoPPzzon] —
3 [1sP2snPzzPPzz 'a]

——',[1sp2snpz zppzzzn] ——',[1sn2snpz'Ppzzop]

+-,'[1sn2snpzzPpzz zP]+-', [1sn2snpz zppzz'P]
—

6 [1s82sPPz'nPzzon]+ 6 [1sP2sPP zzaPzz ia]
+-', [1sp2sppz 'npzz'n] —-', [1sn2sppzoppzzon]
+-', [1sn2sPPz'PPzz 'n]+-', [1sn2sPPz —

zPPzz'n]
—

6 [1sP2snPzonPzz'P]+-', [1sP2snPzznPii zP]

+6[1sp2snpz znpzzzp], (6)

where n and P denote one-electron spin assignments of
+1/2 and —1/2, respectively, and the p superscripts
denote one-electron mg values. Each bracket indicates
a single four-electron Slater determinant. Other func-
tions of this type, including the other 1s2spzpiz, were
investigated but they gave energy contributions of less
than 0.00006 a.u. and have not been used in the final
calculation.

Triyle Substitution Con6gura. tions

These configurations have matrix elements which are
zero with the 1s'2s' configuration but sizable with other
important configurations. Their contributions to the
configuration interaction energy are smaller than
0.000001 a.u. and thus no configurations of this type
appear in the final calculation.

Quadruizle Substitution Configurations

These also have zero valued matrix elements con-
necting them to the 1s'2s' configuration but unlike the
single and triple substitution configurations these give
important energy contributions via their nonzero
matrix elements with important configurations other
than the 1s'2s'. Only configurations of the form x'y'
have been considered. Investigation shows that other
types would be less important. If neither x nor y is an
s-like function, several linearly independent 'Sx'y'
functions can be constructed. The simplest is one where
two-electron 'Sx' and 'Sy' functions are constructed
and then combined into a four-electron 'S function.
Such a function has nonzero matrix elements -with
other configurations used in the calculation while the
other linearly independent x'y''S functions do rot.
These other x'y' functions do have large matrix elements
with the x~(zS)y'(zS). Investigation has shown that
their configuration interaction energy contributions
[via their interaction with. the x'('5)y'('S)] are effec-
tively zero.
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Shortly after the start of the work on Be it became
apparent that second-, or higher, order perturbation
theory gave poor estj.mates of the relative importance
of different 'S configurations. To avoid this problem I
constructed the ("basic") configuration interaction
matrix for the most important configurations, then
increased the matrix to include additional configura-
tions of uncertain importance and diagonalized the
resultant matrix to discover the effect of the additions.
Any con6guration which proved to be important was
added to the "basic" matrix. The importance of the
nth configuration would be observed by diagonalizing
the n by n and the (n 1)—by (n 1) matr—ices and
interpreting the difference in energies as being the nth
configuration's contribution. In the 6nal thirty-seven
configuration calculation, all matrices down to the two

by two have been diagonalized with the differences in
successive diagonalizations again being interpreted as
the contributions from specific con6gurations. This
process is costly in computer time but gives us data
which aids us in obtaining insight into the configuration
interaction process.

In the discussion of results, configurations of the
1s'xy form will be interpreted as contributing to the
correlation energy effects of the 2s shell since the xy
replaces the 2s' of the 1s'2s' configuration. Similarly
the 2s'gy con6gurations will be associated with the
1s shell correlation and the 1s2sxy and quadruple
substitution con6gurations with intershell effects.
This interpretation is not strictly realistic but it is a
convenient crutch when interpreting results.

Of the thirty-seven con6gurations of the final calcu-
lation, roughly the 6rst twenty were chosen solely for
their importance in improving the Be total energy.
The later configurations were chosen partially for their
energy contributions and partially for the assistance
they give in answering questions such as how effective
was the choice of the f, 's used in the half-dozen most
important configurations.

