
I AN C, PERCIUAL

insufficient to produce excitation. These include the
distorted wave approximation.

In many collisions the one state phase is positive for
the dominant partial waves. By the inequality (34) the
one state approximation Qq' provides a lower bound to
the exact Q~

for those energies at which

Of course 5(E) is generally not known, but the condition
(46) is not very stringent.

In the one state approximation. the colliding systems are
treated as if they were perfectly rigid, so that no mutual

distortion would occur during the collision. Therefore,
such distortion produces an increase in the scattering
phase and consequently has the same effect as an
attractive potential. This is well-known in the theories
of long-range polarization forces and van der %aals'
forces. When the adiabatic approximation is applicable
t.o the relative motion of the two colliding systems it is

evident from the minimum principle for the energy that
mutual distortion is equivalent to an attractive potential.

The one state and many state approximations require
the solution of equations for unknown functions. In
many cases the box variational method with a linear

space 'U2 of finite dimension should be a simpler method
of obtaining bounds to scattering phases, as it requires

only the eigenvalues of a matrix.
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Recently developed variational techniques for determining upper bounds on scattering lengths are applied
to singlet and triplet scattering of zero-energy electrons by atomic hydrogen. The results obtained are not
only rigorous but are in fact somewhat lower and therefore somewhat better than those previously obtained

by variational methods. We 6nd that the triplet and singlet scattering lengths, Az and Az respectively,
satisfy the inequalities A+&1.91eo and Az 6,23uo, where uo is the Bohr radius. The only assumptions in-

volved in the deduction of these results are that there be no bound triplet state and one and only one bound

singlet state. The singlet trial function determined during the course of the calculation generates a singlet

effective range, r08 of about 2.7ao. The triplet trial functions which were obtained were not suSciently
accurate to be useful in a determination of the triplet effective range, rpz.

I. INTRODUCTION

~ 'HE problem of the scattering of electrons by hy-
drogen atoms has been attacked since the earliest

days of quantum mechanics. For the past ten years, the
principal method of attack has been the variational
approach, and it seemed for a time from the consistency
of the results obtained, even at very low energies, that
the variational results obtained were quite reliable. The
triplet and singlet scattering lengths, A~ and A8, were
estimated to be Az=2. 33ao and Aq=7.02ao, respec-
tively, ' where eo is the Bohr radius. However, the recent

*The research reported in this article was done at the Institute
of Mathematical Sciences, New York University, under the
sponsorship of both the Geophysics Research Directorate of the
Air Force Cambridge Research Center, Air Research and Develop-
merit Command, and the OKce of Ordnance Research, U. S.Army.

)National Science Foundation predoctoral fellow. Submitted
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at New York University, New York, New York.

' One of the earliest e H variational calculations was performed
by H. S.W. Massey and B.Moiseiwitch, Proc. Roy. Soc. (London)
A205, 483 (1951). More recent calculations are discussed by
B.H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton, Proc.
Phys. Soc. (London) 71, 877 (1958).The estimates of Az and Aq
quoted above are those adopted by these latter authors.

work of Ohmura, Hara, and Yamanouchi' makes it.

likely that the value of A z is in fact somewhat smaller.
These authors use the shape-independent approxima-
tion, with the binding energy of H taken from theory'
and the singlet effective range roy computed from the
20-parameter H wave function of Hart and Herzberg,
and find A8=6. lao.' While some questions remain con-

cerning the accuracy of the shape-independent ap-
proximation as applied to e H singlet scattering, we

will indeed show that A z is considerably lower than the

pubhshed variational estimates, and may well be close

to 6ao. The published variational estimates of Az will

also be shown to have been too high.
The method of attack of the present paper is based

on the recently developed variational techniques for

determining a rigorous upper bound on the scattering

'T. Ohmura, Y. Hara, and T. Yamanouchi, Progr. Theoret.
Phys. (Kyoto) 22, 152 (1959);20, 82 (1958).

3 J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).
4 More recent, as yet unpublished work by T. Ohmura and

H. Ohmura, based on a more accurate H function due to Pekeris,
leads to a result which differs only slightly from that quoted above.
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length. ' ' For this method, it is essential that one know,
for a given symmetry, precisely how many composite
bound states can be formed of the scattering system and
the incident particle (or incident system). It will be
assumed in the present paper that there is one and only
one singlet bound state, and that there is no triplet
bound state. There is strong evidence, both experi-
mentally and theoretically, that this is the case, but the
evidence is by no means conclusive. Should it turn out,
for either symmetry, that the number of bound states
is greater than that which has been assumed, the le-
gitimacy of the bound obtained on the corresponding
scattering length in the present paper would be
destroyed.

