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Photoeffect from the L Shell*
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The differential cross section for photoeffect from an atomic shell is shown to be almost independent of
principal quantum number, apart from normalization, for energies well above threshold. The high-energy
limits of the total cross sections for the three L subshells are calculated exactly with methods previously
applied to the E shell, and extrapolations are made to cover the entire high-energy region. A procedure is
indicated to account for the effects of electron screening. It is found that the contribution from the P sub-
shells is not negligible in heavy elements. Agreement with experiment is good.

I. INTRODUCTION
" 'N a recent paper' methods were developed to obtain
~ ~ the high-energy limit of the total cross section for
photoelectric emission from an atomic shell, neglecting
screening eGects of the electron cloud on the nuclear
charge Z. For the E shell the result, which is expressed
as a double integral, was obtained both numerically
and as a power series in the parameter a—=Ze'. ' This
information was combined with the results of Gavrila'
on the energy dependence of the cross section to
provide an extrapolation formula representing the E
shell total cross section in the entire high-energy
region (photon energies above 1 Mev).

The main objective of the present paper is to obtain
analogous results for photoeGect from the I shells, for
which information on the total cross sections at high
energies is now becoming available. It is soon discovered„
however, that there are simple relations among the
differential cross sections for photoeGect from any
shell, at all energies well above threshold. Thus the
diGerential cross section dg. for a shell of orbital angular
momentum l is 0(a'+").' Further, do. for photoeffect
from the (e,j,l,m) shell does not depend on the principal
quantum number n when terms of relative order u' are
neglected, except for a normalizing factor. ' The m

dependence of the normalizing factor is easily found,
and consequently when the cross sections for the 2s
and 2P states are known, a prediction can be made for
the 3s and 3P states, etc. Another application of these
results is to the high-frequency limit of bremsstrahlung,
which McVoy and Fano' have shown to be closely
connected to the photoeGect. This application will

form the subject of a subsequent paper.

* Supported in part by the United States Air Force through
the Air Force Once of Scientific Research, in part by the United
States Atomic Energy Commission through the University of
Chicago, Chicago, Illinois.' R, H. Pratt, Phys. Rev. 117, 1017 (1960);hereafter referred to
as I.

2 We use unrationalized units and set Iz=c =m, = 1.' M. Gavrila, Phys Rev. 113, 514. (1959).
40(x) shall mean "of order x," y=O(x) shall mean "y is of

order x."' This is not trivial since (contrary to a statement often made)
the photoeGect even at high energies does not depend only on the
value of the bound-state electron wave function at the origin.

6 K. W. McVoy and U. Fano, Phys. Rev. 116, 1168 (1959).

Section II will be devoted to establishing these
relations. In Sec. III the high-energy limits of the total
cross sections for photoeGect from the three I- subshells
are calculated, first in power series in u through re1ative
order u, and then numerically. In Sec. IV the results
are summarized, previous theoretical work is noted, and
energy extrapolations are discussed. Procedures are
indicated to take account of electron screening eGects,
which are important for these higher shells. Com-
parisons are made with experiment, and the agreement
is found quite satisfactory.

In the following the notation of I is generally used. ~

The main parameters introduced are a—=Ze' (=0.6 for
Pb), the 101al energy e of the bound electron, and 5,
occurring in the exponential of bound state radial
functions: e '". It is convenient to note that 5s+e'= 1.
The parameter X= cos '6 also appears.

II. GENERAL RELATIONS

I,et us consider the differential cross section do- for
photoeGect from an atomic shell specified by the
quantum numbers (n, j,l,m). We shall show that, for
all photon energies of order 1 or greater in comparison
to g', dodoes not depend on m (except for a normalizing
factor) when contributions of relative order a' are
neglected. The proof proceeds in three stages. (1) We
establish what order in a is contributed to the matrix
element by each term of the bound-state wave function.
This gives the order in a of the cross section and specifies
which terms of the wave function contribute to that
order. (2) We show that these terms do not depend on n
except for normalization. (3) We extend the arguments
to include the terms of relative order a. For greater
clarity, each part of the work will be prefaced with the
corresponding nonrelativistic statements.

