
1542 S. H. CHARAP

for nickel, approximately 3.4)&10 'ufo. As the tem-
perature is increased the n& term will tend to domi-
nate among the deviations in 3f1, and grows linearly
with T. The two anisotropic eGects tend to cancel each
other at about 7.5'K. At temperatures above this the
M1 effect dominates, i.e., the greater magnetization
occurs in the easy directions. Below this temperature the
greater magnetization occurs in the hard directions.

There is an interesting application of this work to
the case of iron. Although the pseudodipolar coupling
may be present, the problem of the anisotropy in iron
has been treated more easily than that in nickel because
of the possibility of using a pseudoquadrupolar inter-
action, which yields E1 in first order. "This interaction
must be measured by a parameter whose magnitude
is Ds/J, if it is to explain completely the anisotropy

in iron. The anisotropy in magnetization resulting from
pseudoquadrupolar coupling again has the two parts.
The contribution to F1 will be exactly the same as in
the dipolar case. However, the contribution to 3E2 must
occur in a higher order of approximation than the
contribution to E1. That is, in second order, we may
have a term in 3IIs of order of magnitude (D/J)4 coming
from the pseudoquadrupolar coupling. According to
our discussion, such a term cannot be observed at any
reasonable temperature. Thus, we can imagine the
possibility of determining, experimentally, to what
extent the anisotropy in iron is due to pseudodipolar
coupling by observation of magnetization anisotropy.

"See reference 3; also C. Zener, Phys. Rev. 96, 1335 (1954),
and 1'. Eever, Phys. Rev. 100, 1692 (1955).
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The magnetic scattering of slow neutrons of arbitrary initial
polarization by an extensive class of magnetically-coupled lattices
is treated by a time-dependent operator approach for the case of
complete orbital quenching of the magnetic ions. This magnetic
scattering is carefully divided into purely magnetic and magrieto-
vibrational scattering, the types thereof involving, respectively,
only zero-phonon processes and solely nonzero-phonon processes,
and general formulas for these two types of scattering are obtained.
These formulas are applied in temperature regions which are
sufficiently large (I} or su%ciently small (II) compared with the
temperature above which paramagnetism obtains. In region I,
for the purely magnetic scattering and under certain invariance
requirements on the above magnetic coupling, we analyze the
energy spectrum of outgoing initially unpolarized neutrons of
sufficiently high incident energy by a moment method. We thus

obtain general formulas for the energy-integrated effective
differential cross section defined in this paper and for the moments
of energy transfer defined therein. These formulas involve certain
spin averages, explicit equations being given for a wide range of
these averages for exchange-coupled lattices. These results are
illustrated numerically and compared with experiment for the
case of polycrystalline MnF2. In region II, we discuss certain
broad features of the purely magnetic one-magnon scattering of
arbitrarily polarized neutrons by exchange-coupled lattices of the
class alluded to previously and by more complex ones, studying
this scattering in detail for ferromagnets and certain antiferro-
magnets. A new spin-wave effect is pointed out for polarized
neutrons incident on ferromagnets. Brief treatments of the
magnetovibrational scattering in regions I and II are also given.

I. INTRODUCTION

' 'N this paper, we- shall investigate the magnetic scat-
' - tering of slow neutrons by a wide class of lattices
having magnetic ions which are orbitally quenched
and are magnetically coupled with one another. Our
objective is twofold. First, we want to derive formulas

which are general enough to encompass the case of
neutrons of arbitrary initial polarization f incident on

lattices of the above class at any temperature T.
Second, we desire to employ these formulas in a detailed

study of magnetic neutron scattering by certain lattices
of this class, and particularly by exchange-coupled

*The main results of this paper were 6rst reported in Bull. Am.
Phys. Soc. 2, 49 (1957); 3, 203 (1958).

ones, ' for temperatures T which are su@.ciently high
or low compared with the temperatures'7, above which
they are paramagnetic, a restriction which permits us
to base our results on reliable quantum-statistical
methods.

In what follows, the neutron magnetic scattering
processes of interest, in which the initial and 6nal
lattice states are the same or different with regard to
their vibrational quantum numbers, shall be defined
as corresponding to purely magnetic or to magneto-
vibrational scattering, respectively. In general, the

purely magnetic scattering is of greater physical

' The term exchange is employed in this paper to denote both
ordinary exchange and superexchange, it being hoped that no
confusion will be caused by this usage.
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interest than the magnetovibrational scattering, which
could be of comparable or even larger magnitude, so
that it is desirable, both experimentally and theore-
tically, to separate the first type of scattering from the
second.

Halpern and Johnson' derived intensity and polariza-
tion formulas for the purely magnetic neutron scattering
in a basic paper which is centered around the two ex-
treme cases of a set of uncoupled paramagnetic ions
and of ferromagnets with their electronic spins locked
rigidly in an ordered arrangement. Van Hove'4 devised
a very general and powerful time-dependent approach
to both nuclear and magnetic scattering of slow neu-
trons which we shall exploit in the present study.

A number of theoretical and experimental investiga-
tions have dealt specifically with the effects of exchange
coupling on the magnetic scattering of unpolarized
neutrons in the paramagnetic and spin-wave regions.

In regard to the paramagnetic region, several
investigations of the purely magnetic scattering by
these lattices have been carried out, principally by
means of moment methods. Van Vleck' erst pointed
out the relationship between the inelasticity of this
type of paramagnetic scattering and the exchange
constants of the pertinent lattices as early as 1939.
Second and fourth moments of neutron energy transfer
were computed for cases of nearest-neighbor exchange
interactions, and a local cluster-model computation
for such a case was also done. Interference effects due
to short-range magnetic order were not considered by
Van Vleck. Employing stationary-state methods,
Slotnick' dealt with the purely magnetic scattering by
paramagnetic exchange-coupled lattices with inter-
actions between nearest and next-nearest neighbors,
taking into account these interference sects. This
author studied the dependence of the efkctive energy-
integrated cross section do s/dQ for a 1/s-detector
Lsee our Eqs. (3.6a)$ on T and on the initial neutron
energy E&, and presented calculations of first and
second moments of energy transfer. However, a sys-
tematic procedure for computing the above cross section
and moments was not given. After the substantial com-
pletion of our paper, we became aware that de Gennes'
investigated the purely magnetic scattering of neutrons
by Van Hove's approach. ' De Gennes dealt mainly
with such large values of T in the paramagnetic region
that the T dependence of the quantities of interest
could be disregarded. This author treated the energy
transfer and the momentum transfer vector of a neutron
as independent variables, in contrast with the view-

'0. Halpern and M. H. Johnson, Phys. Rev. 55, 848 (1939).' L. Van Hove, Phys. Rev. 95, 249 (1954).
4 L. Van Hove, Phys. Rev. 95, 1375 {1954).
"' J. H. Van Vleck, Phys. Rev. 55, 924 (1939).' M. Slotnick, Phys. Rey. 83, 1226 (1955).' P. G. de Gennes, Service de Physique Mathdmatique, Centre

d'Etudes Nucleaires a Saclay, Report No. 199, November 1956
(unpublished); Compt. rend, 244, 752 {1957);J. Phys. Chem.
Solids 4, 223 (1958). The essential content of this work is in the
6rst and third of these studies.

point adopted, for instance, in reference 6 and in
Sec. III of this paper. De Gennes derived some general
properties of his moments of energy transfer, and
formulas for the second and fourth of these moments
for cases of next-nearest neighbor interactions. Various
plausible formulas, giving explicitly the dependence of
the scattered neutron intensity of the energy transfer
and wave-number transfer vector of a neutron, have
been obtained in references 5, 6, and in the third part
of reference 7 for high enough T by fitting moments
of energy transfer. Rigorously derived formulas of this
kind are not available.

In regard to the spin-wave region, Van Hove4

studied the purely magnetic one-magnon scattering of
neutrons for ferromagnets by combining his method of
time-dependent correlation functions with the spin-
wave formalism of Holstein and Primakoff. ' Elliot and
Lowde' investigated this spin-wave scattering by both
ferromagnets and antiferromagnets using the above
formalism and that of Ziman' for antiferromagnetic
substances. They also discussed the magnetovibrational
scattering, and gave rules for separating it experi-
mentally from the purely magnetic scattering. Maleev"
performed an improved computation of the above type
of ferromagnetic spin-wave scattering. Kaplan" treated
this purely magnetic scattering by spin waves in
normal spinels with nearest-neighbor 3-8 exchange
interactions. "Earlier theoretical papers on the scatter-
ing of unpolarized neutrons by spin waves are listed
in references 4, 9, and 11.

