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results in Fig. 6, the angular distribution below 8 Mev,
are consistent with this model.

The total cross section for charged particle emission
was found to be 87&22 mb, which may be compared
with the results of Armstrong and Brolley. 25 Calcu-
lated values obtained by the method of Blat t and
Weisskopf, ' give 8.9 mb for a square well. This result
suggests that the diffuse nuclear potential is probably
a better approximation to the truth than the square
well.

'5 A. H. Armstrong and J. E. Brolley, Jr., Phys. Rev. 99, 330
(19SS).
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Multiple Scattering Correction for Proton Ranges and the Evaluation
of the L-Shell Correction and I Value for Aluminum
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Multiple scattering corrections to proton range-energy measurements are discussed. Curves are plotted
which give the fractional transmission of protons through a finite thickness of stopping material as a function
of the initial proton energy and for various values of the ratio of the straggling and multiple scattering
parameters. An application of these results to particular experimental situations shows that the Moliere
multiple scattering distribution gives a nearly correct representation of the experimental data on trans-
mission and that a simple exponential distribution is not satisfactory. The case of straggling in gold is
discussed in detail. Application of the results to the experimental range-energy relation in aluminum for
protons of energy lying between 1 and 20 Mev is made. The experimental ranges can be described con-
sistently with a mean excitation potential I= 163 ev and with reasonable values of the I.-shell binding energy
correction.

I. INTRODUCTION
' "N order to compare the results of range-energy

measurements with the theory of stopping power,
we must be able to make an accurate determination of
a number of small quantities which appear as corrections
in both the theory and the measurements. Failure to
make a consistent application of such corrections in the
past is partially responsible for the fact that stopping
power relations based on a velocity-independent. mean
excitation potential have failed to predict correctly the
measured ranges as a function of the energy of the
penetrating particle. The discrepancies are small, but
they are systematic and significant.

The most important correction to be made is in the
stopping power relation itself. This is the correction
for the binding energy of atomic electrons which has
been discussed at some length by Walske. ' Since,
however, the present state of the theory of binding
energy corrections is such that adjustable parameters
should be introduced, a consistent application of binding
energy corrections is hardly possible unless other

*Now at the University of Southern California, I os Angeles,
California, where part of this work was done.

' M. C. Walske, Phys. Rev. 88, 1283 (1952); 101, 940 (1956).

required experimental corrections are made at the
same time.

The most important of these other corrections is the
multiple scattering correction. With the increasing
accuracy of range-energy determinations it is of some
importance that this correction be taken into account
correctly. This will be the case even when the multiple
scattering correction is of the same order as the error
of measurement. The monotonic nature of the multiple
scattering correction tends to remove a systematic
trend in the discrepancy between theory and experi-
ment. A more consistent application of the theory will
then be possible. An immediate result of such a com-
parison of theory and experiment is a better deter-
mination of the mean excitation potential I.

We will be concerned here both with the method of
determining the needed stopping power and range-
energy corrections and with the application of these
ideas in particular cases. The theory of the multiple
scattering correction will be discussed in Sec. II. This
section will contain also the results of numerical cal-
culations; in particular, the transmission curves for
protons of intermediate energy in several media. In
Sec. III we make an application of these results to the
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transmission of IO-Mev protons in gold and attempt
to establish the validity of the theory. Results of the
comparison of theory and experiment for other materials
and other energies are also given. Finally, in Sec. IV
we make an application to the case of protons in alu-
minum and obtain a numerical value of I that is con-
sistent with experimental data over a rather large range
of proton energies, and experimental values for the
I.-shell correction.

II. MULTIPLE SCATTERING CORRECTION

As a monenergetic beam of protons (or other heavy
charged particle) enters a foil of material, it will suffer
degradation in energy and direction. ' The energy
degradation is described by the theory of stopping
power and is caused mainly by collisions with the
atomic electrons. The associated straggling in energy
or range is approximately Gaussian in form and does
not by itself make a contribution to the average path
length. The change in direction at low and medium
energies (i.e., up to about 100 Mev) is caused mainly
by Coulomb scattering of the protons by nuclei. Since
a large number of small-angle deQections take place
along the path of the proton, the phenomenon is one
of multiple scattering, for which accurate theories have
been developed by Snyder and Scott and by Moliere. '
The multiple scattering leads to an additional distri-
bution in path length for particles emerging from the
foil. The nature of this distribution is such as to make
all path lengths in the material greater than the foil
thickness by an amount which depends on the mag-
nitude of the straggling distribution as well as the
multiple scattering distribution.