The photoeGect matrix element is

M= —e(2n)'k ' d'xf *n ee'~'Psg,

with the notation of I; in the nonrelativistic (NR) case
n is replaced by p. For energies well above threshold

7 See also H. A. Bethe and E. K. Salpeter, Quantzws 3Eechanics
of One- arId Two-I&'lectron Atoms (Academic Press, Inc, , New
York, 1957).
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P~ to lowest order in a is independent of a and is simply
the free electron wave function e'&'I„. 11 &e always
contains the normalization factor a'. Otherwise, the
NR radial function is the product of e '" and a finite
polynomial in br, o which begins with (8r)':

a'*a'Yi r'e '" P c,a'r' (2)

Ke wish to establish whether each term in this series
contributes the order a~'+' to M. For this purpose it is
sufhcient to take 1l ~ only to lowest order in a, and so to
consider the integrals

d8g gib rg—
Bred rl+s

de

=(—1)'
i

doge'~'e '"Yi~r'. (3)
db'

' For small a, 8=0(a).

Choosing an axis along 1k=k—p, only rN=O gives a
contribution. It is not difficult to show that for small
b= 8/6 the—last integral is given by an odd series in b,
beginning with order b. For energies well above
threshold 5 =0(a) and can be represented by an odd
series in u: the minimum momentum transfer 6„„„is
0(1) and 8=0(a). Thus, from the derivatives, the
integrals (3) will be 0(a) or 0(1) according as s is even
or odd. The s=0 term in (2) will only contribute to M
in order a~'+', and the s= 1 term will contribute in the
same order. The cross section for the photoeGect is
hence of order a'+", giving a' for s states, a' for p
states, etc. The first two terms of the bound-state radial
function both contribute in this order. Evidently in
actual calculation it is also not sufficient just to take
the leading order in P„(the plane wave), for the next
term in a can contribute to M in the same order.

In the relativistic radial functions~ the finite
polynomial of (2) is replaced by the finite sum
(8r)& ' P c, (8r)'. The coeKcients c, are not all of order
one. The "small component" f contains the factor
(1—p)&, which is of order a. Further, whenever z)0
the first term co in the series for the "large component"

g is of order a2 rather than one. Neglecting terms of
relative order a2 we may replace y by k. For z(0
(k=i+1, j=l+—,'), the first few terms of the large and
small components may be summarized:

large: a&a'e '"Yir'(1+ciar+coa'r'+ .),
(4)

small: alai+'e P"Yi+ir'(1+ciar+coa2r'+ . . ).

Our previous discussion then shows that the Grst two
terms of the large component and the erst 'term of the
small component may all be expected to contribute
to the matrix element in 'order a~'+'. For z)0 (k=l,
j=l—-', ) we have:

large: a&a' 'e 'Yir' '(a'+c,ar+-c2a'r'+ —
)

small: a&a'e '"Yi,r' '(1+c,ar+c2a'r'+ ). (3)

the e dependence appears only as a constant of propor-
tionality. This result may be understood directly from
the radial Schrodinger equation

2 !' a ) l (l+1)
R"+-R'+21 ~+ IR—— -R=0,

r & r) r'

where, E= p —1=0(a') is the only quantity which

depends on the principal quantum number e. Expanding
8 in powers of u as

R=Rp+ aRi+ a'Ri+

then Eo and E& will be determined from the equations

2 l (l+1)
Ro"+-Ro' — Rp =0,

r r2

2 2 l(l+1)
Ri"+ Ri'+ Rp —Ri =-0—

r r'

(10)

which are independent of 8, and they can depend on

8 only through a common normalizing factor. The
argument is equally applicable to a low-energy con-

tinuum solution.
The same conclusion is obtained for the Dirac wave

functions. Direct expansion of the radial parts gives

for j=l+-,'

]gp (1—ar/(l+1) y[=C(.,l)(2-)
~

&f) ( —a/2(l+1) j
'The integrals can still be given a well-de6ned meaning. See

also reference 0.

Now the first three terms of the large component and
the first two terms of the small component may be
expected to contribute to M in order a~'+'. Thus in all
cases the cross section is of order a'+"; both the large
and small components contribute to the result.

The next task is to establish that the terms of ilod
which contribute to M in lowest order do not depend
on the principal quantum number e, apart from a
numerical factor common to all such terms. To this
order the exponential e '" of the radial functions may be
replaced, by 1—8r.' For the NR case the result is then
evident. Thus the 1s radial function e "=1—ar, the
2s function 2 'e '"(1——,ar) =2 **(1—ar), etc. On

expansion, the radial function for general (N, l) to this
order is~

C (ri, l) (2ar) '[1—ar/(l+ 1)],
where

1 (v+1)!
C(e,l) =- (2a)IN &i+'i; (7)

(2l+1)! 2e(e —l —1)!
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and for j=l——,
'

~

=C(n, l) (2ar) '—'(al

(a'(2l+1)/2l+2ar —2(ar)'/(l+1) )
xi (»)

a(2l+1) —2a'r

III. CALCULATIONS

The high-energy limit of photoeffect total cross
sections can be obtained with the methods developed
in I for the E-shell cross section. In this limit the wave
function P„of the outgoing electron may be taken as
the modified plane wave

f„=zze'~'+'"-, x =a ln(pr+p r), (13)

where I is a free electron spinor. Interchanging orders
of integration, the total cross section is easily written
as a triple integral, which is a function of the parameters
a, 8, and ~. Changes of variables are then made which
facilitate evaluation of the integral either (1) by
expansion in powers of a or (2) by numerical methods on
an electronic computer. For further details see I.