With respect to experimental studies of the magnetic
scattering of neutrons in the paramagnetic region,
Shull and his collaborators, Erickson, and Brockhouse
and others" observed the sects of short-range
magnetic order on the above effective integrated cross
section in this region. Inelastic magnetic scattering was
studied by indirect methods by Bendt" and by direct
energy-analysis methods by Hrockhouse and his col-
laborators. " In a broad manner, these studies con-
6rm the theories of Van Vleck' and Slotnick. ' More
data on the paramagnetic scattering of neutrons by
the simpler types of exchange-coupled lattices, under

conditions for which the various theories for such

scattering just mentioned' ' and the pertinent con-

clusions in Sec. III of this paper are valid, are required

'T. Holstein and H. Primako8, Phys. Rev. 58, 1098 (1940).
'R. J. Elliot and R. D. Lowde, Proc. Roy. Soc. (London)

A230, 46 (1955).
'0 J. M. Ziman, Proc. Phys. Soc. (London) A65, 540 (1952)."S. V. Maleev, J. Exptl. Theoret. Phys. U.S.S.R. 33, 1010

(1957) Ltranslation: Soviet Phys. -JETP 6 (33), 776 (1958)]."T.A. Kaplan, Bull. Am. Phys. Soc. 4, 178 (1959).
"Kaplan's treatment is based on his spin-wave analysis of

these spinels in Phys. Rev. 109, 782 (1958).
"C. G. Shull, W. A. Strausser, and E. O. Wollan, Phys. Rev.

S3, 333, (1951); R. A. Erickson, Phys. Rev. 90, 779 (1953);
B.N. Srockhouse, L. M, Corliss, and J, M, Hastings, Phys, Rev.
98, 1721 (1955)."P.J. Bendt, Phys. Rev. 89, 562 (1953).

'6 B.N. Brockhouse, Phys. Rev. 99, 601 (1955); P. K. Iyengar
and B. N, Brockhouse, Bull, Am. Phys, Soc. 3, 195 (1958),
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before more definitive experimental tests of this
theoretical work are possible.

Among. the experimental investigations of spin-wave
scattering, we mention that of Lowde for iron and that
of Riste, Blinowski, and Janik for magnetite, "involving
no energy analysis of the outgoing neutrons, and the
studies of Brockhouse" on the energy spectrum of
neutrons scattered by magnetite. These spin-wave
experiments support the main conclusions of Elliot alld
Lowde' and Kaplan. """

We now summarize the contents of the present
investigation.

In Sec. II, using the methods of reference 4, we
derive general formulas for the differential cross
section per unit energy range for the magnetic scatter-
ing of arbitrarily polarized neutrons into a given 6nal
spin state by the class of lattices alluded to previously,
separating carefully the purely magnetic from the
magnetovibrational scattering.

In Sec. III, we treat the scattering of neutrons by
lattices of the above class in the paramagnetic domain,
supposing that the magnetic interactions of the
pertinent ions have certain invariance properties.
This hypothesis is satis6ed, in particular, in the case of
lattices of this class for which these magnetic inter-
actions are of the exchange type. We study the purely
magnetic scattering of unpolarized neutrons for suffi-

ciently large Ek and T by means of a systematic moment
method, which yieMs equations for the previously
mentioned energy-integrated cross section and suitably
defined relative moments of general order in the form
of power series in 1/Eq and 1/T, with coefficients
involving certain averages. An extensive set of such
averages is given explicitly for exchange-coupled lat-
tices, which, when combined with the power-series
formulas just alluded to, yields results which include
previous ones~' of this type as special cases, as well as
new results. For the sake of completeness, we show that
the moments de6ned by de Gennes, for example in the
third part of reference 7, can be obtained from our abso-
lute moments for the purely magnetic scattering by a
simple limiting process. Our theory for this scattering is
illustrated by numerical calculations for neutrons of
wavelengths 1A and 2A incident on polycrystalline
MnF2 in the paramagnetic state, for two hypothetical
cases of exchange-coupling. These numerical results are
compared with experiment. ""The rather unimportant

'r R. D. Lowde, Proc. Roy. Soc. (London) A235, 305 (1956);
T. Riste, K. Blinowski, and J. Janik, J. Phys. Chem. Solids 9,
153 {1959).

's B. N. Brockhouse, Phys. Rev. 106, 859 (1957); ill, 1273
{1958).

"The experiments on Fe304 in references 17 and 18 were
performed for temperatures such that the Fe~ and Fe+' ions
were randomly distributed in equal numbers on the 8 sites, a
case which, as is well known, cannot be dealt with, strictly
speaking, by the usual spin-wave methods. In the above
references, these experiments were compared with the pertinent
spin-wave results, based on these methods, by making the usual
approximation of ascribing identical effective electronic spin
quantum numbers to all the 8 sites,

case of polarized neutrons scattered purely magnetically
in the paramagnetic domain is not treated. A rough
equation is derived relating the magnetovibrational
scattering to that portion of the inelastic incoherent
nuclear scattering arising solely from the magnetic ions.

In Sec. IV, we begin by applying the usual spin-wave
theories' ""to construct a framework for a systematic
separation and calculation of the purely magnetic and
magnetovibrational cross sections of various types for
neutrons of arbitrary f incident on the lattices of the
class speci6ed in Sec. II for the case of exchange
coupling and for T&&T.. Formulas for the one-magnon
zero-phonon scattering are obtained for these lattices,
and their straightforward extension to more compli-
cated ones is indicated and compared with experiment. "
The only restriction on the magnetic order in the above
work is that the spins in each domain be aligned along
a unique axis. This type of magnon scattering is
studied in detail for ferromagnets and a certain type
of antiferromagnets by means of these formulas and
the customary spin-wave methods. " An interesting
new eGect for polarized neutrons incident on ferro-
magnets is discussed. Similar eGects should occur for
ferrimagnets, but we do not deal with this question
here. In regard to the magnetovibrational scattering
in the spin-wave region, we limit our attention to what
is probably the most significant type thereof as far as
a number of current experiments in this region are
concerned, namely, the type involving only zero-
magnon processes, confining ourselves to the case of
certain ferromagnets and antiferromagnets for the sake
of notational simplicity. "

In the Appendix, we prove two results concerning
the spin averages of Sec. III.

II. GENERAL FORMULAS FOR MAGNETIC
SCATTERING OF NEUTRONS BY

LATTICES OF COUPLED
MAGNETIC IONS

Consider a lattice with ~ ions per primitive chemical
unit cell. To avoid unessential complications, only one
of these ions will be assumed to have a nonvanishing
resultant electronic magnetic moment, which will be
taken to arise from spin alone, it being supposed that
the orbital angular momentum of the magnetic ions
is completely quenched by the crystalline electric field
due to the surrounding ions. We suppose that the
portion of the electronic cloud of the magnetic ions
which is eGective in scattering neutrons of the wave-
lengths considered here moves rigidly with the cor-
responding nuclei. The interaction between the elec-

~ A useful review of current spin-wave theories has been given
by J. Van Kranendonk and J.H. Van Vleck, Revs. Modern Phys.
30, 1 (1958)."In view of the work of F. J. Dyson, Phys. Rev. 102, 1217
(1956); and 102, 1230 (1956), one expects that the spin-wave
theories used in this paper should lead to correct results for the
scattering of neutrons by one-magnon emission and absorption
processes. No attempt is made to calculate higher order spin-wave
effects on neutron scattering in the present study.
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q=—k' —k, (2.1)

tronic and nuclear spins is neglected, and t'he latter
are assumed to be oriented at random. The magnetic
interactions of the ions of the lattices of interest with
one another and with a uniform external magnetic
field are specified by the Hamiltonian B. In this
section, our only assumption concerning H is that it
depends on no other operators outside of the resultant
electronic spin vector operators So,Sa,S2, ,S~ i of the
magnetic ions. We describe the relevant nonmagnetic
interactions of the ions by the usual vibrational
Hamiltonian, denoted by X, which depends quadrati-
cally on the coordinate and momentum operators of the
nuclei of the lattices of interest and involves no other
operators. For mathematical convenience, we suppose
in this section that the scattering crystals are in the
form of rectangular parallelepipeds whose edges are
parallel to the crystalline axes and we adopt periodic
boundary conditions, in the sense that the magnetic
and nonmagnetic ions near crystalline boundaries are
coupled among themselves in the familiar cyclic
manner.