Ke are assisted in the evaluation of the multiple
scattering contribution to path length by recognizing
that it is the mediae range rather than the mean range
which is obtained most directly from the transmission
curve of a range-energy experiment such as that
described in recent measurements. ' ' An approximate
evaluation may therefore be based on the calculation
of a median path length in a foil of thickness t. A little
consideration of the problem shows that there are con-
tributions to the median path length which are of two
kinds: the length of the smoothed-out median path
which is described under the inQuence of the combined
straggling and multiple scattering distributions; and
an increment which represents the average difference
between the actual path and the smoothed-out path.

In order to describe the contribution of the first
kind, we begin in the usual way by considering that the
total path length l is the sum of successive increments
6/;; which can be written in terms of the angle 0,

' E. Segre, Expe~imenta/ nuclear Physics (John Wiley R Sons,
Inc. , New York, 1952), Vol. I, p. 166.

See reference 2, p. 282, and the original papers listed in this
reference.

4 H. Bichsel, R. F. Mozley, and W. A. Aron, Phys. Rev. 105,
1788 I'1957).

~ H. Bichsel, Phys. Rev. 112, 1089 (1958).

between the incident beam direction and the direction
which the proton path has (or which we assign to it)
in the ith segment.

Then the increment in path length (in this small-angle
approximation) is

(1)
( dE/d—t)

where ( dE/dt—) is the stopping power as a function of
proton energy in the foil. Ke now use the multiple
scattering theory in the form given by Moliere. This
theory describes the distribution in angle for a particle
which has traversed a distance t of the stopping medium
and has lost the corresponding amount of energy. The
distribution function is

where

with

f(O) O~d O~ =g (4't) 4M4't

g(~) = 2 exp( ~')+ f"'(—~)/~+f"'(~)/II'

g2 —O+2/X 2g

' df
&.2 =42rXZ(Z+1) S2e4,

J p2~2

Also f~'& a,nd f"' are functions tabulated by Moliere
and 8 is defined by the relation

8—lnB= b,

b=2 in(X,/O. )+1—2C.

F= g(8)4MB
"o

(4)

C is Euler's constant, 0, is a minimum scattering angle
which depends on the screening of the atomic field, and
all other symbols have their usual meanings. Note that
0" is a laboratory angle and that 8 is a reduced angle.
To the extent that 8 is a constant for a particle trav-
ersing the foil and losing energy, the distribution in 8
is independent of position in the foil. Since 8 is in fact
nearly constant (for protons in gold, 8 lies between 8.5
and 10 for E lying between 1 and 10 Mev), one can
describe a definite fraction de of all particles as those
lying in d8 by writing

de =g (4t) 4'td4'I,

where de then is independent of distance into the foil.
Similarly,
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is a definite fraction F of all particles whose magnitude
depends on the upper limit 8 and is practically inde-
pendent of position. We can now write the connection
between 8 and the increment in path length DR belong-
ing to the particles of longest path length within the
fraction F. This is

We can now write the multiple scattering distribution
function in terms of the range AE. Since

e'= aR/aRo,
-

~~R y~ d(~R)
dE=g(a)au=g

~

(ARO) .l 2ARO
ordE x,'BdE

~R=-; I'0 =2P
( dE/dt) —"e, ( dE/dt)— de =h(aR) d(aR), (7)

=O'AE

where the integration along the path is extended from
the initial energy Ep to the emerging energy E» at 8 and

X 'BdE
gg

~ zi ( dE/dt)— (6)

is a multiple scattering parameter depending on Ep, E»
and the material but independent of 6. AEp is the
fundamental quantity required for the determination
of the multiple scattering correction. In the small-angle
approximation which we are using, DEp diverges as E»
approaches zero. However, only particles of energy
greater than a certain minimum value are detected,
and, consequently, the appropriate value of E» to use
in the calculation of DEp is this minimum energy. This
energy is between 5 and 20 kev in the experiments which
will be described later. Since the minimum energy is
only rather poorly known and since in addition the
multiple scattering angle becomes rather large at these
low energies, particularly in the heavier stopping media,
we will need to consider the accuracy of the calculations
with respect to the choice of E» and the validity of the
comparison of calculated and experimental quantities
in more detail later.

1 (DR qi
h(&R) =

26RO (ARO)

P(&AR) = h(aR)d(aR).

Simple results are obtained in the approximation which

neglects f&" and f&" of the Moliere distribution. Then

h(aR) = (1/aR, )e-'~t~~o,

F(&AR) =1—e ~~t~~',

and for the median path LI~'(&hR) =-,', hR h=R ]
DEr=hgp ln2.