In this section we will obtain the high-energy limits
of the I.-shell total cross sections as a function of u. The
three cross sections represent a sum over the eight
electrons of the I shell: 2s;(2 electrons), 2p*, (2 elec-
trons), and 2p,'(4 electrons). Initial photon polarization

where, neglecting 0(a), C(e,l) is again given by (7).This
property of the wave function may be demonstrated di-
rectly from the coupled differential equations for f and

g; it holds also for the low-energy continuum functions.
To lowest order, then, the photoeffect matrix elements
need only be computed as a function of (j,l,zn). The
same is true for the differential cross section, for e ap-
pears in the requirement of energy conservation only in
O(a'), so that to lowest order the entire n dependence of
the cross section is given by ~

C(n, l)
~

'.
It is now easy to extend the results to include terms

of relative order a. Any such terms which arise from
the portions of fM already discussed will have the e
dependence C(n, l), so that only the higher order terms
of PM need be examined. However, from our previous
results, the next terms in the expansion of (6), (11),and
(12) in ar, which do have a different e dependence, will
only contribute to M in relative order a'-. For the NR
case this completes the proof. For the relativistic radial
functions it must be remembered that we also approxi-
mated r& by r~. Thus, to the order with which we are
concerned, it is necessary to multiply by 1—(a'/2l'z) lnr.
This is independent of e and so does not affect the
argument. The final conclusion is that, for photon
energies of order one or greater, the complete e depend-
ence of the differential cross section for the photoeffect
is given by ~C(e,l) ~', neglecting only terms of relative
order 8

is averaged and final electron spin is summed. The first
two terms of a power series in u will be established, and
for large a the cross section will be computed numeric-
ally. Results, which will be discussed in the following
section, will generally be expressed in units of 00, where,

a&——4zroza'/k (14)

Defining

a(n) =oaH(n)I(n). (16)

H(~) = (28)'~& '&e '(2y+1)'[&32&(&2e+1)] ',

H(0) = (28)'&&—' 4(1—e)(2y+1))
(17)

then, from Eq. (20) of I, I(n) is given by the triple
integrals

, (s+r l"
I(n) =a '[I'(2y+2)] ' pdp ' dsds

~a ~ „~ „&s'+r')

&(exp[i(z —s')e —8(r+r')](rr')~ ' P A;(e). (18)

A g(a) =4 (1&e)[e'+ (1—c')8+z8eC],
A z (~)=48zrr'D'[(1a z)+ (1Te)8ai8C],
A z(&) = —25(r+r')D[+2e(1+ a)+2(1—~')8

+2ie8C]% [4i8'D (r' cos8—r cos8') ],

where

A g(0) =E'8, Az (0)=—'8' —-'

Az(0) =i'(-,'8+-,'), (20)

8=cos8 cos8'+sin8 sin8', C= cos8—cos8',
(21)D= (+2~+1)/(»+ 1), &=L(1+~)/(1 —~)]*',

and the variables r and 8 are related to p and s by

r= (p'+s')l, r'= (p'+s")&, cos8= s/r,
sin8= p/r, etc. (22)

The simple connection of the 2s~ and 2pa cross sections
arises from a similar relation between the large com-
ponents of one bound-state wave function and the small
components of the other, for pairs of states such that
~= &k.

To make a series expansion in a it is convenient to
introduce the variables x and y by

s= p sinh(x+iX), s'= p sinh(y —iX), cosh=8, (23)

and. return the contours to the real axis. Performing the

p integration and then explicitly writing the result as a

is the high-energy small-a limit of the E-shell total
cross section. Let us introduce the notation

a (2s;)—=o (+), o.(2p;)=—a.(—), o (2pg) —=o (0), (15)

and let o (e), where e ranges through (0,&), be factored
as
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real double integral,

I(e) =a-'e —"" t t Bxay

[(cosh'x —sin'X) (cosh'y —sin'X) ]l &&
—"&

X—
(coshx+ coshy)'~'+'