The determination of a bound is slightly simpler for
the case of no composite bound state. The triplet case
is therefore treated 6rst, in Sec. 2. The singlet case is
considered in Sec. 3.

2. TRIPLET SCATTERING

A. Formulation

1 1q
V=e'( — +

r, r, r„J
(2.1)

and where T= (—fs'/2m)(UP+V's') reduces, since we
are interested in zero total orbital angular momentum,
to

fr' (1 ci r) 1 8 8
«P +-

2fg E, y] gy1 ay] y2 ay2 gy2

2 8 r) tPf p +'mrs 8 l9

+ &12 +
y12 ~y12 ~y12 By] By12

rs t'/+rye 8 8
(2.2)

r)rp r)rip)

The ground-state energy of the hydrogen atom is of
course given by

EH ————,'e'/ap.

Ke now introduce the triplet trial function 0'~o(z,
p& is any one of the three triplet spin functions, nor-
malized such that (err, 7tr) = 1.4'r, is a function of rr, rs,
and r12 which is antisymmetric in r1 and r2 and which

5 L. Spruch and L. Rosenberg, Phys. Rev. 116, 2034 (2959).
L. Spruch and L. Rosenberg, Phys. Rev. 117, 2095 (2960).

7L. Rosenberg, L. Spruch, and T. I'. O' Malley, Phys. Rev.
118, T84 (2960}.' L. Spruch and L. Rosenberg, Nuclear Phys. (to be published).

Consider the scattering of electrons, with zero initial
kinetic energy, by hydrogen atoms, for the state of zero
total orbital angular momentum. Assume that the total
spin angular momentum quantum number is one. The
Hamiltonian of the system is

H=T jV,

TABLE I. Upper bounds on electron-atomic hydrogen singlet
and triplet scattering lengths. Ez is the consistency ratio.

Upper bound
on A r/ao

Upper bound
on A8/ao Rg

No polarization,
numerically

Polarization,
variationally

A r static/ao =2.35a 1,00 A 8 static/ao =8.1a 1.00

2.33b
1 93o
1.91d

1.34
0.97

7.03. 1.03
6.23e 0.996

' M. J. Seaton (see reference 9).
b H. S. W. Massey and B. Moiseiwitch (see reference 1).
'Was determined with the trial function given by Eq. (2.6), of the

present paper.
d Was determined with the trial function given by Eq. (2.7), of the

present paper.
'Was determined with the trial function given by Eq. (3.8), of the

present paper.

where
d7-= r]dr1r2dr2r12dr12.

B. Published Variational Calculations

(2.5)

The right-hand side of Eq. (2.4) is simply the Kohn-
Hulthen variational estimate of Ap. Therefore, though
it was not realized at the time of their publication, the
various Kohn-Hulthen variational calculations which
have been performed' represent bounds on as well as
variational estimates of A~. The Kohn results will

necessarily be lower and therefore better than the
Hulthen estimates; we are here distinguishing between
the two standard methods of evaluating the variational
parameters that appear in Eq. (2.4).

There have also appeared variational calculations in
which "inappropriate" normalization' was used, that
is, a normalization different from that of Eq. (2.3) by a
factor of 1/Ar~. The results so otbained do not neces-
sarily represent bounds but can be trivially altered to
do so.

Of the variational estimates of A~ which have ap-
peared we mention the calculation of Seaton, ' who
obtained a numerical solution of the static (or exchange)
equation, and the Kohn variational calculation, with the
inclusion of polarization, performed by Massey and
Moiseiwitch. ' (See Table I.) Each of these calculations
provides a bound on A~", the small difference between

' M. J. Seaton, Proc. Roy. Soc., (London) A241, 522 (1957).' It should be recalled that the static approximation can he
thought of as arising from that particular trial function which is
equal to a hydrogenic function multiplied by a function of the
distance between the incoming electron and the proton, all ap-
propriately symmetrized.

satisfies the boundary conditions

erg ~+rg„—= (1—Pgs)[Rn(rp) (—1+Ay)/r, )j
for rj or rp —& ~. (2.3)

RH is the hydrogen ground-state function, given by

RH(r)=as '"e ""
while F12 is the space exchange operator. We have
finally

Ap~Arg+(2m/A') t+r g(T+V EH)+r,dr, —(2.4)



166 ROSEN BERG, SPRUCH, AND O' MALLEY

the two results would seem to indicate that the eRects
of polarization are unimportant in this problem. Such
a conclusion would be incorrect, however, as we shall
now see.