The magnetic and nuclear interactions of a slow
neutron with a magnetic lattice of the above type are
described by the operators U and V, where U cor-
responds to the conventional interaction between a
neutron and the orbitally quenched magnetic electrons
of the pertinent ions of such a lattice according to the
work of Halpern and Johnson, 2 and where V represents
the Fermi" pseudopotential.

Let the incident neutron beam be characterized by a
wave-number vector k and a polarization f along an
arbitrary unit vector X. Let 2' be a second arbitrary
unit vector and s the neutron spin vector operator,
and denote the eigenvalues and eigenkets of (2' s) by
s '—=~u and ~s '), respectively, where u—=&1.Omitting
the purely nuclear scattering, we are interested in
calculating the differential cross section per unit-
energy range for observing the magnetic scattering of
a neutron of the above beam into a direction specified
by a final wave-number vector k' and into a spin
state

~
s '), for given u, by a single crystal of the afore-

mentioned kind in thermodynamic equilibrium at h,

given T. The relevant statistical-mechanical properties
of the scatterers before collision are supposed to be
described by a density operator which is the product
of a density operator referring to the randomly oriented
nuclear spins by expt' —pH j expL —pBC$, where
p= 1/k~T, k~ being B—oltzmann's constant. We designate
by d'0 (u)/dedQ this last cross section, which cor-
responds to a wave-number transfer vector

of a neutron, where m is the neutron mass, k=—~k~,
and k'=—~k'~. We shall use the symbol d'0/dedQ to
denote P =~id'0(u)/dedQ and, in general, we shall
write

d'0 ...(u)d20
~ ~

dgdQ v=+1 d6dQ
(2.3)

for a partial magnetic cross section of any type of
interest involving a summation over the final neutron
spin states.

We now treat this magnetic scattering in the first.

Born approximation, employing the interaction poten-
tial U+ V. In this approximation, it is well known that
no extra term in this potential is necessary to take
into account the eGect of a uniform external magnetic
field, so long as q/0. We shall avoid the trivial com-
plications introduced by such an external field in what
follows, by the understanding that the restriction q /0
is to be imposed whenever it is present. With this
proviso, we can write in the first Born approximation:

d'0(u) d'0 (u) d'(r .(u)
+

cfed0 Bed0 dekQ
(2.4)

d'0 (u) d'0„(u)

$6dQ r=0, 1 $6dQ

d'0„(u) d'0„,„(u) d'0.„,„(u)+, r=0 1.
dedQ delQ d @80

(2 5)

The first term in the right-hand side of (2.4) is quadratic
in matrix elements of U with respect to a complete set
of initial and Anal states which are simultaneous
eigenstates of the neutron momentum vector operator,
B, 3C, and some convenient complete set of operators
involving the nuclear spins. The second term in this
right-hand side involves products of such matrix
elements of U with those of V. The scattering of purely
nuclear origin arising from terms quadratic in matrix
elements of V of the above type is well understood
and shall not be considered here.

Letting a= u, uv, we divide the cross sections
d'0', (u)/dedQ in (2.4) into two parts. These parts,
denoted by d'a, , e(u)/dedQ and d'o, , i(u)/dedQ, contain

solely matrix elements of the class just specihed whose

initial and Anal phonon occupation numbers are either
identical or different, respectively. From (2.4) and
this definition, we obtain:

and to an energy transfer

&=~k' ~k j

' Eg =(I1'/2m) O' Eg = (fi'/2m) k";— —
~ E. Fermi, Ricerca Sci. 7, 13 (1936).

(2.2) In the spirit of a schematic de6nition in the
Introduction, we shall regard the indices r=0 and
r = 1 in (2.5) as referring exclusively to purely magnetic
and to magnetovibrational scattering, respectively.
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Before continuing, we shall need to de6ne'3

A (t) —=exp[iHt)A exp[—iHt);

e(t) =exp[iKt) (1' exp[—iXt);

trace(B exp[—PH) }
(&)~=-

trace (exp[ —PH]}

trace($ exp[—pX)}
(+)t —=

trace(exp[ —pBC)}

(2.6)

connection in reference 4, we And:

d'~„,o(n) r k'

~(q) expL —2Wo(q) 7—
dedQ 2X

N—1

X P exp[iq (X,, o
—X, , o)]G,;(e,e;n);

i, j=0

d'~. ,(n) r k' ~-i
F(q)—P exp[iq (Xr,o

—X~,o))
d'edQ 2$ k ~, j.=0

where A and 8 are any operators which depend solely

on the resultant electronic spin operators; 8 and are

any operators dependent only on the coordinates and

momenta of the nuclei of the lattice; and the traces in

the definitions of (B)~ and ($)a are to be taken over

a complete set of states pertaining to the resultant elec-

tronic spins and to the vibrational modes of the lattice,
respectively.

We shall aIso require the definition'4

dt exp[iet7(exp[iq u;, &(0)) exp[ —q u;, (t)])a

=—8(e') exp[—W&(q) —W (q)]+7„(e',q), (2.7)

l,m=0, i,2, . v —1;

where e' is independent of e and of q;

ni, ol
~

(/= 1,2, , v —1)
u;, gj

~00

de'G, ;(e—e',e; n)7,;"(e',q);

~00

G,;(e',e; n) = ——dt exp[ie't)
2'

(2.9a)

X(([eXS,(0)) [eXS,(t)])
—if(e.3)(e [S,(0)XS;(t)])

+ ff ([ex&) [exS;(0)))([eX~')

[eXS;(t)))+([ex'') [eXS;(0)))

x([ex~) Lexs, (t)])—(~ ~')

x(l:exs, (0)) [exs, (t)))+i(e &')

X(e.[S;(0)XS,(t)))})p,

where F' denotes the magnetic form factor of a magnetic
ion of the type of interest here, F being positive and
depending on k and k' only through q—= lql; e=—q/q;
and

(2.10)

denotes the displacement vector operator of the

magnetic

1th nonmagnetic

ion in the ith unit cell from its equilibrium position

lX, , o

iX, ,

being the magnetic moment of a neutron in units of
nuclear Bohr magnetons and r0 the classical electron
radius.

By considerations analogous to those employed in
obtaining (2.9a), we conclude:

d'~-. ,o(n) r'*
=—F'*(qo) exp[ —2Wo(qo) 7

dedQ S
v—1 N—1

XRe(g a& P exp[iqo'(X o
—X& &))

and

W (q)—=(luo, ql')e,

1=0 i, j=0

X h, (eo; n) }S(.);

l=oi2 v —i.) 7 )

(2.8) d'0@v, l(n) r*'
=—F-*'(q)—Re(g u, P

Cf6dQ E P l=0 i, j=0
(2.9b)

By procedures parallel to those used in a similar

23 In order to simplify our formulas, we find it convenient to
use a "time" t which has the dimension of inverse energy.

"Explicit equations for 7„™(o',q)(l,m=0, 1,2, ~, v —1) can
be obtained by a number of known methods, for example, by that
of P. O. Froman, Arkiv Fysik 4, 191 (1950). However, we shall
not require such explicit results in this paper.

Xexp[iq (X., o—X;,~))

X &'(e; n)7' o'(e, q) };
b;(e; n) =——([eX(f0+n(X' —i[AX 2')})

([ XS')) );
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where qo—= q~ =o,' qo—= ~qo~; eo—=e( =o, (t»s the coherent
scattering length of the /th ionic species (l=0,1,2,
) —1); and Re denotes the real part of the pertinent
expression inside curly brackets.