These results for the smoothed-out path distribution
are modified by the energy or range straggling. The
straggling distribution for heavy particles is given by

P(R)dR= — expL —(R—Ro)'/2(AR, )']dR. (10)
(2~)-''aR,

is the multiple scattering distribution function in Dg
for smoothed-out paths in the foil. We will be interested
in the fraction of particles whose increments in path
length lie below a certain value DE. Thus
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k(AR) = expL —(DR)'/2(d R,)2j. (12)
(2~)~~R,

Since both distributions are present simultaneously,
the actual distribution in range is obtained as the folding
of one distribution into the other. Thus, we now write

Zr = k(~R')Z(~R')k(~R ~R')d(~R)

=d(AR) " k(x)k(AR —x)dx

=d(AR) k(DR+x)k( —x)dx,
~—8 ld

(13)

F(&~R)= dy h(x)k(y —x)dx. (14)

Then the increment in path length due to multiple scat-
tering for the median particle, hE. ;, is determined by
the relation

I By

~y
&0

f
k(x)k (y —x)dx. (15)

If F(&DR) is expressed as a function of AR/ARO it
depends in addition only on $ =DR,/DRO representing-
the ratio of straggling and multiple scattering param-
eters. In the limit of $ ~ ~ one has only straggling and
ARi/DRO —+ 1; i.e., DRi —+ 0. In the limit of $ —+ 0 one
has only multiple scattering and AR;/ARO —+a finite
value which is ln2 for the case of f"'=P"=0 but is

slightly less than ln2 for the actual Moliere distribution.
The family of curves F(&hR) as a function of DR/DRo
for various values of P must be obtained by numerical
integration. The calculated curves for (=0, 0.69, 1.2,
2.0, and 4.0 are shown in Fig. 1. As will be shown later
the values of )=0.69, 1.2, 2.0, and 4.0 are approximately
correct for protons in Au, Ag, Cu, and Al, respectively,
at about 10 Mev. A useful numerical tabulation of the
data from which the curves of Fig. 1 are plotted is given
in Table I.

In order to display the difference between the
Moliere and a simple exponential distribution the curves
of Fig. 2 are plotted. These curves are for )=0 and for
the two cases of 8= 10 (as in Fig. 1) and 8= ~ (ex-
ponential distribution). The difference in shape and
position of crossing the F=O.S line are evident. These
differences decrease as g increases. However, they are
still important at finite values of $ as we shall see when
the comparisons with experimental data are made.

We are now ready to describe the first of the two

Thus, from the straggling we obtain a distribution
function in range AE directly. It is

dF =k (AR) d(DR),
where

AR/AR0 or
AL'/AE0

—6.0—5.8—5.6—5.4—5.2—5.0—4.8—4.6
44

—4.0—3.8—3.6
—3.4—3.2—3.0—2.8—2.6—2.4—2.2
—2.0—1.8—1.6—1.4
—1.2—1.0—0.8—0.6

04—0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
44
4.6
48
5.0
5.2
5.4
5.6
5.8
6.0

10.0

0
0.190
0.340
0.459
0.554
0.630
0.691
0.742
0.781
0.814
0.840
0.863
0.889
0.896
0.910
0.920
0.928
0.936
0.943
0.949
0.954

0.970

0.980
0.999

0.69

0.002
0.006
0.012
0.022
0.039
0.064
0.101
0.149
0.208
0,276
0.350
0.428
0.504
0.577
0.638
0.693
0.740
0.780
0.814
0.840
0.861
0.880
0.896
0.909
0.921
0.928
0.938

0.949

0.957

0.962

0.968

0.972

0.976

1.20

0.002
0.003
0.005
0.008
0.012
0,018
0.026
0.037
0.050
0,068
0.090
0.118
0.149
0.185
0.227
0.272
0,321
0.372
0.424
0.477
0.530
0.579
0.627
0,672
0.712
0.748
0.782
0.810
0.836
0.856
0.875
0.890
0.903

0.923

0.937

0.948

0.954

0,958

2.0

0.001
0.001
0.001
0.002
0.003
0.003
0.004
0.005
0.007
0.009
0.012
0.015
0.018
0.023
0.029
0.036
0.044
0.053
0.064
0.077
0.092
0.108
0.126
0.146
0.169
0.193
0.220
0.248
0.278
0.309
0.342
0.376
0.411
0.446
0.480
0.515
0.551
0.584
0.618
0.650
0.680
0.709
0.736
0 762
0.786