C. An Improved Estimate of Ar

The fact that Eq. (2.4) represents a bound on Ar
as well as a variational estimate of Az gives of course
much more concrete meaning to any estimates deduced;
the fact is further of some considerable practical con-
sequence since it makes it possible for the calculation
to proceed in a rather simpler and more systematic
fashion than for a variational calculation not based on a
minimum principle. In particular, one can choose sets
of values of the nonlinear parameters in the trial func-
tion and determine the optimum values of the linear
parameters for each set according to Kohn's prescrip-
tion. One need rot then vary the nonlinear parameters
to such an extent as to be able to locate that set for
which the result is stationary. "Rather, one can merely
perform a succession of calculations with diferent sets,
each choice guided by the result of the previous calcu-
lation, and at whatever stage one decides to stop simply
choose that set for which the resultant value is lowest.
This is essentially the procedure followed here.

We first considered the spatial trial function

+r)——(1—Prp)ap "fe *'Ar, (1 e*')—/(wrap) e*'—
+ge—cx&—dz&+ Ce fr& px& p—z&pj— (—2 6)

where xr=rr/ap, xs rp/ap, an——d xrp rrp/ap ——The expo-
nential parameters were chosen using the "trial and
error" method outlined above, " and the lowest bound
on Ar obtained using Eq. (2.6) appears in Table I. The
corresponding linear variational parameters and ex-
ponential parameters are given in Table II. The con-
sistency ratio, R~, defined by

R& Ar, + (2m/A'——) +r, (T+V P.„)%r,dr—
was found to diRer considerably from unity. While no
attempt was made to determine the optimum set of
exponential parameters it did not seem likely that a
set would be found which would give a value of R~
close to unity, without raising the bound on A&. Con-
sequently, we considered a more flexible trial function,
which did not, however, add substantially to the com-

"In the absence oi a minimum (or maximum) principle such a
procedure is not even well de6ned in principle since there will be
in general more than one stationary point for a given form of the
trial function.

~ For the necessary integrals, which are quite straightforward,
see L. Spruch and I. Rosenberg, Research Report No. CX-40,
Division of Electromagnetic Research, Institute of Mathematical
Sciences, New York University (unpublished). A Univac com-
putor was coded to provide the results for each chosen set of ex-
ponential parameters. In order that 4 && have the proper asymp-
totic form the parameters were restricted according to the relations
b&0, c&0, d&0, f+g&0, f+h&0, g+h&0.

TABLE II. Table of linear variational parameters and
of exponential parameters.

Ag/ap
8
C
D
b
C

f
h
ff

h'

Singlet,
Eq. (3.8)

6.26—27.92
27.79

0.529
0.904
0.814
0.942
0.814—0.030

Triplet,
Eq. (2.6)

1.44
0.469
0.184

1.50
0.450
1.00
0.990—0.145
0.240

Triplet,
Eq. (2.7)

1.96
0.234
O.ioi—0.071
1.50
0.450)
1.00
0.990)—0.145
0.240l
1.00
0.230)—0.150)

plexity of the calculations. We chose

e„=e„LEq. (2.6)j
+ (1 p )e sip—De f'—*i p'—ri &'—&&p (2 7)

The parameters f', g', and h' were not varied but simply
taken to be one of the sets originally obtained in the
analysis bases on Eq. (2.6) which gave reasonably good
results; the values f, g, and h were taken over intact.
The consistency ratio was thereby improved and a
slightly lower bound was obtained. (See Table I.)

We note that there exist some questions, in the
present problem, concerning the validity of the shape-
independent approximation and, indeed, the correctness
of the energy dependence which is usually assumed in
the eRective-range expansion, due to the existence of
long-range polarization eRects. Nevertheless, we have
ignored these points in the present paper and attempted
to use the trial function obtained in the variational
calculation for an evaluation of the eRective range. This
attempt was unsuccessful, however; the calculated value
of rpT was extremely sensitive to the choice of the ex-
ponential parameters. Apparently a more accurate trial
function is required, although no such difhculties were
encountered in the calculation of the singlet eRective
range, rps (see Sec. 3).