IIo=——Q J,,(S,"S;);
i, j=0 (3.1)

J;,=—0;

where J;; is the exchange-coupling constant of the ith
and jth magnetic ions, and depends solely on the
neighbor relation between these ions, its possible
dependence on the lattice displacements being ignored
here. We also assume that each magnetic ion is coupled
by exchange interactions with a finite number of
neighbors. The effects of external magnetic fields and
of anisotropic magnetic couplings among the relevant
ions on the paramagnetic scattering of neutrons will
not be considered.

In view of the fact that, in principle, the moment
methods of this section are not confined to the case of
exchange coupling, our discussion of the above para-
magnetic scattering is of a more general scope than
would be required to treat only this important special
case.

To every magnetic ion i, with equilibrium position
X; 0, of the scattering parallelepiped of Sec. II, we asso-
ciate the magnetic ions i(d) and i(—) of the paral-
lelepiped, with equilibrium positions X, p+d+R, (d)
and —X„o+R,(—), respectively, where d is a vector
independent of i connecting the equilibrium positions
of any two magnetic ions of the scatterer, and R, (d)
and R;(—) are vectors whose components are suitable
integral multiples of the sides of the above paral-
lelepiped. It is easy to see that R, (d) and R,(—), and,
therefore, that the previously prescribed positions of
i(d) and i(—) are uniquely specified by i and d. The
analogues of i(d) and i(—) in the case of a crystal un-
bounded in all directions are given by images of i under
rigid crystallographic displacements and inversions,
respectively.

We shall denote the invariance of H under the sub-
stitutions S,~ S;(&) for all i and d. as property A; the
invariance of II under the substitutions S;~ S,( &

for
all i as property 8; and the invariance of H under arbi-
trary rigid rotations of all the S, as property C. Im-
posing the periodic boundary conditions of Sec. II,
one can verify that properties A, 8, and C hold for
H=HD.

III. PARAMAGNETIC SCATTERING OF NEUTRONS
BY LATTICES OF COUPLED MAGNETIC IONS

The results of the present section are perhaps of
greatest interest when the magnetic couplings of the
magnetic ions with one another are predominantly of
the exchange type. In this case, we replace H in Sec. II
by

7(i (» iq) t((&) t(d) (» )q) )

I,m=0, 1,2, . , p —1.

If H has property C, we obtain:

(3.2c)

(S,„(0)S,,,(t)),=-',~„((S,(0) S,(t))),.
(3.2d)

From (2.9b) and (3.2d), we conclude that the
assumption that H has property C implies:

Define

d' o„„„(n)/d-»dQ=0, r= 0,1. (3.3)

oo

I.,( )—=—~ dt p[' tj((S;(0) So(t))) . (3.4)

If H has the invariance properties 3 and C, we conclude
from Eqs. (2.5), (2.6), (2.9a), (3.2a), (3.2c), (3.2d),
(3.3), and (3.4) that d'o, (n)/d»dQ (r=0., 1) and the cor-
responding cross sections d'o. „/d»dQ involving a summa-
tion over 0.=~1 are given by

d'o. (n) do
=-', [1-nf(e X)(e 2')j

dedQ dedQ

r=0, i;
d'o.

p =—', I'F ((7)—exp[ —2IVo (q))
dedQ

X P exp[iq X,,o]Ii(»);
i=0

d20 ~

=-', I'F((I)—P exp[iq X, (j
dedQ k '=0

(3.5)

X)
d»' I.;(»—»')y;ooo(»', q).

At this point, we mention for the sake of clarity and
to avoid unnecessary repetitions, that all cross section

We obtain from (2.6):

(S;,(0)S, , (t))t)=(S,(o),,(0)S,(o),, (t))t(, (3.2a)

if H has property 3; and

(S',.(0)St,.(t))t =(S'(-),.(o)S (-),.(t))p, (3 2b)

if II has property B. In (3.2a) and (3.2b), r and s refer
to the components of the pertinent spin vector oper-
ators with respect to a set of Cartesian axes.

From the fact that X, for the case of periodic
boundary conditions, is invariant under substitutions
of the coordinates and momenta therein for the various
lattice sites analogous to the substitutions corresponding
to property A, we find from (2.6) and (2.7), under these
circumstances:
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and moment formulas derived in this section hold, in
particular, if H has properties A, 8, and C.

The magnetic scattering of neutrons in the para-
magnetic domain is not essentially different for
polycrystals than for single crystals. The former have
received much more attention experimentally and are
more convenient from the standpoint of detailed
theoretical analyses than the latter in this temperature
region. Nevertheless, we shall deal with both of these
types of scatterers in this section, for the sake of
completeness.

Because of the remarks on tne case fg0 made later
in this section, we shall only consider in detail the
situation when f=0 Equ. ations (3.5) imply that it is
then sufFicient to study d'o, /dpdQ (r=0, 1), a task to
which we now address ourselves.

We define the effective differential cross sections

functions exp[iq X;,p] therein:

exp[iq X;,pj.~.g''(q);

exp[iq X;,pj single crystals

jp(qX;, p) Polycrystals

K,p—=
f X',p /;

(3.7)

Xp, p=0. (3.8)

In what follows, we suppose that

where the notation j „(f) denotes the usual spherical
Bessel function of the speci6ed order and argument.
In this section, barring a statement to the contrary,
we shall suppose in the case of purely magnetic scatter-
ing that we are dealing with polycrystals whose com-
ponent elementary single crystals have cubic symmetry.

It will be convenient to make the choice of origin

d2a„dg 00

A p
dQ ~ —Ei, dedQ

(3.6a) lim p= pp(independent of p)) 0, (3.9)

the relative moments of neutron energy transfer

Pop'
g (m) — d~ ~mp

~ —Eg AdQ
(3.6b)

and the corresponding absolute moments

e„(~)—=E ( (3.6c)

where m= 1, 2, ~ r =0, 1, and p is a positive quantity
representing the detector eKciency. To avoid uninterest-

ing complications, p is taken to depend on k and k' only
through k and p. In the case of polycrystals, (3.6a),
(3.6b), and (3.6c) are to be understood as follows: the
appropriate formulas for &Po,/dpdQ, obtained by suit-

ably averaging the pertinent Eqs. (3.5) over all crystal
orientations, should be inserted into (3.6a) and (3.6b),
and the moments in (3.6c) should be constructed from

the foregoing results for do.„/dQ and E„& &. In the inte-

grations over p in (3.6a) and (3.6b), k, k'/k', and p are

to be regarded as independent variables, so that the
integrated cross sections and moments in (3.6a), (3.6b),
and (3.6c) depend on k and k' only through k and
k'/k', a viewpoint adopted for the sake of experimental

convenience.
We now consider the case of purely magnetic

scattering in the paramagnetic region.
Because Wi(q) in (2.8) reduces to (~up, i~')&iq' in the

case of crystals of cubic symmetry, the formula for
d'&rp/dedQ in (3.5) is valid both for single crystals and

polycrystals in this case if the following replacement is

carried out with respect to the explicitly appearing

qo=—lim q,
phoo

(3.10)

valid for any fixed qo and e, and a formal interchange
of the appropriate integrals and limits, obtaining for
any given qo

(&p")p-=p ——(—1)"5-"lim ep& i. (3.11)

This is the relation alluded to in the Introduction.
In the remainder of this section it will be understood

that the limit k ~ ~ is to be taken for any fixed qo.
However, it is easy to see that the subsequent formulas
of this section involving this symbol hold for poly-
crystals of the type specified above if only qo is kept
constant, a remark which also applies to (3.11).

where this limit is taken for any prescribed ~. Equation
(3.9) holds, in particular, for 1/w-detectors, where we
take p= k/k'.