X P R, (~), (24)
2—I

finds

Ig(+) = (28/9) —(8/9)~a, I2(+) =- 8/9,

I~(+) = —(8/3)+(8/15)~~,
I,(—) = a'[(7/36) —(1/18)we],

Ig (—) = a'[(5/54) —(1/45) ~a],
I;)(—) =a'[—(11/54)+ (31/270)xa],
I,(0) = 16/45, I2(0)+Ig(0)

= (8/45) —(22/175)~o.

where k= j+-', , j is the total angular momentum of the
bound state, and the functions IC, (e) are given in the
Appendix. To this point the treatment is exact. If now

the integrand is expanded in powers of a, keeping the
first two nonvanishing powers, then

I(e) = e
—'"g I,(e)

oo ~Go

=e -"" ' dxdy(coshx+coshy) '"+~'J„a„
X Q J;(e). (25)

Kith the abbreviations

It was found in I that if the exponential e ' ~ of
I(m) and the factor P~» " of II were not expanded, then
the remaining terms of relative order a' were very
small, and indeed the expression so obtained was in
good agreement with the numerical results for all a.
The same appears to be true for the I.-shell cross
sections. When terms of O(a') are treated in this
fashion the results for the cross sections may be written

o. (2s;) = (1/8) 8'& "e '~"[1—(4/15) 7ra]oo,

o. (2p ) = (3/32)8'&e ""[1+(4/9)~a]o (30)
o. (2p ) = (1/3) o ~»-'~e-""[1—(33/140)7ro]o,

Further discussion will be deferred to the next section.
For a numerical evaluation of I(n) in Eq. (18) it is

useful to introduce the variables x and y by
R= (coshx+coshy), S=coshx coshy,

T= sinhx sinhy,

P,= sinhx coshy, P„=sinhy coshx,

the J's are given to lowest order as

(26)
s —s/

y=,r'+r r'+r

Then, after performing the p integration,

(31)

Jg(+)= 2(1+4xyT), J2(+)= 40R 'T',

J3(+)= —16R ~T(x sinhy+y sinhx),

Jg(—)= sa'(1+4xyT),

J2(—)= (5/18)u'R '[1+10S+9S'
3R'+ 16xyT (1—+S) 4T (xP»+ yP, )—

—8(1+S)(xP.+yP„)],
J3(—) =—,', ~'R '[4R—16xyRT+8R(xP, +yP„)

—8(1+S)(x sinhx+y sinhy)

+4T(x sinhy+y sinhx)],

Jg(0) = 7+16S+9S'—(15/2)R'

J2(0)= 16xyT(1+S),
J&(0)= —(2+12S)(xP,+yP„)

+ 10(x sinhx coshx+y sinhy coshy).

+' +~ (1—x) '~

I(m) =a '2 ~'&+" " t dxdy~
I 1+x&

X (6+iex) ~'»+''(1— x'y')» —P A, '(e). (32)

Ag'(0) =E'8', A2'(0) = —',8"—-'„

A g'(0) = iEC'(-';8'+-', ),
(34)

Here

(27) A~'(+) =4(1+e)[e +(1—e )8 +18 Ce],

2 2'(&) =P (2y+3) (2y+2) D"(1—x'y')

X[(1&e)+ (ice)&'+i8C']) (33)

2 3'(&) = —28(2y+2)D'[+2e(1& e)+2(1—e') 8'
+2ie6C']W [4iP (2y+ 2)D'(x+ C') ],

x ~ x —2—('+'&mac~) y —+ y —2 "+"macy (28)

The terms of relative order a are obtained with the
substitutions for x and y (where they appear linearly,
not in the hyperbolic functions) 2(1—x') —1 C'=—

)
x y

2x(l —y')

1 xy

where e, is the usual step function: ~1 according as x)0
or x(0. Evaluation of the integrals is routine, and one

D'= (8+iex)—'(a2e+1)/(2y+1),
&=[(1+e)/(1—e)]'.



PHOTOEI FECT I ROM I SHELI 1623

TABLE I. Tests of the machine program for values of u which
can be computed analytically. Values of o/0'p obtained by the two
methods are compared.

Shell

2$;
2Pk

Machine

0.0194 at a=0.99
0.0820 at a=0.99
0.1073 at a=0.9999
0.0043 at a=1.732

Analytic result

0.0193 at a=—1
0.1096 at a=—1

0.0043 at a=—VS

' It will be noted that the 2py cross section is rapidly rising near
a=1, as for example would result from a (1+2'} ' dependence.

The y integrals are quite simple and may be ex-
pressed in terms of one incomplete beta function, to be
obtained from a rapidly converging power series. After
the remaining x integration is written in real form, the
problem is suitable for machine calculation on an
electronic computer. One complication remains: owing
to the factor L(1—x)/(1+x)$' the integrand goes
through an infinite number of oscillations near x= &1.
For this reason the numerical integration is performed
for the region 0&

~

x ~& 1—6, where 6 is a small number,
and the integral over the remaining region is obtained
analytically as a power series in A. For further details
of these procedures see I.