0.832

0.866

0.894

0.915

0.933

0.945

0.956

0.963

4.0

0.052

0.064

0.077

0.092

0.109

0.128

0.149

0.173

0.199

0.227

0.258

0.289

0.323

0.358

0.394

0.432

0.468

0.506

0.544

0.580

0.616

0.651

0.685

0.716

0.746

0.776

0.801

0.823

0.846

0.865

0.967

main contributions to the path length of the median
particle. This path length exceeds the thickness of the
foil by the amount DR; defined by Eq. (15). The
numerical value of AR;/ARO may be res,d directly from

TABLE I. Theoretical straggling distribution: fractional trans-
mission F as a function of energy DL'/AED for several values Of

$ =d R,/2 R0 and for 8= 10, where d R, is the energy loss straggling
parameter and AR0 is the multiple scattering parameter.
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FIG. 2. Transmission curves for
(=0 (multiple scattering contri-
bution of the first kind only) with
and without the Moliere correction
t.erms.

4
nR , aE
~Ro ~Eg

the curves of Fig. 1. I.et us denote q—=DR;t'ARO. This
quantity is the value of AR/ARo at the point where the
curve crosses the F=0.5 line. Numerical values of q
for various values of g obtained in this way are given
in Table II.

The data of Table II will be useful in the subsequent
analysis of the range-energy measurements. At that
time it will be useful also to compare values of ARp
which will be obtained from the measurements with
values calculated from Eq. (6). Table III lists the
theoretical values of ARp as a function of proton energy
for various materials. ' For the purpose of these cal-
culations E~ is taken to be 0.01Ep. Two considerations
of importance in connection with these calculations of
ARp are: the extent to which the small-angle ap-
proximation is ful6lled in these calculations; and
the sensitivity of ARp to the choice of E&. Relevant
numerical data on these points are given in Tables IV
and V. Table IV gives values of the square of the
normal scattering angle 00——x,+Bfor various stopping

TABLE II. Values of g =AR)/ARp as a function of ( with 8= 10,
where q is the relative displacement of the straggling curve due to
the inhuence of multiple scattering and coming from contributions
of the 6rst kind and (=DR,/ARp. , the error is estimated from
uncertainties in the numerical integration.

media and various incident energies after a foil has
been traversed and all but 20-kev energy has been lost.
One observes that for the case of the heavy elements
this angle is large and the small-angle approximation
cannot be regarded as valid. However, Table V shows
that ARp does not depend sensitively on the choice of
E~ for values of Ej which are appropriate in our experi-
ments. This table gives the dependence of the calculated
DRp on Ej for Ep=10 Mev in the case of a heavy
element; namely, gold. One observes that ARp varies
approximately linearly with E& over the range 100 kev
&Eq&1 Mev (which includes the maximum in the
stopping power curve) and that the increase of DRO

with decreasing Ej below 100 kev is only slightly more
rapid down to about 10 kev. At 10 kev ARp is less than
15% greater than the value obtained from an extra-
polation of the linear relation. Since the experimental
values of E-i are of the order of 10 kev, we do not believe
that our calculated values of ARp should be expected
to differ very much from the experimental values, even
in the case of gold.

In order to calculate the second contribution to the
path length of the median particle, it is sufhcient to
use a simple exponential distribution. Also, it is con-
venient to use projected angles 0, and O„rather than
the polar angle O. Then for any given specification of
emitted particle we have from Eq. (1)

0
0.3
0.6
1.0
1.5
2.0
4.0

0.684 (0.693 for 8 =- )
0.71 +0.03
0.79
0.86
0.88
0.91
0.96 %0.03
1.00

DR= -' 0'(t')dt'&2J

t

(~R), =-,' I (o'). dt =—, & ((o.'+o„')).,dt'

Additional tabulations analogous to Tables I and V may be
obtained from the erst author.

t

(O.'), dt'.
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In order to carry out the desired calculation, we need to
know the distribution in x and 0, at t'. This isr

TABLE IV. Calculated values of Op'=X.'8 at E1=20 kev for
various values of the incident proton energy Ep and for several
stopping media; Op is the "normal" scattering angle in radians.

F (t,x,O,)dxdO,

V3 w' ~0~
' 3xO~, 3x'~

=——exp —w'( — + (
dxdO. „2~a ( t P ts)

from which the distribution in 0', alone is

Stopping
medium

Al
Cu
Ag
Au

Ep in Mev
6 10 18 30

0.248 0.255 0.264 0.271
0.75 0.77 0.79
1.26 1.29 1.33 1.36
3.83 3.90 3.97 4.02

exp( —w'Q~ '/4t)dO.
2(~t)I

TABLE III. Theoretical values of dRp as a function of proton
energy for several elements. The lower limit E& of the integral in
Eq. (6) is taken to be 0.01 Ep.