We now relate the moments for the purely magnetic
scattering in (3.6c) to a somewhat more explicit form
of the corresponding moments introduced by de Gennes
in the third part of reference 7. Using a notation
parallel to that employed therein, where A~—=—e and
i&=——q, we define (&p )p(m=1, 2, .) for single crystals
and polycrystals, for arbitrary T in the paramagnetic
region, by means of (1.8) in this last reference, where
we replace 2e by m and where, in the case of poly-
crystals, we replace the functions p, (&p), given by (1.5)
of this reference, by the appropriate average of these
functions over all crystal orientations. Taking for
granted that F is continuous in q for q~&0, we combine
the foregoing definitions of (&p™)p with (3.4), (3.5)
modified in the sense of (3.6a), (3.6b), (3.6c), (3.7),
(3.9), the elementary identity
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The identity

ss dn
de' e'"L;(e') = (—)" ((;( ) o()))pI i=o

(ilgt) "

for all H in Sec. II; while we obtain

X—1

p $;, „„=0, 22=1,2,~, r=0, 1,2, ; (3.13a')

from (3.12), (3.13a), and (3.14) if H has property C.
= (—1)ssxt, (p) (3 12) In the Appendix, we show that"

012
Lasb]0—=as

Ea,b]1=ab—ba-,
La,b]~1—=LLa,b]- b],

x—=S(S+1),
where 5 is the resultant electronic spin quantum
number of a magnetic ion, is of basic importance in
our treatment of the purely magnetic scattering of
neutrons in the paramagnetic region. It can be proved
by means of (2.6) and (3.4).

From the definition of P;, (P) in (3.12) we conclude
for the case when H has property C"

N—1

P g;,„(P)=0, ~=1,2, ". (3.13a)

At present, there is no rigorous method for evaluating
exactly the spin averages $, ,„(P) in (3.12). However,
one can express these averages as power series in P,
whose coeKcients can be computed, at least in principle,
by expanding expI —PH] therein in such a series, and by
employing (2.6) and (3.12), with the following results:

4,21+1o=0,

pi, 21+11 2)i, 21+2 Os I Os1s2s
' ' '

j

(3.13c)

(3.13d)

where J denotes a typical exchange constant.
In Eqs. (3.16) below we list some results for P; „„for

i/0 and H=HO which play a central role in the
explicit calculations of doo/dQ and Eo& l for 0(rN&4
mentioned later in this section. These results, derived
by means of straightforward but lengthy trace com-
putations based on (3.14), are valid for crystals of any
shape which are sufficiently large in all directions, in
virtue of the assumed short-range nature of the
coupling of interest between the magnetic ions. '~

2
$, , 10=—XJ;0',

3

in particular, when H=HO, for large enough crystals,
independently of the introduction of periodic boundary
conditions; and when H has properties A and B.

In the case H=HQ, we find from (3.1), (3.12), and
(3.14)

(3.15)

where $', o2= —xs(E JisJto —(3/4x) J'02);
9

f—1
=bi, rsr Z &r stsi. ssss-

p p e=o

m=0, 1,2, , r =1,2,

and where

(3.14)

8 3
$;, 02=—x' Q J;;Jsolso QJ;12';0——2—J;0

27 i,~ 2$ i

3 — 1) 3 3q
X Q&,o'+—Q &';~;0 +-I 2——+—I&;021'

s&

(—1)"trace((1 S;,H]„SQ)H
b;, „„=—

r! (2S+1)~x

(—1)' trace(H'}
Cs= e,r,s=0,1,2, .

s! (2S+1)~

The averages (;,„„have several general properties
required in the sequel. From (3.12) and (3.14) follow
the elementary results

kioo bioj,
(3.13b)

$0,0,=0, r= 1,2,

"A result equivalent to (3.13a) for H=HO is given in the
third part of reference 7, Eq. (1.7).

$412= —24, 04', o2,

1 1
5;,12=-5;,22-—8', 40',

2 24

8
54, 20 .

X Q +jo
3

24 A result equivalent to (3.13cl for the case P=HQ is stated
without proof in the erst part of reference 7, p. 3.

~~ It is, of course, unnecessary to introduce periodic boundary
conditions in deriving (3.16). We have purposely refrained from
applying (3.16) to various special crystal structures and schemes
of exchange coupling, both because of lack of space and because
these special results follow readily from our general ones.
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8
t, ss ———x' Q J"Jo'

+J;o ——p ~V~, ~Ao E—~fo'+2 ~*fJfo'
357' & i

8 r»+.l,o' P J;,J;o+ .x] 1—-—)Q J;o'
3 t. 8x)

3)
X[+ I;,J;o+5 Q J,o']+—

I
1+—IJ, ' .

8x)

The lattice sums in (3.16) range over all values ofj and
k for which the relevant coupling constants are not
zero. From now on, lattice sums involving these
constants explicitly are to be understood in a parallel
manner.

Employing (3.5), (3.6a), (3.6b), and (3.7), we find:

dop 2
=—I' Q

'

d» p(e, k) F(cl)—
dQ 3 iM ~ —Ek

X'xp[—2~o(q)]li'(q)L'( );
(3.17)

k'
dc e"p(e, k)—F(q)

k

2
g (na)

3 im ~ —Eg

Xexp[ —2Wo(q)]P, (q)L, (e), m=1,2,

Some formally exact limit formulas for doro/dQ and
Eo' '(m= 1,2, ) will be given at this point.

From (3.7), (3.8), (3.9), (3.10), (3.12), (3.13a), and
(3.17), we find by arguments parallel to those used in
deriving (3.11)'s:

d00
lim~~ dQ

=~ 2 &;,.(~)c.(q.);
i=p

N—1

lim Eo™=(—1)~+'M P t, , (P)[1—lf;(qo)];
i=p

(3.18)

M—= osrxpoF (qo) exp[ —2Wo(qo) ].
'8 It is interesting to compare the formally exact Kqs. (3.18),

(3.19a), and (3.29b) with parallel results in references 6 and the
third part of reference 7. The erst of Kqs. (3.18),with (;,0 replaced
by the corresponding series in P in (3.14), is given rather implicitly
for single crystals by Eq. (11) of reference 6. Equations (1.9)
and (1.10) for even moments in the third part of reference 7
correspond, respectively, to evaluating lim~„eo( ) by means of
(3.18) in the limit P -+ 0 and to (3.19a) for m even in this last
limit; and the conclusion immediately after (1.8) in this reference
on the vanishing of odd moments for P ~0 is equivalent to
(3.19b), if the moments in question are de6ned in the way pre-
scribed earlier in this section,

8 — 3 9——xJ'o4 1——+; (3 16)
15 2x 16x'.

32 2
$, 4o= x 2 I q ~'o+ Jo Q ~"J—o Jo——

With the aid of (3.6c), (3.13c), (3.14), and (3.18),
we obtain:

»m lim. p(-& =-0,
q -sp 1'

m =- 1,2, ; (3.19a)

lim lim e f"+'& =0 1=0,1&2, . (3.19b)
p-+0 ~co

[co&»]f«Z„ (3.20)

supposed to hold for k large enough. This inequality
is easy to satisfy experimentally for a number of
exchange-coupled compounds. Moreover, we suppose
that, for any given k and k'/k', pF is analytic in e,

say for
~

e~ (Es, which can be readily seen to imply
that the functions under the integral signs in (3.17)
possess this analyticity property in this range of c. It
is easily verified that pF has this last property for

~
e~ &Z», in the case of 1/tt-detectors and for F analytic

in q' for q&0. If the above two hypotheses concerning
properties of d'o. o/dedQ and pF as functions of e are
satis6ed, one expects to obtain very good approxima-
tions for doo/dQ and Eo& &(m=1,2, ) for sufficiently
large k by treating (3.17) in the following manner: the
lower limits Fs in the integr—als over e in (3.17) are
changed to —~; the functions under the integrands in
(3.17) are replaced by the appropriate Taylor series in e

about &=0; and term-wise integrations over ~ are then
performed by means of (3.12). In order for the above
integrated series for doo/dQ or Rot '(m=1, 2 ) to
be rapidly convergent for given k and k'/k', such that
the hypothesis expressed crudely by (3.20) holds, it is
essential that, in the nontrivial case i/0, ~P;(q)—f, (qo)

~

should be sufficiently small when e varies
over the range for which L, (e) or e"L,(e) is appreciably
different from zero. Because of (3.10), one does not
expect this requirement to be satisfied unless k is
sufficiently large. We shall not consider this condition
on f, (q) any further.

With the aid of the treatment of (3.17) in the last
paragraph, in conjunction with (3.13a'), (3.13b),
(3.13c), (3.14), and (3.18), we obtain

dop te

=&{1++Q p"c;, o„p; o

+p Q p p"Fs "$;, .[4,, —lt;, o]);
n=1 r=l i=1

' A parallel hypothesis is used extensively in reference 6.