While the trial function is not suKciently accurate to
enable one to extract from it information about the
effective range, rp&, one can learn something about rpy'

from the value of Ar. Thus, if there were a triplet bound
state with a binding energy relative to that of the hy-
drogen atom given by yr'fi'/2m, we would have, in the
shape-independent approximation,

Vr 1/Ar+srprYr )

or
pr =E1+(1 2rpr/A r)' j/r p—r.

It follows therefore that if there is rot to be a triplet
bound state, the quantity yy can not be a real number,
i.e., we must have

rpr&-,'~r.
There is no particular reason to believe that this esti-
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mate of rpz is an accurate one. We note that in the
singlet case, where there is a bound state, similar reason-
ing leads to the inequality rpg(2Ag. Of course, a more
accurate estimate can be obtained for the singlet case
by using the known H binding energy (see Sec. 3C).

2 s~ A s,+ (2m/fi') ifgsi(T+ V EH)gsidr—(2m/&')—

f
X Ps~(T'+ V EH)gsA—r

-2

(Es, EH). (3—.1)

V, T, and dr are given by Eqs. (2.1), (2.2), and (2.5),
respectively. The trial singlet scattering function is
0'g~xq, where y8 represents the normalized singlet spin
function and where the spatial function +8~ is a function
of rg, r2, and rg2 which is symmetric in rg and r2 and
which satisfies the boundary conditions

+sr ~+si —= (1+&rr)(&rr(rs) (—1+&si/rr)]
for ri or rs —+ ~. (3.2)

The trial bound-state function is of the form 4'~~yq,
where the spatial part is normalized via

and must be sufficiently accurate so that

3. SINGLET SCATTERING

A. Formulation

An expression for an upper bound on the scattering
length which is valid when one and only one composite
bound state exists has been given previously. ' This
result, specialized to the case of singlet scattering of
electrons by hydrogen atoms, is

such a way as to remedy their "inappropriate" nor-
malization, leads to the upper bound 38~7.63up. Their
calculation could be readily utili'zed to obtain a bound
because in constructing a trial function, they included
an arbitrary multiple of a trial H function (developed
by Chandrasekhar") in the hope that this might prove
an accurate represenation of the scattering function in
the important region for which all interparticle distances
are small. Whether or not this hope is in fact realized,
it nevertheless follows that their trial function, apart
from its normalization, is of precisely the correct form
to lead to a bound.

There are a number of other published calculations
from which bounds on Aq can be deduced. In particu-
lar, it will now be shown that both (a) the static calcu-
lation of As and (b) the Kohn variational estimate of
Az, as calculated by Seaton, ' are actually upper bounds.

The result (a) follows as a particular example of a
much more general result that has been obtained pre-
viously. ' Thus, as a consequence of Eq. (3.1) and the
(assumed) fact that there is only one spatially sym-
metric bound state of H, we may conclude that the
"exact" static scattering length lies above the true
scattering length provided it is possible to find a trial
bound state function with a spatial part of the form

+si=&H(re) f(rr)+&H(rr) f(rr),

and which satisfies Eq. (3.3). Such a function may
easily be constructed so that we do obtain a bound from
the static calculation.

We now consider the proof of statement (b). The trial
function used by Seaton in his Kohn variational calcu-
lation can not be written as in Eq. (3.4). However, as
is shown in the Appendix, the Kohn estimate lies above
A q if the spatial part of the trial function can be written,
in terms of the symmetric functions D(rr, rs, rr2) and
C (rr, rr, ris) which do not contain Asi, as

(3.3) where

but 0'&& is otherwise arbitrary.
It has been shown' that the expression for the bound

given above is entirely equivalent to a Kohn-Hulthen
variational estimate of the scattering length, with a
trial function of the form

I Q,(T+U EH)Qdr(0, —

(")/"
1 for r~ —+ ac

~

C —+ EH(rr) I

(3.5)

(3.6)

(3.7)

'Psi='Psi +~+s~, (3.4)

where 4s& must satisfy Eq. (3.3), where the linear
variational parameter b must not appear in +8~ or in
4&&, and where 4&& must satisfy the boundary condi-
tions imposed on%'si in Eq. (3.2).