V. THE COMPUTATIONS

The computations were started on the Whirlwind

computer at M.I.T. but the majority of the work was
done on the 704 computer in the M.I.T. Computation
Center. The computer was used to generate the one
and two-electron integrals used for the construction of
matrix elements. These integrals were computed for
each stage of the Schmidt orthogonalization in search
of f s. The computer was also used for the matrix
diag onalizations.

Matrix elements were computed by hand, using the
well known relationships' " for matrix elements of the
nonrelativistic many (four)-electron Hamiltonian be-

tween Slater determinants. These were combined to
give matrix elements between multideterminantal '5

' E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectre (Cambridge University Press, New York, 1953), in
particular p. 171.

functions. The matrix elements are as accurate as the
one and two-electron integrals from which they are
constructed. These integrals, which are in terms of
the P, 's, are obtained as linear combinations of the
integrals in terms of the basis functions (g, 's). The
latter integrals are obtained analytically. The ability
to compute integrals analytically rather than numeri-
cally yields integrals in terms of the P s which are
comparitively accurate. This is the great strength of
the analytic approach. The integrals involving f,'s of
low Roman numeral value are accurate to seven digits
while those of higher Roman numeral values tend to be
somewhat less accurate. This is due to the increasing
magnitude of the C; s for the high values of i.

VI. RESULTS

The results are tabulated in Table III. The table' s
first column lists the contributing configurations (+ )
and the second their n values. The next column gives
the energy contributions as predicted by second order
perturbation theory. The fourth column lists the actual
energy contribution for the nth configuration. This is
obtained by taking the difference between the n con-
figuration energy and that of the (n 1) con—figuration
wave function. The next (fifth) column lists the eigen-
vector coefficients (E ) which define the thirty-seven
configuration function (C) in terms of the individual
configurations (+ ), i.e.,

(»

The 6rst four con6gurations are the really important
ones and a C constructed from these alone may be of
interest to some readers. For this reason the four con-
figuration eigenvector appears in the sixth column. The
next column gives the energies (E 's) of the n con-
6guration C's. These energies will be compared with
those in the last two columns. These columns will be
discussed later.

Table III contains a number of items of interest.
First we see that the thirty-seven con6guration func-
tion's energy (E») includes slightly less than ninety
percent, and the four configuration energy (E4) seventy-
four percent of the correlation energy. Appreciable
energy contributions stop after the inclusion of the
fourth con6guration. Secondly, there is the failure of
second order perturbation theory to make accurate
energy contribution predictions. This is particularly
so with the 1s'xy type of configuration such as the
n=13 case. This failure is so severe that 1s'xy configu-
rations involving the sii, fi, and gi orbitals have been
left out of the calculation. For example, second order
perturbation theory predicts that the 1s's«' con6gu-
ration would contribute an energy improvement of
—0.00117 a.u. , an appreciable contribution. In a
correct handling of the configuration interaction, with
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TABLE III. The results of the thirty-seven configuration calculation for Be.

The nth
configuration

(+ ) v value

Second-order
perturbation

theory
prediction

of the energy
contribution

(a.u.)

Actual energy
contribution

of +n, i.e.,
F. —Z 1 (a.u.)

Eigenvector
(K~'s) of the
thirty-seven

configuration
wave function

Eigenvector
(&n'8) of the

four-
configuration
wave function

Energy (B~)
of the e

configuration
wave function

(a.u.)

Two-colum'
border

determinant
En

(a,u.)

Four-columnb
border

determinant
En

(a.u.)

1s22s2
1$2p I2

2s2p z z2

2S2Sz2

2$2d r. z2

pI2 (lg) p I I2 (lg)
2$ pzrr
2$ pIpII
p (s)., (s)
1s2ssz2
1s2spzz2
» pzrprzr
1s2d 2

1$2spzpzra
112

2$ SIII
2$2drz12
2s2p rv
p '('&)d '(~)
2$2szszr
1s2spr2
2s2gr z2

»'PIIIPIV
2$ Srrzszv
2$ sIsIv
2$ prrprv
1s'pv'
» prpv
2s'drrdrrz
2$2frII2
2s2d r v2

pzz'('~)dr'('&)
2s2s z v2

2$ gzrz
2$2p 2

1$ prpzr
1$ pri

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

—0.04555—0.01937
—0.01185—0.00268

0.00000—0.00144—0.00117
0.00000—0.00088—0.00070—0.00142—0.00431—0.00040—0.00064—0.00042—0.00042