It is desirable to obtain formulas for do.o/dQ and
A'ot &(m=1,2, ) which can be used for a larger
range of Fs than (3.18). To obtain such formulas, we
begin by assuming that, for sufficiently large
d'o.o/dedQ is significantly different from zero only if

~
e~ &&Es.oo A rough way of expressing this requirement

is given by the inequality
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oo oo N—1

~o' '=(—I)"'~E 2 2 13"I'»-'"5
n —-{}r={) 7'.=1

t'P, „—Po „], m=1,2,
lf „o—=lf '(qo),

O', -=—L(—1)"/~ 3{pop (Vo) expL —2Wo(qo) j) '

X (c&"/c&y") {p(e, &)3'-:&(q)

XexpL —2Wo(q) j&&t', (q)} l„=&, m=1,2,

(3.21)
our present restricted knowledge of the coupling
constants of these compounds.

For the important case of polycrystalline scatterers
a,nd 1/t&-detectors, the following rather explicit formu-
las, obtained by means of elementary differential
identities, can be given for the functions P; „with ts) 0:

P;, =Q C &P, , t, m=1, 2,
/=1

where y—= (k'/k)', and where we carry out the indicated
differentiations regarding k/)'o, k'/k', and y as inde-
pendent variables. "

From numerical calculations for typical exchange-
coupled lattices, including the case of polycrystalline
3/lnF2 discussed in this section, one expects for such
typical situations that the series in (3.21) for doo/dQ
and Eo& ' should converge well for Ei, in the thermal
and epithermal domains and for T suKciently larger
than T, or, more precisely, than

l 8l, where 0 is the
high-temperature Curie-gneiss constant, given by
ssk» 'xQ, J,o."

For H=Ho, using (3.13c), (3.13d), and (3.16), one
can write the following terms in the series in (3.21) as
explicit lattice sums, involving the appropriate ex-
change constants and the functions P;, in (3.21): (a)
for dao/dQ, those with 0&r&3 if &s=0, and those
with 1&rs+r &4 if rs) 0;(b) for Eof ' those with
1(n+r+m &4 ss Comp. utations based on these re-
sults should permit one to analyze a wide range of
paramagnetic scattering data for exchange-coupled
compounds and thus to extend in a substantial way

"The terms of the series for dao/dD and Eo&"& in (3.21)
involving the lowest positive power of 1/k in the limit qo ~ 0
can be shown to be nonnegative in this limit if II has properties
A, B, ar1d C, if pF is analytic in the sense mentioned previously,
and if p satisfies certain requirements which are obeyed, in
particular, for the case of 1/o-detectors. In virtue of (3.19a),
this nonnegative property constitutes a check on the correctness
of the series for Eo&"& in (3.21) for qo ~ 0.

~' It is well known that, for (S,)&&=0, the portion lims „do o/dB
of do 0/dQ independent of k satisfies

lirn lim —3d =P rx(8)/lim LP &x(P)], (I)q~&~~ dO
0 P—+0

where x(8) is the zero-held susceptibility LCompare, for example,
with R. J. Elliot and W. Marshall, Revs. Modern Phys. 30, 75
(1958), Eq. (3.36)j.Because of (I) and the fact that for exchange-
coupled lattices the power series in P for x(8) converges rapidly
only if T»

~
0 [, we see that the series in p for lim~„doo/d0 in

(3.21) should only converge rapidly for q0
—+ 0 if T satis6es this

inequality. The numerical calculations alluded to above indicate
that the rapidity of convergence of the last mentioned series
with respect to p is not strongly dependent on q0, so that one
expects that T)&!O~! is also a necessary condition for its con-
vergence for q0) 0 (Compare with the remarks on this condition
in reference 6, p. 1229). Although no considerations of this type
have been found in the case of the power series in (3.21) cor-
responding to the portion of do'o/dQ involving positive powers of
(1/k) and to A0( ), they converge well in p in these numerical
examples for T)&~ 0~ and for L&'q in the thermal and epithermal
ranges.

3'The special explicit formulas for integrated cross sectioris
and moments in reference 6 and for moments in the third part
of reference 7, alluded to in the Introduction, can be readily ob-
tained by employing a suitable proper subset of the terms of (3.21)
listed in (a) and (b).

min(n —l, l J

C g
—=(—1)" P L(&s—l —m)! (l—m)!m!]—'

m.=o

[(y-'+ 1)—o+tw&]
l q

( —na& jism
n—l—m

l =1,2, ,e, m=1, 2,

&', ~= {P(qo) expl —2Wo(qo) j) '
(3.22)

X g (—1) 2 "t&P(l—m)!m!] '(I, o/qo)"
m=0

dl—m

Xj (qoX;, o) {F(qo) expL —2Wo(qo)]),
d( 2)l—m

i=12
where, for real x and y,

min {x,y)= for
x&y.)yl

AVe shall give a rough and provisional treatment of
the magnetovibrational scattering for T large enough.
Because of the occurrence of the functions y, om(e', q) in
(3.5), an accurate treatment of this scattering would
entail considerable difFiculties.

As a working hypothesis, we suppose that, for a
given s, p, ooo(e', q) is a much more slowly-varying
function. of e' than is L, (e') near e'=0. An examination
of the detailed structure of y,P(e', q) and of the mo-
ments of L;(e') with regard to e' for H=Ho provides
an indication, if not a proof, that these functions of e'

are negligible if e' lies outside of the significant range
of energy transfer of the scattered neutron spectrum
corresponding, respectively, to the superposition of
inelastic phonon processes of all orders and to the
exchange-coupling between the pertinent ions for
T& T,. Our assumption is therefore reasonable in this
special case only if the significant range of energy
transfer of the first of these spectra is much larger
than that of the second, which is plausible for typical
exchange-coupled lattices. "In virtue of our hypothesis

"From the work of G. Placzek and L. Van Hove, Phys. Rev.
93, 1207 (1954) Lsee particularly pp. 1212—1213$, one expects
that the significant width of the energy spectrum of neutrons
scattered incoherently by one-phonon processes in typical crystals
is much larger than the width of the corresponding spectrum for
the purely magnetic scattering of neutrons by typical exchange-
coupled lattices in the paramagnetic region. Although it is
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we can replace y;&&"(e',q), approximately, by p;&&"(e,q)
in d'&rt/dedQ in (3.5). For T sufficiently high, we corrt-

bine this replacement with the rough approximation
((S; Sp))&&=x5;&&. It can then be seen that we obtain for
single crystals and for polycrystals whose component
elementary single crystals have cubic symmetry:

do. 2
Fp(&7)owl(e q

d6dQ 3
(3.23)

plausible that the range of e' for which &,0~(e',p) is appreciably
different from zero is at least of comparable magnitude to that
for the incoherent scattering discussed by Placzek and Van Hove,
a careful study is needed to settle this point."Compare, for example, the exchange-coupling models proposed
by J. S. Smart, Phys. Rev. 86, 968 (1952) and by T. Nakamura
and H. Taketa, Prog. Theoret. Phys. 13, 129 (1955).

Since y&&p (e,q) is proportional to the total inelastic
phonon scattering of purely nuclear origin from the
magnetic ions, (3.23) constitutes an approximate
relation between this scattering and the magneto-
vibrational scattering.

We now consider briefly the case fg0. Superficially,
it is tempting in this situation to define d&r, (&r)/dQ,

E & &(n), and e„& (&&)r(r=0, 1, m=1, 2, ) by means
of (3.6a), (3.6b), and (3.6c), where one replaces
d'o.„/dedQ by d'a„(&r)/dedQ. Formulas analogous to
(3.18) for the quantities do&&/dQ and E&&&"&(m=1,2 )
can be easily derived. Series for these quantities
analogous to (3.21) can also be readily deduced, but,
unfortunately, terms of these series become unbounded
for 6xed k and qp

—+ 0. This difFiculty for qp
—+ 0 arises

from the fact that, for fixed k and for q&&
——0, e is a

nonanalytic function of e. Scant new significant
knowledge, not derivable from moment studies of the
neutron intensity for f=0, would appear to result from
investigations of the purely magnetic scattering for
f/0 of the type just mentioned. As far as the magneto-
vibrational scattering is concerned, it is clear that an
approximate relation for d'o. i(n)/dedQ for arbitrary f,
analogous to (3.23), can be obtained trivially from
(3.5) and (3.23).