Two tests were made of the correctness of
tlie machine programs. (1) For a = -'v3 (m = &) or
a=--', +7(ran=0) the integrand is easily computed and
was found in agreement with the machine values up to
the accuracy of the hand calculation (five places).
Evaluations of the various functions, including the
incomplete beta functions, were also available from
the machine data and could be compared with their
exact values. (2) For a=1(e=&) or a=v3(m=0) the
integral itself can be evaluated analytically and
compared with the machine result. In practice, the
programs used were not well-defined for these values
of the parameters (see footnote 30 of I), but values
suSciently close to them may be used. The results of
these tests are shown in Table I. The agreement is quite
satisfactory. "

In the numerical computation of the E-shell cross
section the attempt was made to keep errors within
0.1%.It was found that the main limitation on accuracy
came simply from the. finite size of the mesh used to
represent the integrand, for which an upper limit, of 300
points was set by practical considerations. As a is taken
smaller, the absolute magnitude of the integrand
increases, but owing to increasingly severe cancellation
the value of the integral becoines much smaller; hence
a larger mesh is required to represent the integrand
with sufFicient accuracy. For the E shell the smallest a
which could be obtained with the desired accuracy
was a=0.15.

It was desired to obtain the L-shell cross sections with
an error limited to less than 1%.Since this allows more

leeway, only the leading term in the analytic 6 series

TABLE II. High-energy limit of L-shell total cross sections
(unscreened). For each subshell o/oo is given as a function of a, (1)
as determined from Eq. (30), and (2) as found with the electronic
computer. The E-shell results of I are also given. Values from the
computer are accurate to 1'%%uo.

1$ 2$~ 2p&- 2pl
(1) (2) (1) (2) (1) (2)

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.87

0.6987
0.5138
0.3942
0.3145
0.2599
0.2224
0.1963
0.1698

0.0873
0.0641
0.0486
0.0379
0.0301
0.0252
0.0201
0.0149

0.0491
0.0392
0.0329
0,0286
0.0256
0.0221

0.00020
0.00075
0.00159
0.00278
0.00441
0.00678
0.0103
0.0225

~ ~

0.00310
0.00520
0.0084
0.0134
0.0309

0.00058
0.00165
0.00271
0.00357
0.00419
0.00455
0.00470
0.00446

~ ~ ~

0.00388
0.00418
0.00434
0.00440

was used, and as compensation the values of 6 were
taken smaller. Difficulties, however, again arise in
representing the integrand. The L-shell integrands are
more oscillatory than those for the E shell, and the
values of the integrals are smaller. Indeed, for a given
value of a, larger meshes had to be used to obtain L-shell
cross sections within 1% than had been used to obtain
the E-shell cross section within 0.1%. For the 2s; and
2p; cross sections the smallest values which could be
computed were, respectively, a=0.3 and a=0.4, and
for the 2p, case the smallest was a=0.5. Hence, even
more so than for t.he E shell, the numerical result, s
must be supplemented by the power series expansions
of Eq. (30). Of cour" e it is the large a values which are
of greatest interest at. high energies.

do. (2s,) =-', do. (1s), (36)

so that the angular distributions and polarization
correlations are identical. The total cross section is —,

of that for the E shell and can be obtained from the
expression of reference 1 in the entire high-energy
region. The only general statement obtained for the

2p, and 2p; differential cross sections is that for small

a they are of order a7, i.e., O(a') relative to the 2s; and
E shell cross sections.

Section III has provided detailed information on the
high-energy limit of total cross sections for the L shell.
The numerical results obtained and the predictions of
Eq. (30) are shown in Tables II and III, in which for
reference the corresponding E-shell cross sections are
also listed. "The 2s; shell is very nearly one-eighth of
the E shell for all a, while the 2p shells become im-

"Somewhat better agreement is obtained for very large a with
the reasonable assumption that, in the e factor of 0-0, e' comes
from normalization but the remaining a2 is really 45'. The values
for Eq. (30) given in Tables II and III have been modified in this
way.