B. Published Variational Calculations

It was shown previously~ that a conversion of the
numbers calculated by Horowitz and Greenberg, " in

"S.Borowitz and H. Greenberg, Phys. Rev. 108, 716 (1957).

Since the trial function used by Seaton can be written
in this form, the calculation provides an upper bound.

The primary significance of the development in the
Appendix is not of course that one can utilize previously
published calculations, but rather that one has slightly
greater freedom in the choice of a trial function which
will lead to a bound on the scattering length. This in-
creased freedom will prove useful in the following
subsection.

"5, Chg, nglg, sekhg, r, Astrophys. J. 100, 176 (1944).
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No attempt will be made to consider the other varia-
tional calculations which have been performed, for the
calculations are suKciently simple (as opposed, for
example, to scattering by a system of more than two
particles, or even to neutron-deuteron scattering) so
that, forearmed with a minimum principle, it is a trivial
matter to obtain results which are lower and therefore
better than those previously derived by variational
calculations.

C. An Improved Estimate of A8

Ke have performed a variational calculation of Aq
with the spatial part of the trial function given by

'I's~= (1+Bio)ao o' $e *'As~(1—s o")/(xzao) —e "
+Ice col—

dado+ Ce f8' ox' Azgo] (3 8)

According to the previous discussion, an upper bound
on Aq will be obtained for those sets of exponential
parameters for which the coefFicient of 8' or of C', or of
Ag~', in the integral

+s~ (7'+ & &H)+s A~, —

is negative. As it turned out, this condition was satisfied
for all sets of exponential parameters considered, so that
the subsidiary condition played no role in the actual
calculation. (During the latter stages of the calculation
the coefficients of 8' and C' were both positive so that
it was necessary to invoke the result derived in the
Appendix and noted above, that a bound is obtained if
the coeflicient of As~ is negative. ) As in the triplet cal-
culation, a fair number of trials were made but it is not
entirely clear how close our final set of parameters is to
the optimum set for the assumed form of trial function;
the lowest bound obtained is given in Table I.

It is somewhat surprising that for the present singlet
case, where a bound state exists and where consequently
one might expect it to be more dificult to obtain an
adequate trial function, it is possible to obtain a very
good consistency ratio, R~, with a trial function with
only three linear variational parameters whereas four
were required for the presumably simpler triplet case.
Of course, a good consistency ratio does not actually
guarantee anything whatever regarding the accuracy
of the result. Nevertheless, we did not go on in the
singlet case to the use of a trial function with four
linear variational parameters.

Using the estimate of A8 thus obtained, along with
the accurately known binding energy of the H ion, the
effective range, r08, was calculated from the shape-
independent approximation (we once again put aside
any doubts as to the validity of the form of the
expansion)

y=&s '+orosy',

%e obtain roq=2. 70ao. The effective range was also
calculated from the trial scattering function, using the
relation'

&os= (2/~ sP)
J

(+s~ ' +sP)« —8(1—2/~ s~)'.

The last term in this expression arises from the sym-
metry of the wave function. This equation yields
rpg= 2.78ao which agrees rather well with the previous
estimate. These values are to be compared with the
value 2.646&0.004 obtained by Qhmura and Ohmura'
using the very accurate ground-state H function of
Pekeris.

If we ignore the seemingly very unlikely possibility
that either or both of the scattering lengths are negative,
we obtain as a bound on the zero-energy total cross
section

ot,.t,.&= ,'4' Ar'+ —,'4mA s'~-49.8maoz.

Since we have only obtained one bound, it is difficult
to make any estimate of the reliability of the above
value. Apart from the general desirability of introducing
a trial function with more parameters, it would seem
reasonable in any extension of the present calculation
to choose a trial function which effectively generates
the long-range 1/r4 polarization potential.

Pote added im proof Apap. —er by V. M. Martin, M.
J. Seaton and J. B.Wallace LProc. Phys. Soc. (London)
72, 701 (1958)] contains a number of approximate
calculations of A s and of A z. (Note that their definition
of As and of A & differs by a sign from ours. ) They ob-
tained the value Az =1.993ao from a Kohn variational
calculation; it follows that this value is a rigorous bound.
Though this value is not as accurate as the one obtained
in the present paper, it is of considerable interest since
the Pr~ used was deduced on the basis of the adiabatic
approximation. %hile no rigorous conclusions can be
arrived at, the fact that our calculation and theirs, one
emphasizing short range and the other long range
polarization effects, lead to comparable results, would
indicate that the bound 1.91ao may be a reasonably
accurate estimate of A z.

