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In two earlier papers we have described our methods and programs for calculations of certain classes of
atomic wave functions. In this paper we consider the application of the wave functions so obtained to the
calculation of the spin-orbit, spin-other-orbit, and spin-spin interactions. As an example we consider oxygen
with the electron distribution (1s)2(2s)~(2p)4. In first approximation we suppose the spin-orbit interaction
diagonal in the wave functions of the Slater diagram. These calculations then remove the horizontal de-

generacy from the diagram. We assume the Coulomb potential for the spin-orbit calculation and show
the relative contributions of the nucleus and various type electrons to the result. Although the order of
the splitting is as observed, the observed asymmetry is not obtained. In second approximation the off-

diagonal elements of the spin-orbit interaction are included. The desired asymmetry of the fine structure
is obtained, and the agreement with experiment is satisfactory. The spin-other-orbit and spin-spin inter-
actions are calculated for the diagonal first approximation.

I. INTRODUCTION
' 'N two earlier papers of this series" we developed
~ ~ methods which, if not very surprising, we may hope
were efficacious for the determination of atomic wave
functions. In these programs the Hamiltonian does not
include the spin-orbit, spin-other-orbit, and spin-spin
interactions, these being considered first-order eRects,
and it is our intention to introduce them as pertur-
bations here. As a first approximation we consider the
Slater diagram for a given configuration of bound
electrons as made up of wave functions which render
the spin-orbit interaction diagonal. Then the inclusion
of this interaction simply removes the horizontal
degeneracy from the Slater diagram. We compute for
our oxygen example the spin-orbit energies for the 'P
ground state under such an approximation. In the
computation we take as the radial portion of our
operator the Coulomb field of the nucleus and the
remaining electrons which has been used by us in
another connection. We also carry out the spin-other-
orbit and spin-spin interaction calculation for this
approximation. The result for oxygen is a symmetric
splitting of the ground state while experiment tells us
that there is an asymmetry in the splitting of about
two to one.

In second approximation we include the off-diagonal
elements of the spin-orbit operator. The result is a
splitting which corresponds quite closely to experiment
both in degree of asymmetry and in absolute separation
of the levels.

II. THE TRIPLET WAVE FUNCTIONS FOR OXYGEN

The Slater diagram appropriate to oxygen
(1s)'(2s)'(2p)' may be referred to.' Under our first
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' R. G. Breene, Jr., Phys. Rev. 111, 1111 (1958).' R. G. Breene, Jr., Phys. Rev. 113, 809 (1959).
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Phys. Rev. 34, 1293 (1929), p. 1298.

approximation the spin-orbit interaction is diagonal in
the pure wave functions of this diagram. By pure we

simply mean that the linear combinations requisite to
the description of some of the configurations have been
obtained. Now this will mean that the triplet functions
will consist of one function from each of the three
positions in any given row. Since it is of no importance
which horizontal set of three functions we choose, let
us choose the three corresponding to the (5,1) positions.
The wave functions corresponding to the (1,1), (0,1),
and (—1, 1) will be the 'Pq, SPi, and 'Eo, respectively.

Our wave functions will all be determinants of
eight-order whose orbitals have the form:

~- -(,~,~) =[&- ( )/ ]e -(~)c-(~),
Ri, ——2Zi lr exp[ —Zir],

(1)

(2a)

R„=(1/2&2) Z, ~Z, -*[Z4—Z2Z5r]r

)(exp[—Z&r/2], (2b)

R~~ ——(1/2+6) Z.„'r' exp[—Z3r/2]. (2c)

The 'P2 and 'Po wave functions we have already
obtained, ' and we may represent them as:

4[('&2)(—1+o+1 1+)], 4[(V'o)(—1 o 1 1+)]

The 'Pi wave function is a linear combination of the
two determinants appearing at the (0,1) position of the
Slater diagram. It may be obtained by well-known
methods as

P('~i) = (1/~&)A(-1 o'1 1')
—(1/V2)g'ri( —1+0 1 1+).