IV. RESULTS

The results obtained for L-shell cross sections may
now be summarized. From Sec. II, the differential
cross section for the 2s; shell is closely related to the
IC-shell cross section. Neglecting terms of O(a'),
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0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.87

2si/1s

0.125
0.125
0.125
0.125
0.126
0.129
0.130
0.130

2pt/1s

0.000
0.002
0.004
0.010
0.020
0.038
0.068
0.182

2pt/1s

0.001
0.003
0.007
0.011
0.015
0.019
0.022
0.025

&I/+K'
0.126
0.130
0.136
0.146
0.161
0.186
0.220
0.337

portant only for large a. Of course the NR prediction
has the p shells vanishing faster with increasing energy
and so not contributing for any a in this limit.

The only previous work on L-shell cross sections at
relativistic energies appears to be that of Hall and
Rarita, " treating the high-energy limit of the 2s~ shell
in the same fashion as Hall'3 had previously treated the
E-shell cross section. Hall's method has been discussed
in I. The biggest error is in neglecting the terms of
relative order u l the —(4sa/15) termJ but this does
not affect the ratio of the two cross sections, since it is
common to both. Hall and Rarita concluded that the
deviation of the ratio from 8 arises from the normali-
zation, i.e., from the factor P'& '& of Eq. (30). For heavy
elements this increases the ratio to 0.20. However, this
estimate neglects the 8 dependence of X in the "Coulomb
factor" e ' "; when both factors are considered the
deviation is small. Concerning the p shells, Hall and
Rarita state that a rough estimate indicates that they
are inappreciable.

Gavrila" has now used his higher Born approxi-
mation procedure to obtain differential and total cross
sections for the I. shell. His result for the 2s,;differential
cross section neglects terms of relative order a', and
is identically —,'th of the K-shell cross section he had
obtained in the same way. ' The discussion of Sec. II
indicates why this is so. Gavrila obtained the p-shell
cross sections only to lowest order in a; the high-energy

limits for his total cross sections may be written

o (2p;)/o. (1s)= (3/128) a', o (2p;)/o. (1s)=—,', a', (37)

TABLE III. High-energy limit of L-shell total cross sections
(unscreened). The ratios of cross sections os/ox are given for each
subshell and for the complete shell. The data are taken from
Table II, for large u using the computer values and for small a
using the analytic values as the basis for an extrapolation.

where E can be determined from the numerical results
on the high-energy limit, the interpolation formula is

o.(2s,) = so'op'k —'(1—p') fP" "M(p)
X(1+ ~p (p)/m(p) J+Z(a))

&«xpl: —2(~/P) cos '~l, (39)

where 3f(P) and iV(P) are defined by Gavrila or in I.
Angular distributions for the E and 1. shells can easily
be obtained in the same way. R (a) is always small and
p does not greatly deviate from one at high energies,
so that for energies above 1 Mev Eq. (39) predicts that
the ratio o. (2s;)/o (1s) is practically energy independent,
as well as practically charge independent. Similar
expressions could be written for the p shells. However,
for these Gavrila has not determined the energy
dependence for the terms of order a, corresponding to
X(P), and t.he E-shell work indicates that this is needed
before the energy dependence in the 1—10-Mev region
can be discussed. For comparison with experiment we
will make the assumption, roughly in accord with
Gavrila's results above 0.5 Mev, that the p shells have
the same energy dependence as the s shells, so that all
ratios are energy-independent.

Some remarks should now be made concerning
screening. The results so far presented, like almost all
work on the photoeffect, assumes hydrogen-like wave
functions for the electrons. It has been customary to
compensate for the screening effect of other electrons by
assuming that the process occurs in a Coulomb field

of effective charge Z,~~= Z—S. The screening parameter
S measures the charge density of other electrons inside

the shell under consideration; S is often taken as 0.30
for the E shell and 4.15 for the I shell. "It is easy to
see from Sec. II that this is not a correct procedure for
the photoeffect at high energies, which takes place at
distances for which ar is not large. At such distances the
effect of screening is to reduce a by an amount of the
order of (S/137)asr'; this will introduce a correction

TABLE IV. High-energy limits of E- and L-shell cross sections,
r//o. 0, corrected for screening. The predicted ratios of r~/ol, are
also given, (1) without screening, (2) corrected for screening as
in the text, (3) using the effective-charge method. It has been
argued that these ratios are largely independent of energy.

o (2S.;)=—'P' 'l ""l 1—(4/15}sa+A(a)$0'0, (38)

which agree with Eq. (30) to lowest order in a.
As in I, the high-energy limits we have obtained may

be combined with Gavrila's energy dependence to yield
an extrapolation formula for general energy and charge.
Thus, in analogy with Eqs. (64) and (65) of I, defining

E(u) by

0.10 0.615 0.0480 0.0001 0.0002
0.20 0.483 0,0433 0.0004 0.0008
0.30 0.379 0.0364 0.0009 0.0014
0.40 0.305 0.0310 0.0020 0.0021
0.50 0.255 0.0275 0.0039 0.0029
0.60 0.218 0.0249 0.0069 0.0034
0.70 0.192 0.0225 0.0122 0.0038

8.0
7.7
7.4
6.9
6.2
5.4
4.6

12.7
10.9
9.8
8.8
7.5
6.2
5.0

39.5
14.9
11.6
9.6
8.0
6.9
5.7

0 K/&L &rr/&L &K/'&L
1 2 3

~ H. Hall and W. Rarita, Phys. Rev. 46, 143 (1934).
"H. Hall, Revs. Modern Phys. 8, 358 (1936).
'4 M. Gavrila (to be published).