Ignoring the physical argument by which their Pz~
was arrived at, one can write

PT t aft (exchange) +bf, (adiabatic),

with b a variational parameter. (Their Pr~ had b= 1.)
The numerical values of the integrals which are then
necessary are all given in their article. One finds
b=0.940 and Az &1.992ao, so that there is no effective
improvement. This result slightly increases the strength
of the conclusion of the last paragr'aph.

On the basis of the theorems that have been deduced
so far, it does not seem possible to prove that their
Kohn exchange adiabatic estimate of Aq is a bound. It
is nevertheless of some interest that the value obtained,
A ~=6.372ao, is rather close to our value.
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APPENDIX

It will now be shown that the conditions under which
a Kohn variational calculation provides an upper bound

on the scattering length can be extended to include the
case where the trial function may be written as in

Eq. (3.5), subject to the conditions given by Eqs. (3.6)
and (3.7).

Ke are still concerned with the case for which there

is one and only one bound state. The result is valid for

scattering of one compound system by another, but for

clarity of presentation the proof will be given for the
problem at hand, the singlet scattering of electrons by
hydrogen atoms; use will be made of the notation in-

troduced in the text.
The method of proof is simply to show the identity of

the Kohn result, in which the prescribed form of trial
function is used, and the rigorous bound, The Kohn
variational principle reduces at zero energy to

As=As&+(2m/A2) 4's&(H En)+srdr (A 1)

If we substitute the expression for 4s, given by Eq. (3.5)
into Eq. (A-1), and use the relationship

' Q(H En)4dr —I 4 (H E—H)Qdr= —(h—'/2m),

we find

Now the rigorous upper bound on Aq is given by

(PP/2m) (As —A s ') &,I +s, '(H En—)@s,'dr

-2

4's((H En)+—s, dr
)~+st

(H E&)+—sfdr.

(A-3)

4s~ ~ const. E H(r )2/r, for r, ~ m,

suSces."Ke can then set +~~=0. Further, the choice
+8&.——4 is permissible, corresponding to the choice
Aq~ =0. Ke then ind that the upper bound on A~ pro-
vided by Eq. (A-3) becomes identical with the Kohn
variational estimate, Eq. (A-2), which completes the
proof.

The generalization of the above result to the case for
which there are precisely E bound states is trivial. It
is that the Kohn principle provides an upper bound on
the scattering length provided that the trial function
contains iV linear variational multiples of mutually
orthogonal trial bound-state functions, where one of the
g linear var'iational parameters can be the trial scat-
tering length. As discussed previously, ' the trial bound-
state functions are determined such that they diago-
nalize the A gS Hamiltonian matrix; each trial func-
tion must be sufficiently accurate to give binding.

In examining the relative merits of the Kohn and
Hulthen prescriptions for evaluating the linear varia-
tional parameters in the trial function" when one
bound state exists it is necessary to distinguish between
the following two cases:

Here 0'~~ is a function which is normalized and which
is suKciently accurate to give a composite bound state
of H . Actually, the normalization of 0'&& is clearly
irrelevant, and it is trivial to show by the use of a
limiting process that in fact +~~ need not even be nor-
malizable; a symmetric function which satisfies the
boundary condition

(a) The variational expression provides an upper
bound by virtue of the fact that the trial function can
be written as in Eq. (3.4). In this case both methods
will lead to a bound but the Kohn method is to be pre-
ferred since it will provide a lower and therefore better
estimate of the scattering length.

(b) The trial function can be written as in Eq. (3.5)

+AsP Q(II En)Qdr. —

Varying the right-hand side with respect to AB& leads to

(5'/2m) As= 4'(H —EH)4 dr —2A s~ Q(H EH)c'dr—

A s,— Q(H —E&)edr
J

so that

Q(H —EH)cdr
"2

(h'/2 )Ams = @'(H—En)~'dr

Q(H —E )Qd. ,

Q(H —EH)Qdr. (A-2)

"The limiting process consists of showing that if 0'~~ is multi-
plied by exp( —Xr& —Xr2) in Eq. (A-3} the integrals are continuous
as.) —+ 0 (see reference 6). Clearly some care is required. Thus,
while we have

f

ats)
(H EH)4's& dr =f@s& (H—Es)%'s(dr)—

we find that

0(H —EH)4 dr WfC (H —LH)ndr.