We conclude this section by presenting results of
numerical calculations for do.&&/dQ and e&»" in the case
of MnF2, a substance for which, for values of T and
JiI, which seem to be particularly convenient experi-
mentally, the inequalities T))

~

O~
~

and (3.20) are
readily satisfied, and the relevant series in (3.21)
appear to converge quite well for the choice of exchange-
coupling constants used in our calculations. Since
diHerent exchange-coupling schemes have been pro-
posed for MnF2" and since nothing certain is known
on this matter, we have adopted the following simple
model for the coupling between the Mn+' ions: any one

of these ions is connected by exchange constants
J&0 and 6)&Jwith the ions of this type at the 8 nearest-
neighbor sites and the 2 nearest ions of this kind along
the c axis, respectively. The paramagnetic susceptibility

data on MnFs of Foner" can be fitted by 0= —80'K.
This fact and the low-temperature transverse suscepti-
bility data of Griffel and Stout, "analyzed by means of
Ziman's spin-wave results, " are not compatible with
8 much smaller than —1. In order to study the above
magnetic scattering for two widely diferent cases, we
chose 8=0, —1, for which one obtains

~

J~/ki&=1. 71'K,
2.29'K, respectively, using the above value of 0".
From Erickson's'4 coherent scattering data for MnF2,
the corresponding F was fitted by exp) &r—q'$, with
o, =0.145 A'. It was decided to choose T=300'K,
600'K, and to select the initial neutron wavelengths
X~O, X=1A,2A, where X~O corresponds to taking
limA, „keeping qp fixed. Since lattice vibrations are
unimportant as far as the purely magnetic scattering
by MnF2 is concerned, we put Fp=0. For 8"p=0, it
can be seen that there are no restrictions of crystal
symmetry on the applicability of (3.21) to polycrystals,
so that they apply, in particular, to polycrystalline
MnF2, described according to our model.

Curves for

40p 2
—I'x, and Le&&&'&/e&&, „&'& j**,

dQ 3

respectively, are given for this last polycrystalline
substance, described in the above way, for the case of
1/t&-detectors, where

ep, „(2)= lim lim lim ep(",
q-+no P—4 k-+co

(3.24)

i.e., ep, „('& corresponds to incoherent scattering at
sufFiciently high EJ, and T. These curves were obtained
with the aid of the IBM-704 at NBS, employing
(3.6c), (3.22), and our explicit calculation of the terms
of (3.21) listed in (a) and (b), closely following (3.21).'s
From (3.24), one obtains for our model of MnFs as a
trivial by-product of these explicit results:

(3.25)

"S.Foner, J. phys. radium 20, 336 (1959).
'6 M. Griffel and J. W. Stout, J. Chem. Phys. 18, 1455 (1950).
e' J. M. Ziman, Proc. Phys. Soc. (London) A65, 548 (1952),

Eq. (16), and reference 10, Eq. (20).' We shall make some nonrigorous remarks on the expected
accuracy of our 6nal results for do0/dQ and e0(2), on which we
have based the curves in Figs. 1 and 2, with respect to the cor-
responding exact values. Our results for doo/dQ for ) —+0 and
P = 1A, 2A, and of e0(') for X —+ 0 are expected to exhibit deviations
of at most a few percent from these exact values. Roughly, this is
also believed to be the accuracy of our values for e0(') for X= 1A, 2A
and q0 large enough, say, crudely, q0&0.5. Reasonable though
larger deviations are expected for our results on et)(') for X=lA,
2A and q0&0.5. The deviations of our values for the changes in
Lee&~&gt between T=300'K and T=600'K from the corresponding
exact ones are believed to be about the same as those of the results
in the last sentence. A rough criterion for the trustworthiness of
approximate calculations of the type carried out here for e0(') in
the case XWO is that (ee&'& —lim~ eo& &~/ee, „&r&&&1, an inequality
suggested by the structure of (3.21) and by the shape of the
appropriate curves in Fig. 2. The maximum value of the ratio
on the left-hand side of this inequality is roughly —,in our numerical
work.
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Some common qualitative features of our numerical
work are of interest. . For given qs, 5, and T, dos/dQ and
eo"' are monotonically increasing functions of ) for
small enough qo. This inelastic behavior is most pro-
nounced in the neighborhood of go=0 and is noticeable
for qo&1. It is due mainly to the pertinent terms of
O(k ') in (3.21)." For given qs and T, and for P =2A,
substantial differences exist between the results for
6=0 and 5= —1.

Some more specific features of our numerical calcu-
lations may be mentioned. The curves in Fig. 1 exhibit
the so-called antiferromagnetic peaks of dos/dQ for
T=300'K. The maxima of all these peaks occur at
about the same qo as found by Erickson" in the case of
polycrystalline 3»lnF. for X= 1.21A and T= 295'K,
thus showing that they are quite insensitive with
respect. to our choices of 5 and ), although this in-
sensitivity does not always hold with respect to the
shape of these peaks. For fixed qo and X, the variation
of dies'-'/es, „&"$& between T=300'K and T=600'K,
shown in Fig. 2, is much larger for 5= —1 than for
8=0. The oscillatory behavior of the curves for this
variation is caused by interference e6'ects due to short-
range magnetic order. In his experiments on the
scattering of neutrons by polycrystalline MnF2 and
MnO for T)T„Bendt" analyzed his data, which we
shall not describe here for the sake of brevity, by
assuming a Gaussian shape for the energy spectrum
of the scattered neutrons. This analysis involved the
use of data corresponding to values of ) somewhat
larger than those employed in our numerical work. In
the case of MnF~, his values for the rms neutron energy
transfer for T=300'K, 610'K and qo&0.7 are in rough
agreement with those of Les&'&)l obtained from Fig. 2
and (3.25), for essentially the same temperatures used
by him and for 6=0, —1, and they also agree, in the
same sense, with parallel results deducible from the
work in references 5 and 6. Bendt arrived at a value
for the variation of this rms energy transfer with T
between 300'K and 610'K much larger but of the
same sign than the corresponding variations derived
for I

es&'i$& from Fig. 2 and (3.25) for 8=0, —1, and
found no interference effects of the type mentioned in
this paragraph. Aside from possible experimental
errors, which are difficult to evaluate, and the contribu-
tion of magnetovibrational scattering to these experi-
ments, which is probably unimportant, this disagree-
ment is hardly surprising from a theoretical point of
view, principally because the relevant series in (3.21) do
not converge well for reasonable values of J and 6 in the
range of X employed by Bendt, but also because of the
arbitrariness of the parameters used in our calculations,
whose purpose is to provide a broad illustration of the
theory of the purely magnetic scattering of neutrons
in this section.

' Where inelastic effects are particularly small, only the curves
corresponding to X —+ 0 are shown in Fig. 1 and Fig. 2.
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FIG. 1. Relative integrated diff erential cross sections
(do'ojdnl/a3Fx for neutrons incident on MnFs, according to the
coupling model in the text with O~= —80'K and for all combina-
tions of the following values of 8, T, and X: 8=0, —1; T=300'K,
600'K; ) ~ 0, and X=1A, 2A. Curves (a) and (b) refer to B=O
and 5 = —1, respectively.
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I.20 the domain of applicability of the pertinent theoretical
work in this section.
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IV. MAGNETIC SCATTERING OF NEUTRONS
IN THE SPIN-%AVE REGION

This section is devoted to a study of the magnetic
scattering of neutrons of arbitrary f by exchange-
coupled lattices of the class specified in Sec. II at
T»2„with special emphasis on fenomagnets and
antiferromagnets. We shall deal with scatterers which
are single magnetic domains, such that the vectors
(S,)e are almost parallel or antiparallel to a unique
direction specified by the unit vector p. Our results
can be extended readily to situations involving any
number of arbitrarily oriented domains of this type by
suitable averagio g operations.

Choosing a s axis parallel to p, we adopt the following
set of approximate operator equations for T»T„ in
agreement with the usual spin-wave theories' "":
5, ,,+iS,,„—(5/2) '[(1+o,)a~+ (1&&r,)a,+]=—5, i+,.