E
(Mev)

1
1.5
2
3
4
6
8

10
12
14
16
18
20
25
30
34

DRp (rng cm s)
Al Ni Cu Ag

0.029 0.12 0.30
0.046 0.17 0.43
0.064 0.24 0.59
0.10 0.36 0.89
0.15 0.50 1.21
0.26 0.84 0.94 1.97
0.40
0.56 1.74 1.88
0.74
0.95 2.88
1.17 3.54
1.42 4.24 4.47 9.1
1.67 5.00
2.40 7.08 14.9
3.23 9.43 19.7
3.95

3.9

6.3

Au

5.5
7.7

10.3
13.1

19.4
22.8
26.4

46.9
56.1

and zv is de6ned by the relation

OO 2t
(0.'). = ' G(t, O.)0.'dO, =—.

'N 2

The distribution G(t, O',)dO~, has been used' to cal-
culate (DR), for the two cases:

(a) All particles are detected irrespective of their
position and angle of emergence after traversing a
thickness t of the material.

(b) All particles emitted with 0~,=0~„=0 and irre-
spective of position are detected.

The results of this calculation are (tIR), =t'/w' in
case (u) and (AR), =t'/3w' in case (b). We may now
use the distribution function F(t,x,O )dxdO in order
to extend the calculation to two other cases of interest:

VS w'
G(t, O,)de, = —dO-

2x' t 4

(0~~' 3xO. , 3x'
~

)&exp —ws~ — + ~
dx

Pi

TABLE V. Calculated values of ARO as a function of the lower
limit E1 for Protons in Au with Ep =10Mev; values of O&p =X,8
are included.

E1 O~p~ ARp
(Mev) (radians') (mg cm s)

E1 Os' p~ ARp
(Mev) (radians') (mg cm ')

6
4
3
2
1
0.9
0.8
0.7
0.6
0.5

0.039
0.077
0.116
0.157
0.247
0.273
0.294
0.318
0.348
0.387

1.50
3.51
4.87
6.45
8.22
8.42
8.62
8.83
9.04
9.26

0.4
0.3
0.2
0.1
0.08
0.06
0.04
0.03
0.02
0.01

0.436
0.507
0.623
0.93
1.079
1.331
1.903
2.524
3.898
8.826

9.48
9.70
9.95

10.28
10.37
10.50
10.70
10.86
11.14
11.82

(c) Particles are detected if they emerge at x=y=O
and irrespective of angle.

(d) Particles are detected only if they emerge at
x=y=0 and with 0 = 0'„=0.

The results of this calculation are (AR), =P/Sw' in
case (c) and (AR), =2t'/15w' in case (d).

The last case is of particular interest for our purpose.
The smoothed-out path length for these particles is the
thickness t of the material. Actually their path length
exceeds t because of multiple scattering events which
combine in such a way as to keep the particle near the
smoothed-out curve and moving in the forward direc-
tion. The increase in path length is 2P/15w'. If the
associated distribution in hE for all particles were
precisely as given by Eq. (8), the AR of this equation
would read tIR—2P/15w' instead of DR; or, in the
notation of Yang' the distribution wouM start at
e=2wshR/ts=4/15. The distributions plotted by Yang
do in fact have their maximum rate of rise at a value of
n close to s=4/15=0. 27.

Energy loss in the foil can now be included in this
calculation by noting that from Eq. (5)

DE.=82DEp

and consequently for all emerging particles

(AR). =DRp,

since (r)l ). =1 in the approximation we are using.
Thus, by comparing the results of the calculation for
the cases (u) and (d) we obtain for particles emerging

' B.Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941).' C. N. Yang, Phys. Rev. 84, 599 (I95I). ' See reference 8, Fig. 1 and the text.
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at x=y=o with 0 =0„=0the result:

(~R),=2~R,/15.

This is the second contribution to the multiple scatter-
ing correction.

Adding the two contributions we write the following
expression for the path length of the median particle:

R= t+DR;+23RD/15
= t+ (q+2/15)DRp. (16)

Therefore, the abscissa of Fig. 1 and the left-hand
column of Table I can be regarded as values of AE/AEo
as well as of hR/ARO. The distribution F(&AE) thus
represents the fraction of particles emerging from the
foil which have an energy E& or greater as a function of
the incident energy Ep+DE.