There would actually be a slight difference in the
effective nuclear charges appearing in the two determi-
nants immediately above and those appearing in the
single determinant functions representing 'P2 and 'Po.
However, this diRerence is so very slight that we will

make no appreciable error in ignoring it. Therefore,
the eBective nuclear charges appearing in our 'P'2, 'Pi,
'Po wave functions we take to be the same.
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In our second approximation to the spin-orbit
interaction we shall require wave functions from other
blocks of the Slater diagram. Their obtention will be
presumed, however, since it precisely parallels the
above. In this later consideration, we shall specify, say,
a 'P2 function arising from the (1,1) position as 3P2+ .

write down the angular matrix elements:

('P2~ L.S~'P,) = —-'„

('Pi
i
L S i

'Pi) =0,

('PoIL Sl'Po) =k

(Sa)

III. THE SPIN-ORBIT INTERACTION
(FIRST APPROXIMATION)

The interaction of the orbital angular momentum of
the electron with its own spin angular momentum give
rise to a term in the Hamiltonian which has been
variously derived, but which may be obtained from
Condon and Shortley' as

Z Z 1a'=P a,'=P L,"S, ——V(r).
2(137)' r dr

(3)

Also available from these authors are the matrix
elements of L S:
(nlsmim,

~

L S
~

n.'l'smi'm. ')
= b (elmi+m, ; I'l'mi'+m, ') ( 6 (m, m, ')mim,

+-',6(m, ', m, +1)L(l—m+-,') (1+m+-,')jl}. (4)

Of prime concern to us is the radial portion of the
perturbing Hamiltonian, and to this we turn our
attention. The point of obvious interest here is V(r).
This is, of course, the potential under which the electron
question exists —we remark this to be a one-particle
operator —due to the presence of the remaining atomic
electrons. Surely, however, one must consider the
Coulomb portion of this potential, and we shall assume

that this potential is sufFicient. We shall detail this in a
moment, but let us 6rst evaluate the angular contri-
bution on the matrix element since this may be done in

a general way.
Each of our wave functions is an eighth-order

determinant. However, since the operator is a one-

particle operator, the matrix element over the determi-

nant is precisely the sum of the matrix elements over
the eight individual orbitals. Next, Eq. (4) tells us that
no change in any electron state goes with the first

portion of this matrix element while a spin Rip is

accounted for by the second portion. Under our

assumption the only possible nondiagonal elements

arise in connection with the matrix element over the
two-determinant linear combination comprising the P~
wave function. For a matrix element to be nonzero

between these two determinants would require a two

particle operator, and this we do not have. Hence, we

concern ourselves only with diagonal elements, that, is,
with the first term in Eq. (4). Now we note the mi

appears as a factor in this term which means s0 and p0
electrons contribute nothing to the matrix element.
This has an important e6'ect on the radial potential
which we shall discuss in a moment, but first let us

4 See K. U. Condon and G. H. Shortley, The Theory of Atoms'
Spectra (Cambridge University Press, New York, j.935), p, 120.

A given atomic electron exists in a V(r) which is
produced by the remaining Z—1 electrons in the atom
plus the nucleus, and this potential will certainly depend
on whether the electron under consideration is a is, a
2s, or a 2p electron, at least in the case of oxygen.
Therefore, the disappearance of the 1s and 2s contri-
butions means we shall only have to consider 2p
electrons in this case. One V(r), therefore, will suKce.

Ke take our remaining seven electrons as described
by a seventh-order determinant obtained by simply
removing those orbitals corresponding to the electron
under consideration. Our potential is thus

Z ~ I@»(0') IV()=- —+
r J

In computing the potential' we have supposed that
the familiar expansion of the inverse of the interparticle
separation in terms of Legendre functions terminates
after the first term. This is, under all conditions, true
as regards the Ls and 2s contributions and very nearly
so as regards the 2p contributions. As a result of all
this we obtain

V(r) = —(1/r) —(15 322+2. /r) e """
—(38.330r'+18.368r+8.930+2/r) e ' "'"
—(14.092r'+19.264+13.168+4/r)e ' "" (6)

This may be considered as four terms. The first of
these —the term with no exponential —is the nuclear
contribution; the second is the contribution of the is
electrons. The third and fourth are the contributions
from the 2s and 2p electrons, respectively. As a result
we may consider separately the contributions of these
various atomic components to the matrix element.
Equations (5) tell us that the matrix elements of 'P&

and Po differ only in sign, so, neglecting this for a
moment, we may write for them both:

~
I ~ t' 1 q I

"E,„'(r) dV(r)

(2] E2(137)'& "0 r dr

Equation (7) may be evaluated with the help of
Eqs. (1) and (5). We find the nuclear contribution to
be 10.30 cm ', that of the is electrons 4.47 cm ', that
of the 2s electrons 18.15 cm ', and that of the 2p
electrons 27.6i cm '.