'5 For further discussion see G. W. Grodstein, U. S. Department
of Commerce, National Bureau of Standards Circular 583 (U. S.
Government Printing Once, Washington, D. C., 1957).
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(rK/(rL) (rL/(rM') ((rL(I &+(rL(rr&)/(rL(III&y (40)

where M' refers to cross sections from all shells other
than E and J. This work is due to Latyshev, " to
Hultberg, " and to Grigor'ev and Zolotavin"; these
papers also review other experiments.

The greatest amount of information is available on
o.x/oL, for which there is general agreement that in
heavy elements and over a broad energy range the
ratio is close to 5. For lighter elements the ratio is
closer to 8. This is precisely what Table IV predicts.
(Of course Hall and Rarita would have made a similar
prediction, but according to the present work the
increasing importance of the I. shell for large Z is not
due to the 2s; subshell but to the p shells. ) Table V
compares theory and experiment. Agreement is best

~6H. Srysk and M. E. Rose, Revs. Modern Phys. BO, 1169
(1958).' G. D. Latyshev, Revs. Modern Phys. 19, 132 (1947).' S. Hultberg, Arkiv Fysik 15, 307 (1959)."K. P. Grigor'ev and A. V. Zolotavin, J. Exptl. Theoret. Phys.
(U.S.S.R.) 36, 393 (1959) L'translation: Soviet Phys. JETP 9, 272
(1959)).

to the cross section of relative order (8/137)u' or less,
which is small even for heavy elements. Thus in the
regions which contribute to the photoeGect the changes
in wave function shape produced by screening are
small. However, the change in the normalization of
these wave functions will be important; for example, in
the al+' factor of Eq. (2) it would probably be ap-
propriate to use a Z,«. We conclude that angular
distributions and polarization correlations may be
largely independent of screening, but that screening
effects will decrease the absolute magnitude of I.-shell
cross sections. A more precise estimate may be made
taking the change of normalization of the bound-state
wave function at the origin from the work of Brysk and
Rose." (The change in normalization of an outgoing
electron of relativistic energy is assumed small. ) Values
of the E- and I.-shell cross sections corrected in this
way are listed in Table IV; the ratio of E- to I.-shell
cross sections is given both with and without this
correction, and also using the effective-charge method
consistently.

The results of Sec. II allow us to estimate M- and ~It-

shell total cross sections by combining information from
Tables II and III and Eq. (7)—we could have obtained
a very good estimate of the 2s cross section in this way
from the 1s cross section. Note that Eq. (7) does not
give the actual ratio of wave functions at the origin,
since it omits terms O(a') in the normalization. Screen-
ing can be taken into account by using a Z,« in the
factor a'+", with S as tabulated by Grodstein. " (This
would have worked fairly well for the I shells. ) Again
it will be assumed that ratios are independent of energy.

Experimental results are available for three ratios
of total cross sections:

TABLE V. Comparison of experimental and theoretical values
for the ratio o&r/oL. The theoretical results are given (1) without
screening, (2) corrected for screening as in the text, (3) using the
eBective-charge method. Experimental values for very low
energies are not shown, also those for which indicated experi-
mental errors are more than 10%.

Element

Sb
Pt
Pb
Bi
Th
U

Experimenter

Grigor'ev and Zolotavin
Grigor'ev and Zolotavin
Grigor'ev and Zolotavin
Grigor'ev and Zolotavin
Grigor'ev and Zolotavin
Hultb erg

Experim-

entall
value

9.3~0.3
5.8+0.5
5.1&0.3
6.0&0.2
5,2a0.6
5.3&0.2

Theoretical
values

(1) (2) (3)

7.0 9.1 10.1
5.6 6.6 7.2
5.4 6.2 6.9
5.3 6.1 6.8
4.9 5.5 6.2
4.8 5.3 6.0

when screening is accounted for by correcting the
normalization, as we have indicated. It thus appears
that the behavior of the ratio or(/aL can be understood
in terms of an increasing importance of p states for
large Z and screening sects which are most noticeable
for small Z.