It will be shown that one obtains a satisfactory com-
parison of theoretical and measured distributions only
if one uses the full Moliere multiple scattering function
as described above. In principle we can determine $
from a comparison of the experimental and theoretical
distributions, AEo (and consequently ARO) from the

III. EXPERIMENTAL DETERMINATION OF
THE MULTIPLE SCATTERING AND

STRAGGLING PARAMETERS

In order to make comparisons with experiment it is
convenient to regard all distributions, e.g. , F(&DR),
as functions of DE/DEp rather than hR/ARo. This is
possible since the lowest energy E& of detected particles
is held constant during the measurements, and conse-

quently an increase in F(&DR) is due solely to an
increase DE in the incident energy where

aE= aR( dE//Ct) z =E—o.

slope of F as a function of DE//DEO, hR, from ( and
B,RO, and finally, q from $ and Table II. In practice the
procedure may be varied somewhat as described in
specific cases below. Checks on the theoretical calcu-
lations are to be found in the comparison of calculated
and experimental distributions and in the comparison
of calculated and experimental values of hR, and AEp.

Since q is determined by this procedure, the erst of
the two contributions to the excess path length as
described in Eq. (16) is obtained. The second contri-
bution is merely 26Ro/15, and this is also obtained from
the above procedure which determines ARp. We do not
have any independent experimental checks on this
second contribution. However, it plays a role in the
subsequent determination of the mean excitation poten-
tial I.

A typical measured distribution of the kind in which
we are now interested is shown in Fig. 6 of reference 4.
In order to make a comparison of theory and experi-
ment we proceed as follows: Consider a set of values
of the fractional transmission F. From the experimental
data read oG the corresponding values of the incident
energy E. From the theoretical curve for a given P such
as in Fig. 1, read off the corresponding values of DE//DE p.

Plot hE/AEp as a function of the measured E. If the
theory is correct and the value of P has been properly
chosen, the resulting curve will be a straight line. Thus
$ is determined.

Subsequent steps in the evaluation of parameters are
as follows:

(a) From the straight line plot of DE/DEo versus the
measured E, obtain DEp as the interval on the energy
axis corresponding to a change in DE/DEO equal to 1.

(b) From g=AE, /AEo and AEO, obtain 5E,. Then,
from QEp and AE„obtain A,Ep and d,E, by using tabu-
lated values of the stopping power at the incident
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FIG. 3. Experimental trans-
mission curve for 10-Mev protons
in Au. Best fit is with (=0.69.
The scale of ordinates on the right
gives the actual percentage of
transmitted protons (compare
with Table I).
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6-

Frc. 4. Experimental trans-
rnission curves for 10-Mev
protons in Au in which: curve
a is the same as in Fig. (3) with
$=0.69; curve b is similar
except that all transmission
values have been multiplied by
1.007; curve c is similar except
that)=0. 775 instead of&=0.69.

AE
AE,

4-
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energy; i.e.,
asap

DRp=
( dE/dt) z =x—p

AR, =
( dE/dt)z =ip—p

(c) From the tabulation of q=AR. ;/ARp versus $ as
given in Table II, obtain AE~=qQEp.

(d) Use Eq. (16) to obtain the actual range of the
median particle.

As an example let us consider the case of 10-Mev
protons in gold. Figure 3 shows the plot of DE/AEp versus
the measured energy E for the case of )=0.69. A
straight line is obtained. In order to check the sensi-
tivity of the procedure and the possible uniqueness of
the results we consider in turn each of the following
factors:

(a) In the experiment some of the protons will
undergo nuclear reactions and will disappear from the
beam. For 10-Mev protons in gold, this loss of protons
inay be as much as 1%. Consequently, there is some
ambiguity in the normalization of the experimental
distribution curve. Also, the method of calculation
which involves the use of only a limited number of
points of the two distribution functions h and k intro-
duces some errors of normalization as is indicated by
the failure of F to be equal to 1.000 for the largest
value of AE/DEp in Table I. This error is probably less
than 2%. However, the consequences of different nor-
malizations need to be determined.

(b) A check of the theory, and a determination of P,
is presumably achieved when a,straight-line plot such
as is illustrated in Fig. 3 is obtained. We wish to know
how sensitive to the choice of $ this procedure is.

(c) An example of the difference between the full
Moliere and a simple exponential multiple scattering
distribution was illustrated in Fig. 2. A test of the
possibility of describing the experimental transmission
curve without use of the full Moliere distribution should
also be made.