In writing down Eq. (A-3), we put 4'gg on the left in the term
which is squared since that is the order for which the limiting
process goes through.

'6 See, for example, Eqs. (2.6) and (2.7) of reference 5.
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but +of as in Eq. (3.4). Here the Hultheu method need
not provide an upper bound while, as we have just
seen, the Kohn method is guaranteed to do so. In this
case, it is no longer true that the Kohn estimate must
be more accurate. Indeed, an example of the reverse
situation is provided by some of Seaton's' results.
Nevertheless, one would certainly use the Kohn prin-

ciple, since it possesses the very desirable minimum
property.

Similar considerations hold when more than one
bound state exists. If no bound states exist case (b) does
not arise and, as we have pointed out previously, ' the
Kohn method should be used to obtain the bound on
the scattering length.
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A configuration interaction calculation, involving thirty-seven configurations and including the (1s)'(2s)'
Hartree-Fock function, has been done for the ground state of atomic Be. Approximately ninety percent of
the correlation energy has been incorporated into the final total energy. The results indicate that the cor-
relation energy is associated with two eftects, namely that of the "correlation hole" as has been observed
for He and that of "orbital degeneracy" (which does not appear in the two-electron He case). The former
eRect is best handled by the Hylleraas approach and the latter by the con6guration interaction method, and
the results suggest that an admixture of the two methods would lead to the most rapidly convergent de-
scription of the exact four-electron wave function. The errors introduced by handling "high-lying" con-
figurations by second-order perturbation theory rather than by exact configuration interaction are also
investigated.

I. INTRODUCTION

HE Hartree-Pock formalism' yields approximate
solutions of the many-electron Hamiltonian.

These solutions are in considerable error if one wishes

to use them to predict almost any physically observable
quantity. Not only are the solutions in error, but small

improvements in the wave functions, as evidenced by
a lowering of the expectation values of the total energies,
will lead to poorer predictions of some of the observ-
ables. The lithium hyperfine interaction' is an example
of this. The two standard methods for improving on
the Hartree-Fock wave function are (1) that of
Hylleraas' where interelectronic coordinates (r,,) are
explicitly included in the wave function and (2) that of
con6guration interaction where the variational prin-
ciple is applied to a trial wave function which is a
linear combination of Slater determinants. The
Hylleraas approach has been very successfully applied
to the two-electron (three-particle) ions" where total
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Research.
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energies and wave functions of accuracy sufhcient to
assist in supplying information concerning the nucleus
have been obtained. 4 The configuration interaction
approach has yielded much less accurate results for the
same problem. "

The difference between the He Hartree-Pock func-
tion and the exact eigenfunction for the two-electron
(nonrelativistic) Hamiltonian occurs because the
Hartree-I'"ock function inadequately describes the
behavior of the two electrons when they are close
together, i.e., the "correlation hole" is omitted. The
comparative success of the Hylleraas method, when
applied to He, is due to the fact that it supplies a more
rapidly convergent method for describing the "cor-
relation hole. "

Both methods increase in difficulty with increasing
numbers of particles. This increase is most serious for
the Hylleraas approach since the number of inter-
electronic r;; coordinates increases quadratically with
the number of particles while the number of inde-
pendent one-electron (r~) coordinates increases only
linearly. When going from the Hartree-Pock to more
exact eigenfunctions for systems of four or more
electrons there often is, as has been suggested by

' R. K. ¹sbetand R. E. Watson, Phys. Rev. 110, 1073 (1958).
7 G. R. Taylor and R. G. Parr, Proc. Natl. Acad. Sci. (U.S.)

38, 154 (1952); L. C. Green, M. M. Mulder, M. N. Lewis, and
J. W. Wall, Phys. Rev. 93, 757 (1954); H. Shull and P. -O.
Lowdin, J. Chem. Phys. 23, 1362 (1955); P. -O. Lowdin and
H. Shull, Phys. Rev. 101, 1730 (1955); E. Holgien, Phys. Rev.
104, 1301 (1956); and D. H. Tycko, L. H. Thomas, and K. M.
King, Phys. Rev. 109 369 (1958).