Hultberg found oL/o &(r
——2.6&0.15 for U in the

1-Mev region, while Grigor'ev and Zolotavin 6nd values
of the order of 3.5 at low energies. It had previously
been customary to take this ratio as 4. If the cross
sections for higher shells are determined as indicated,
the predicted ratio without screening is 1.8. Rather than
use a Z,gg, one can obtain the screening correction to
normalization from Cohen's" recent self-consistent 6eld
calculation for this atom, and the predicted ratio with
screening is found to be 3.3. This includes only s and p
states, neglects terms of relative order a', and uses the
same energy dependence for p states as for s states. If
it is assumed that the d states, which contribute to M'
but not to I., are of the same magnitude relative to p
states as the p states are to s states, then the unscreened
ratio becomes 1.4 and the screened ratio about 2.7.

Grigor'ev and Zolotavin find that for Bi at 0.26 Mev
the ratio (o'L(r&+(rL(rr&)/o'L(rrr& is only 5 and beginning
to level oG, while according to NR theory it should be
6.3 at 0.26 Mev and should become infinite as the
energy increases. From Table IV we predict that the
limiting value of the ratio should be 9, in reasonable
accord with the trend of the data, and practically
independent of screening.

In closing it is appropriate to discuss the relevance of
our results for the several processes which are closely
related to the photoeffect. It was shown in I that in the
high-energy limit the total cross section for the photo-
eGect, the one-photon annihilation of fast positrons, and
their inverses are identical, apart from the statistics
of initial and 6nal states, for an electron of a given
shell. Another closely related process is the high-

frequency limit of bremsstrahlung, which Fano and

~ S. Cohen, Phys. Rev. 118, 489 (1960); also University of
California Radiation Lg,bor@tary Report UCRL-8633 (un-
published).
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APPENDIX

Using the abbreviations of Kqs. (21) and (26), and
also introducing

8(x) =ax+(y —k) tan —"(tank tanhx), (41)

McVoy' have shown to have a matrix element identical
to that for the inverse photoe6ect to lowest order in a,
apart from normalizing factors. The results of Sec. II
depend only on properties of the bound state (or low-

energy) electron wave function, and so are immediately
applicable to all these processes. Thus we know to the
same extent (neglecting order a2) that the differential
cross section for one-photon annihilation with a 2s
electron is one-eighth of that for a j.s electron, and we
can also draw all other analogous conclusions. The
bremsstrahlung limit is more complex, as the low-

energy outgoing electron wave function is given by a
sum of terms, the erst of which is related to photo-
eGect from the s states, the next two to photoeffect
from the p~ and p; states, etc. This will form the subject
of a subsequent paper.

Introducing the further abbreviations

o.(&)=8—'(»&1), cr(0) =8 '(1+—»),

then the functions d, e, and f are given as

(44)

d1g= 1, de =PS(1+5)+»282T2—»8o(P,2+P.„2),

d~= FE, e—1~=8 'T, e2~ ——(»+oo)'ST+»'T,
e3~= (—1W2»)ZT, f,~=o,

f2~(x,y) = —8P,[»+5(2»+1)j+ (»'o.+»oa2) TP» (45)

f3+(x,y) = &b»2RT+8» sinhx (1+»S)
—»8

—'(1+»') T sinhy&8 sinhx

X (8' cosh'x —»' sinh'y)

d10 ——3»'5+ (P sinh'x —»' cosh'x —-')

&( (P sinh'y —»' cosh'y ', )—+-3+o-'[PS(1+»'5)
+»%2T2+»2P(P '+P 2)) o»g[—(3 . SP)5—

+48jP 4(P»')5' (1+22)J, —
—382T+4»21l25T+o2[(»2 $2)25T+»2Tj

+a[3»8T 4»8 (P. »') —YT]—
f30 =3»~Ps 2»8 (FTP0 »—'SP —-')—

8o- »P2[1+ (»2 —P)5]—o[, (P—»2) (35+-1)
+SP.(3»'P »4)+TP—„(3»'P 6 )]

d20 1f30 »10 o30 f10 f20

(46)

the functions E, (22) of Eq. (24) may be written

E,(22) =C;(n) [d,.(x,y) cos8(x) cos8(y)

+e, (x,y) sin8(x) sin8(y)

+f, (x,y) sin8(x) cos8(y)

+f,, (y,x) sin8(y) cos8(x)], (42)
where

C (~)=4&'(1~»),

C2(&) =4i2(2y+3) (2y+2) (1+»)D"R ',

C3(&)=42(2y+2)DE ' C (0)= i.