The first two points are illustrated in Fig. 4. The
straight line curve (a) in this figure is a replot of the
curve in Fig. 3 for )=0.69. A second curve (b) is ob-
tained in precisely the same way except that the
experimental transmission curve was normalized to a
value 0.7% lower than before. A third curve (c) is
plotted in which the only change is that a theoretical
transmission curve with /=0. 775 rather than 0.69 was
used. It is clear that the procedure is sensitive to both
of these factors and that for energies as low as 10 Mev
the measured transmission without change in normal-
ization should be used.

The importance of using the full Moliere multiple
scattering function is illustrated in Fig. 5. The straight-
line curve (a) is again the curve of Fig. 3. The other
curve (b) is obtained in an analogous procedure in
which however numerical values of F((AE) in Eq. (14)
are obtained using a simple exponential rather than the
full Moliere function. One observes that the theoretical
distribution based on the simple exponential function
deviates considerably from the experimental distribu-
tion and that this deviation is in the expected direction
(more protons appearing at higher energies, corre-
sponding to the larger angles). The pure exponential is
thus not a good representation of the multiple scat-
tering. "

The procedure outlined has been carried through for

' For an earlier confirmation of this conclusion for the case of
heavy particles, based however on a measurement of the dis-
tribution in angle, see H. Bichsel, Phys. Rev. 112, 182 (1958).
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Fn. 5. Experimental trans-
mission curves for 10-Mev
protons in Au in which: curve
u is again the same as in Fig.
(3) with )=0.69; curve b is
similar except that it is ob-
tained with neglect of the
Moliere correction terms
{8= ~ instead of 8=10).
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Ag and Au. The results for proton energies of 10 and
18 Mev are given in Tables VI and VII. Values of $,
DRp, and hR, determined in this way are to be found
in columns 2, 3, and 6. Theoretical values of ARO listed
in column 4 are calculated from Eq. (6) for the par-
ticular energy of an experiment rather than taken
from Table III. Theoretical values of hR, listed in
column 7 are obtained from calculations of Millburn
and Schecter. "Values of $ and dRs (experimental) are
not quoted in Tables VI and VII for Al and Cu. This
is because these parameters are not so reliably deter-
mined by our procedure for the lighter elements as they
are for the heavier elements, since the contribution of
the multiple scattering to the straggling width is much
less than the contribution of energy loss straggling. This
does not prevent us, however, from making a reliable
determination of DR„and in addition the value of $
and ARO can at least be estimated. Our procedure for the
determination of d,E, is as follows. For each of several
values of $ which are approximately correct for the
element and the energy under consideration a value of
ARO is obtained according to the procedure described
above for a single $. Thus, one obtains pairs of numbers

($ and DRs) whose product DR, =JDRp ls observed to
be very nearly a constant. This is not surprising since
we are here considering cases of $) 1 and for such cases
the inhuence of the multiple scattering on the total
straggling is small. The parameter P is itself not well
determined since it may be permitted to vary over a
rather wide range without altering the experimental
distribution appreciably. Thus, for Al at 6 Mev we

find practically no difference in the distribution for $

"See Tables Sc-7 and Sc-5, in American Institute of Physics
Handbook (McGraw-Hill Book Company, New York, 1957).
R. M. Sternheimer, Phys. Rev. 117, 4S5 (1960), gives values for
R, (theoretical) about 20% higher, agreeing quite closely with the
values calculated in reference 4.

anywhere in the range of 2.8 to 4.0. But DR, is well
determined at a value of 1.12+0.03 mg cm '. Columns
5 and 8 give the ratios of experimentally and theoreti-
cally determined quantities. The agreement is probably
better than we should have expected in view of the
failure of the small-angle approximation as described
previously (Sec. II), however much this failure may be
minimized because the lowest detectable energy in the
experiments lies suKciently high so that the calculated
and measured DRO are not strongly dependent on it.

R(Ep) =R(s)+
( dE/dt)—(17)

where ( dE/dt) is the —stopping power and e is a lower

limit in the energy above which the theoretical ex-
pression for stopping power can be regarded as valid
and an accurate value of R(s) can be assigned on the
basis of measurements. The stopping power is computed
from the expression

1 dE E(e)
Lz(f( )—»I) —7 ~'j,

p dt
(18)

where Z, A, and p are the atomic number, atomic mass

and density of the stopping medium, I is the mean
excitation potential, C; are the shell corrections for

IV. I VALUE AND L-SHELL CORRECTION
FOR ALUMINUM

The measured range corrected for multiple scattering
as described in previous sections is to be compared with

the theoretical range given by
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TABLE VI. Straggling parameters at 10 Mev (unless otherwise noted) for various stopping media together
with an experimentally determined value of g for Ag and Au.