As a result of the spin-orbit interaction the 'P ground
state of oxygen is split symmetrically. The 'Po level is
raised 60.52 cm '. The 'Pj level corresponds to the

~ R. G. Breene, Jr., and M. C. Nardone, Phys. Rev. 115, 93
(&9S9).
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unperturbed position. The 'E2 level is dropped 60.52
cm . This is illustrated in Fig. i.

IV. THE SPIN-OTHER-ORBIT INTERACTION

Since we are considering these three interactions as
first order perturbations, we may deal separately with
them and then simply add the three energies to obtain
the total. In line with this we now take up the inter-
action of the spin angular momentum of one electron
~vith the orbital angular momentum of another. Here
the same atomic wave functions are, of course, used.
Again, the speci6c problem in our oxygen example is
the evaluation of certain radial integrals. The angular
contributions to the matrix element have been evalu-
ated in general form by 3Iarvin. '

The spin-other-orbit operator may be written as

H-.'= L1/2(137)']L( — )X(y —2y ) S
+ (r2 rg)—X (y2—2yg) S2]r&2-'. (8)

We have written the operator in atomic units for
convenience where, of course, c=137. The symbols r,
y, and S represent the radius vector, the linear mo-
mentum, and the spin angular momentum, respectively,
for the appropriate one of the two electrons in inter-
action. Marvin's obtention of the specific forms for the
matrix elements is basically a straightforward appli-
cation of matrix algebra manipulations, albeit a very
complex and necessarily lengthy one. There would not
appear to be any reason for our investigation of the
work. The matrix element expression is lengthy at best.
Now of the three terms of which it consists, we use
only one in oxygen. Therefore, the reader is advised to
refer to Marvin for completeness, and we shall write
down only what is appropriate to our example:

(ah
~
H,«'

~
cd) =2(—)~ b(m ',m, ')b(m, ~,m ')

Xg(mg+mP, mP+m~") (m '+2m ")
X f 4m~'C'(ac, bd) —P(ab, cd)+ jA'(ac+1, bd 1)—
—A (ac—1, bd+1)|p (ab, cd) —jAO(ac+1, bd 1)—

—A (ac—1, bc+1)]LV(ab,cd) }. (9)

The A~, C~, and A.~ are the results of integration
over angular coordinates and are dined as:
C"(ac+g, bd)

= (2k+1)c~(l'm~~ l'm~'+ f)c"(Pm/, l"m~"), (10a)

5"(ac+f, bd+g)
=X"(I'mp I'mg'+f)n'(I'mg', I"mg"+g), (10b)

A" (ac+f, bd+g)
=o,"(l~m~ l'm~'+ f)n'(Pm/ l m~"+g), (10c)

8"(ac+f, bd) =P"(l mP, l'mp)c" (l~mP, l"m~") (10d).
We encounter the B~ in the spin-spin case, but we

list it with the others for convenience. The c~ are
tabulated on pages 178—179 of reference 4. The a~, P",
and X~ are tabulated on pages 106—108 of reference 6.

6 H. H. Marvin, Phys. Rev. 71, 102 (j.947).
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Fzc. 1. The calculated energies for the three interactions. The
experimental results given by Moore (reference 7) are displayed
for comparison.

The (", p", 5", and the a~ which we shall encounter
in the next section are functions of the radial integrals.
Rather than list the general expressions we shall show
the final radial integrals to which our matrix elements
reduce.

In the present case we have a two particle operator
which means that the matrix element over the determi-
nant will be of the form:

F(2p»p 2p 2p)='
8(137)'& " r)'

0

XR2„(1)R2~ (2)dr~dr2, (12a)

8

g P L(abjH(ab) —(ab]H]ba)].
b)a a=1

Ke may write down the result of the rather tedious
calculation in terms of the radial integrals:

E„,('E2) =8@(2p,2p; 2p, 2p)+2p'(1s, 2p; 2p, 1s)
+2p'(2s, 2p; 2p, 2s), (11a)

E„,('Pg) = —4p(2p, 2p; 2p, 2p), (11b)

E„,('Po) =—2po(1s, 2p; 2p, 1s)—2p'(2s, 2p; 2p, 2s). (11c)
It is apparent from Eqs. (11) which electrons

contribute to the matrix elements over the various
states. The specific radial integrals are:
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p'(1s,2p; 2p, 1s)=p- (1s,2p; 2p, 1s)

R~, (1)E2„(1)
8(137)'~ " r&r)'

In this. case all three members of the oxygen ground
state triplet have precisely the same expression for
their spin-spin interaction energy, and this expression
in question reduces in evaluation until we have only:

E„=—2p(2p, 2p; 2p, 2p),

p'(2s, 2p; 2p, 2s) =
~l

i Ro, (1)R2„(1)
8(137)'~ r&r)'

XRq, (2)R2„(2)dr~dr2, (12b)
where P is given by Kq. (12a).