—0.00034
0.00000—0.00034—0.00034

—0.00022—0.00029—0.00020—0.00018—0.00015
—0.00009—0.00006—0.00015
—0.00012—0.00011

0.00000—0.00008—0.00006—0.00006—0.00008—0.000001

—14.57299—0.04116—0.01769—0.01071—0.00213
—0.00157—0.00111—0.00106—0.00100—0.00084—0.00063—0.00065—0.00040—0.00062—0.00048—0.00031—0.00031—0.00027—0.00019
—0.00038—0.00020—0.00016—0.00001—0.00023—0.00068
—0.00071—0,00001—0.00003—0.00018
—0,00010—0.00009
-0.000006—0.00026—0.00004—0.00003—0.00009—0.000001

0.9575824—0.2844586—0.0262111—0.0232595—0.0059003
0.0070633—0.0051437—0.0073743
0,0056508

—0.0055013—0,0047417—0.0051990—0.0182294—0.0062031
—0.0018353

0.0003207
—0.0019705
—0.0009703

0.0015848
0.0102900
0.0065906—0.0008295
0.0000858—0.0057483—0.0049320—0.0021912—0.0008337
0.0013765—0.0015543—0,0004808—0.0004351
0.0004639
0.0020928—0.0002745—0,0018990
0.0025567—0.0003084

Experimental energy =

—14.57299—14.61414—14.63183—14.64254—14.64467—14.64624—14.64735—14.64841—14.64941—14.65025—14.65088—14.65153—14.65203—14.65265—14.65313—14.65344—14.65375—14.65402—14.65421—14.65459—14.65479—14.65495—14.65496—14.65519—14.65587—14.65658—14.65659—14.65662—14.65680—14.65690—14.65698—14.65698—14.65724—14.65728—14.65731—14.65740—14.65740
—14.66745

—14.64801 —14.64737

—14.65280 —14.65115

—14.65672 —14.65452

—14.65749 —14.65532

—14.65787 —14.65565

—14.65814 —14.65590

—14.65527 —14.65344

a See Eq. (6).
b See text.

the 1s'2p' configuration already present, the 1s'sip
makes a contribution of —0.000002 a.u.

Of the correlation energy that has been incorporated
into the Be function, about half of it is associated with
the 1s'pr2 configuration, slightly less than half with
correlation in the 'S shell (the 2s'gy configurations),
about five percent representing correlation between
shells and about one percent associated with the 2s
shell correlation after the 2s-pi (which is 2p-like) near
degeneracy is resolved.

Inspection of the contributions to the 1s shell cor-
relation correction shows a pattern which is similar to
that observed in the He configuration interaction. '
The 2s'xy configurations are acting to expand, in one-
electron spherical harmonics and radial functions, an
interelectronic r;, singularity or "correlation hole" in
the 1s shell region. A similar interpretation cannot be
made of the 1s'xy configuration contributions where
ninety-five percent of the energy contribution comes
from a single configuration, the 1s'pi'. Instead it appears

that most of the energy improvement is associated with
the "orbital degeneracy" between the Be 2s and pi
(i.e., 2p) and that, at most, ten percent of the 2s shell
correlation energy is due to a correction for a "cor-
relation hole" in the 2s shell region. The energy as-
sociated with the correlation between the two shells,
as indicated by the 1s2sxy and quadruple substitution
configuration energy contributions, appears to be larger
than the 2s shell "correlation hole" energy.

Several double substitution configurations (notably
those for v= 25, 26, and 33) show energy contributions
which are larger than predicted by second order per-
turbation theory. The large contributions occur because
these configurations act in conjunction with configu-
rations already present. For example, the addition of
the 2s'siv' (m=33) configuration caused appreciable
increases in the eigenvector coeKcients (E„'s) of the
2s'srsig, 2s'sqy~srv, 2s'sisii~ and 2s'si' and a decrease
for the 2s'2III'E~.