Stopping
medium

ARoin mg cm 2

Kxp. Theory Ratio
d,g, inmgcm 2

Kxp. Theory Ratio

Al (6.15 Mev)
Cu
Ag
Au (9.7 Mev)

~ ~ ~

1.08&0.03
0.68+0.02

~ ~ ~

3.6a0.1
8.3+0.2

0.27
1.g5
3.g
9.4

~ ~ ~

0.95
0.88

1.12%0.03 1.20
3.3 &0.1 3.44
4.0 &0.1 4.21
5.6 &0.2 5.80

0.93
0.96
0.95
0.97

TABLE VII. Straggling parameters at 18 Mev (unless otherwise noted) for various stopping media together
with an experimentally determined value of p for Ag and Au.

Stopping
medium

ARO in mg cm~
Kxp. Theory Ratio

ZkR, in mg cm~
Exp. Theory Ratio

Al
CU
Ag
Au (17.5 Mev)

~ ~ ~

1.12+0.02
0.70

~ ~ ~

8.7+0.2
20.0

1.41
44
8.9

21.0

~ ~ ~

0.98
0.95

6.4 &0.2 6.4
8.45w0. 03 8.5
9.8 &0.2 10.3

14.0 +0.5 13.7

1.00
1.00
0.95
1.02

binding energy and

~goe4 4mÃoro2mc2
E(e)=

2nsc'P'
f(e) =ln —p',

1—2

where Eo is Avogadro's Number, m is the electron
mass, and p= v/c.

In order to calculate E(Es) from Kq. (17) a value of
I as well as binding energy corrections must be assigned.
The function R(Es) obtained in this way is then
compared with E(Es) as obtained from the measure-
ments through Kq. (16). These two methods of ob-
taining E(Es) should agree over as large a, range of
variation of Es as possible for a single choice of I, E(e),
and the parameters which are used to fix the various
shell corrections.

The application to aluminum is of interest because
this stopping medium has been studied so extensively.
In this case there are E- and L-shell corrections to be

made and an JI-shell correction which may be neglected.
In order to reduce the number of free parameters we
will assume that the E-shell correction as calculated by
Walske' is correct. In order to fix the L-shell correction
we make two assumptions:

(a) The ratio of the energy at which the maximum in
C; occurs and the energy of the i-shell electrons is
independent of i; in particular, it is the same for L and
E electrons. For protons in aluminum, C~ has its
maximum at 4.6 Mev. Since the ionization potential of
E-shell electrons" is 1560 ev, the ratio in question is
2900. Applying this ratio to an ionization energy of
72 ev for 2p electrons and 116 ev for 2s electrons, one
finds that maxima in the L-shell correction occur at
0.21 and 0.34 Mev. The corresponding maxima in the
3f-shell correction would occur at energies of the order
of 30 kev; consequently 3f-shell corrections are neg-
lected completely, especially since only 3 M-shell elec-
trons are present.

(b) At large proton energies Cr, Ir/E, where ~ is a
constant and E is the energy. If the lower limit of

TABLE VIII. Calculated pathlength in Al for protons of energy E as a function of the mean excitation potential
I and the constant sc of the I.-shell correction. c~ according to Walske.

(Mev)

1
2
3
4
5
6

12
15
18

Path length
(mg cm 2)

3.87&0.04
11.59%0.06
22.18&0.06
35.55&0.10
51.64%0.15
70.31&0.20

233.2 &0.7
345.0 &1.0
476.0 &1.3

I= 166
~=0

4.40
11.72
22.18
35.55
51.65
70.36

233.2
345.0
475.7

164
1

4.24
11.66
22.18
35.5g
51.70
70.42

233.1
344.7
475.3

166
1

4.17
11.62
22.18
35.62
51.79
70.57

233.7
345.6
476.4

162
1.5

4.19
11.65
22.18
35.57
51.68
70.37

232.8
344.2
474.6

164
1.5

4.12
11.61
22.18
35.62
51.77
70.52

233.4
345.1
475.1

162
2

4.08
11.61
22.18
35.62
51.76
70.49

233.1
344.6
475.0

164
2

4.01
11.57
22.18
35.67
51.85
70.64

233.8
345.4
476.1

164 ev
2.5 Mev

3.89
11.52
22.18
35.70
51.93
70.74

233.9
345.7
476.5

"J.C. Slater, Phys. Rev. 98, 1039 (1955).