The value which we have obtained for this energy
is 3.08 cm ', so that all levels are depressed by that
amount.

&(R2, (2)R2„(2)drqdr2, (12c)

and Eqs. (12a), (12b), and (12c) have the values
5.~335y~0-6, ~O.9443''~0-6, and 6.350~x~0-6, re-
spectively, so that:

E„,('E2) =—1.42,

I:„,('Eg) = —4.51,

E...('&o) = —7.59

(»a)

(13c)

Thus, we have squeezed the three levels together
slightly, but we have done so evenly, so that the spacing
remains the same. The levels have also been lowered
slightly. The effects of the spin-other-orbit interaction
appear to be about an order of magnitude less than
those of the spin-orbit which, it would seem, one would
expect. Finally, we consider the last of three electronic
interactions.

V. THE SPIN-SPIN INTERACTION

Now we shall consider the interaction between the
spin angular momentum of one electron and the spin
angular momentum of another. Oxygen continues to
serve as our example, and we again turn to the work
of 3trarvin' for the specifics of the evaluation.

The spin-spin operator may be written as:

H„'=
t
—1/(137)'$[3r~2 'S~ (r2 —r~)S2. (r2—r~)

—rgo
—'Sg S.), (14)

where again we have written the operator in atomic
units and the elements as before. The same remarks as
were made concerning the Marvin matrix element
evaluation may be made here. Again we shall only
write down that part of the general form of the matrix
element for the interaction which is applicable to
oxygen and, in so doing, save quite a bit of space:

(abtH. .'lcd) =2(—)~"'Lb(m m '~1)b(m b m "~1)
Q $ (m [~+mP m ~

~+my ) fP (ac,bd) o o (gb, cd)

+/A'(ac+1, bd&1)+A (ac&1, bd&1)fr/(ab, cd)

+2C'(gc, bd) p(ab, cd)1+8(m, ',m, ')8( , m,
o, m)d

&(b(m('+mP m('+m ')m 'm "{ 4$8o(ac,bd)—
+Co(gc bd) joo(ab cd)+ 8Ao(ac)bd)rlo(ab)cd)

+4C'(ac, bd)P(ab, cd))) (15).

VI. THE SPIN-ORaIT INTERACTION
(SECOND APPROXIMATION)

Ke again consider the spin-orbit interaction but this
time include the o8-diagonal elements of the interaction
in our calculation. We introduce an approximation
here which will have but small effect on our result.
It is assumed that all the wave functions encountered
will have the same effective nuclear charge insofar as
our computation of the off-diagonal elements is con-
cerned. The diagonal elements will, of course, contain
the zeroth-order energies of the 'P, 'D, and 'S configu-
rations. We use the values for these energies computed
previously.

The P2 energy is obtained by diagonalizing the
2)&2 block containing the 'P2+' and the 'Di2. (We
recall our definition in Sec. II.)

The 'P& energy may be obtained by diagonalizing
the 3)&3 block corresponding to the 'P2', 'Di+', and
'P +' functions.

Finally the 3PO energy is obtained by diagonalizing
the 5)&5 block corresponding to the 3P2 ' 'S|)' 'D2,
'P~', and 'Po+' functions.

The result is then:

E„('E)=2—63.41,

E„('E&)=+ 60.52,

E„('Eo)++121.04.

(16a)

(16b)

(16c)

7 The experimental values have been taken from Atomic Energy
Levels, edited by C. E. Moore, National Bureau of Standards
Circular No. 467 (U. S. Government Printing Office, Washington,
D. C., 1948), Vol. 1.

In Fig. 1 we have indicated the results of these
calculations. ' For comparison of the splittings we have
aligned the 'P~ level of. the second with that of the
first approximation. We remark that the ratio of the
level separations is 2:1 in agreement with the Lande
interval rule.

Improvements in these results could probably be
introduced by (1) including the second term in the
interparticle expansion, (2) considering a potential
including the effects of exchange, and (3) using the
precise effective nuclear charges in the computation of
the off-diagonal elements of the spin-orbit interaction.