One purpose of the higher v valued configurations is
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that they serve as a crude test on the lt, 's appearing in
the important configurations. The small energy con-
tributions of the 1s'pv', 1s'pvpi, 1s'pipn, and 1s'pii',
despite large matrix elements with the 1s'Pis, suggest
that the pi orbital was a very good choice for use in
the 1s'Prs configuration. Similar observations suggest
that it would be possible to obtain somewhat better
p„and si orbitals for use in the important 2s'pirs and
2s'si' configurations.

The contributions to the Be total energy have been
the sole criterion of the importance of the configurations.
Other criteria could be used such as the magnitude of
the eigenvector coefficients (E„'s). Such a criterion
would make the 2s shell, 1s'xy type of configuration
appear more important (note E is). Second order
perturbation theory is as inadequate for predicting
E s as it is in predicting energy contributions.

One question of interest is when can second order
perturbation theory be accurately used instead of the
full handling of the configuration interaction problem.
Table III indicates that perturbation theory applied
to the single configuration 1s'2s' function gives poor
results. It seemed desirable to find out what happened
if perturbation theory were used after the two con-
figuration, 1s'2s' and 1s'pre problem was handled
exactly. Such a treatment corresponds to setting. all
matrix elements but those in the first two columns
and on the diagonal equal to zero and the diagonalizing
the resultant configuration interaction matrix. The
eighth column of table III gives the result of such a
"two-column" treatment. In the interest of conserving
computer time, diag onalizations were restricted to
every fifth ~ value. It also seemed desirable to do a
similar calculation where the four important configu-
rations are handled exactly. The last column of Table
III lists the results of the "four-column" treatment of
the configuration interaction matrix. The "two column"
results show a conQict between the common tendency
of perturbation theory to overestimate and the loss of
the energy contributions due to interactions between
the higher configurations. The former effect dominates
and a total energy which is low results. The "four-
column" case yields an energy which is high, i.e., it
underestimates the effect of configuration interaction.
Its energy is in poorer agreement with the exact
treatments (column seven) energy than is the "two-
column" energy. This is due to a closer cancellation of
errors in the "two-column" case. I leave it to the reader"

's Footrtote added iN proof It seemed desirab. —le to insert the
writer s opinions. I believe that after the 2s-2p (or equivalent)

to decide how far one should carry out an exact treat-
ment of configuration interaction before resorting to
perturbation theory. It might interest the reader to
know that in the slightly larger atomic system of C,
there are ten configurations" which are as important
as the first four in Be. This suggests that, even with
the "early" use of second order perturbation theory,
the problem rapidly becomes huge in size.

Vn. CONCLUsrONS

The primary purpose of this work was to obtain
information concerning the problems that will have to
be faced when one attempts to deal accurately with
electronic systems which are appreciably larger than
He. This Be calculation indicates that an "orbital
degeneracy" problem, as well as the "correlation hole"
problem of He, will be met and must be dealt with.
The "orbital degeneracy" problem is not a small effect
in Be and this will be the case for many other electronic
systems. The Be results also suggest than an effective
approach would be one where one starts with the
Hartree-Fock ground configuration, uses configuration
interaction to resolve the "orbital degeneracy" and
then goes on and treats the "correlation ho1.e" effects
either using the Hylleraas approach, which would not
be trivial, or using additional configuration interaction.
While doing such a calculation it must be remembered
that the energy associated with the "correlation hole"
between shells is liable to be as large as that associated
with an outer shell.

In conclusion, I would like to point out that, with a
better choice of iP, s and with a criterion for choosing
N„'s which is based solely on energy considerations, a
noticeably better Be energy could be obtained in a
calculation with as many configurations as have been
used here.
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"orbital degeneracy" is resolved, second-order perturbation theory
can be very satisfactorily used to predict the relative importance
of configurations and, for many purposes, it is quite reasonable to
use it in place of full configuration interaction."R. K. Nesbet (private conversation).