(4.1)
5;,= &r,[5—a,+a,];
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FiG. 2. Ratio of the relative rms neutron energy transfers
Leo& &/eo, & &7& for the coupling model of MnFs in the text with
0= —80'K and for all combinations of the following values of 8,
T, and ):5=0, —1; T=300'K, 600'K; 'A —+0, and ) =1A, 2A.
Curves (a) and (b) refer to S=O end 8= —t, respectively.

We conclude this section by remarking, in the spirit
of a statement in the Introduction, that it would be of
interest to obtain accurate experimental data for
d&re/dQ and for the first few moments es& i in the case
of MnF2 and of other exchange-coupled lattices of the
class of interest here having exchange interactions of
relatively simple types, for values of Ei, and T within

where o.,= 1(—1) if (S,)e is almost parallel (antiparallel)
to p,. and a;+ and a, are the usual boson creation and
annihilation operators, respectively. The restriction that
the number operator a,+a, have eigenvalues ranging
from 0 to 25 will be disregarded in this section.

A spin-wave theory of Holstein-Primako6' type,
applicable to a general class of exchange-coupled
lattices with an arbitrary number of magnetic ions with
arbitrary spin quantum numbers per primitive magnetic
unit cell can be based on a slight extension of (4.1).4'

To make the succeeding developments as clear as
possible, we shall recall a general difhculty of the
spin-wave theories of the above type when we put
H=Hp Gb ieiHo. In this case, H=Hp can be written
as a sum of a quadratic form in p;= (1/&2i)[a, —a,+]
and one in &t, =(1/%2)[a;+a~+], whose corresponding
matrices have at least one zero eigenvalue. This last
fact implies that it is impossible to satisfy the double
requirement that the transformation from the p, and

q; to conjugate variables which diagonalize H be free
from singularities for arbitrary exchange-coupled lat-
tices and that the corresponding ground state energy
of spin-wave excitation be positive, as demanded by
stability considerations. A simple way of avoiding this
difficulty is to introduce a new operator H& into H to
represent schematically the effects of anisotropic
couplings and of a uniform external magnetic field, as

"For a summary of this theory and of its application to the
purely magnetic one-magnon scattering of neutrons of arbitrary
f from such general lattices for the case of complete orbital
quenching of the magnetic ions, see A. W. Saenz, I'roceedings of
the Fifth Symposium on Magnetism and Magnetic Materials, J.
Appl. Phys. 31 (Supplement), 108S (1960). We regret that a
typographical error appears in the definition of A+(e) in Eqs. (5)
of this paper, and that two other errors, of an unessential type,
are present in this publication,
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follows" .

H=Hp+Hi,

(4.2)

i=0

where g5 is the electronic magnetic moment of a
magnetic ion in units of the electronic Bohr magneton
Pii., and H and H~ are the respective magnitudes
of an external magnetic field and of a hypothetical
anisotropy field, whose directions are collinear with that
of the s axis. If the matrices in the above quadratic
forms of Ho are positive semidefinite and if H~ —H&0,
if all of the 0-; are positive, or H~ —H) 0, if some of the
0-; are negative, then the previously stated double re-
quirement is satisfied by H=Ho+Hi.

To within the approximations of the above spin-wave
theories, H is invariant with respect to rigid rotations
of all the spins about the s axis, in virtue of (3.1), (4.1),
and (4.2). Combining this result with (2.6), where H
is approximated in the sense of these theories, and with
(4.1) and properties of the a;+ and a, , we obtain for
T((T„,, neglecting thermal averages of products of the
a,+ and a; of degree greater than two:

G,, (~',q; n) = P G,;,„(e',q; n);
m=o, 1

(4 4)

where nz=0(1) corresponds to scattering processes in
which exactly 0(1) magnons are emitted or absorbed.
Employing (2.9a) and (4.3) in conjunction with these

"In principle, it would be straightforward to extend the
results of this section to anisotropic interactions of a more realistic
variety than those in I4.2).

&([eXS,(0)] [eXS,(~)])),
=[ —(' ) ](&s,&, &s,&,)+-,[+('t) ]

X&5, ,+(0)5,,;(~)+S;,;(0)5,, ,+(~)&, ;

&([eXX] [eXS;(0)])([eXX'][eXS,(&)])
+([eX&'] [eXS;(0)])([eXX][eXS;(&)])&p

=2([eXX] [eXp])([eX&'].[eXp])
X(&s,)p &SJ)o)+-,'{([eX&][eX&'])
—([eX3] [eXp])([eXX'] [eXp])} (4 3)

X&5;,i+(0)5;, —(t)+5;, —(0)5;, +(&))t ,
.

(( [S;(0)XS,(&)])&
= —(1/2i)(e S)&5',i'(0)S, i (~)

—S;,i (0)S,, i+(/)&o.

In order to proceed, it is essential to separate the
elastic from the inelastic magnetic scattering contribu-
tions to G,;. Using (2.9a) and (4.3), one obtains an
expression for G.;;homogeneous and of the first degree in
(&S,)& (S~)p) and in (5;,i+(0)S,, i-(t)WS;, i

—
(0)S;,i+(t))z.

We denote the parts of G,; containing only ((S;)~.&S;)o)
and solely (S,, i+(0)S,, i (t)&S,, i (0)5;,i+(t)&s by G;; o

and G;, ~, respectively, so that

definitions of G;;,o and G;; ~, and the notation

yo(e; n) =—[1—(e.p)']+2nf
X{([eX&][eXp])([eX&'] [eXp])- l (»') [1-(' t)']};

Pi(e; n)—= [1+(e p)']+2nf{([eXX] [eXX'])
—([eXX] [eXp])([eX&'] [eXp])

——,'(2 2')[1+(e p)']};
xo(e; n) —= —([eXti] [eX{f~+n~'}])'

Pi(e;n)=——2(e p)(e {f0—nX'}).

we obtain:

G...(...; )=(&S,&, &S,&,)q, (e; )~(.);
G'i, i(c e ' a) = 2[pi(e n)M & (t )'+'lt'i(e ' a)N &(6 )]''

(4.5)

(4.6)
X(5', +(o)5; (~)+5', (0)SJ, +(~)&P,

iV,,(e'):———dt exp[i&'t]
4m.

X&5;, i+ (0)5, , i
—

(/) —5,, i
—(0)S,, i+ (i)&p.

Ke now carry out a formal separation of the magnetic
scattering cross sections of interest into a set of partial
cross sections involving simultaneous phonon and
magnon processes as follows:

d'o„, ,(n)d'o, „(n) d'o ...„(n)
+8 o, m, r=0, 1; (4.7)

dedQ dedQ dedQ

where d'o„„(n)/d, edQ is obtained from d'o„, (n)/dad. Q

in (2.9a) by making the substitution

Gg —+G,;, (4.8)

therein. Our motivation for introducing 8 o in (4.7) is
the fact that ' d„o„,„/ edQdin (2.9b) involves no inelastic
magnetic transitions. That for the substitution rule
(4.8) is clear from the definition of G,;, above.

From Eqs. (2.5), (2.9a), (2.9b), (4.4), (4.7), and
(4.8), it can be veri6ed that

d'o, (a)d'o(n)

dedQ ~~m, i r=o, s dedQ
(4.9)

In virtue of the physical significance of the indices
r and m in (4.7) and (4.9), the pairs (r,m) of indices in
these equations refer to scattering processes involving
solely lattice transitions in which m=0, 1 magnons
and either 0 phonons, in the case r=0, or any nonzero
number of phonons, in the case r=i, are emitted or
absorbed. In terms of our earlier terminology, one sees
that, to within the spin-wave approximation used
here, the only pror|;ss|.p contributing to the purely
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i N—1

OR(o'q)= —P exp[iq (X;,o
—X,, o)]M "(o').P i, j=o

X—1

OZ(o', q)—=—P exp[iq (X; o
—X,, o)]X;,(o')

37 ',~~

(4.10)

magnetic and to the magnetovibrational scattering
are those corresponding to (O,m) and (1,rw) (m=0, 1),
respectively.

Since the main features of the elastic magnetic
scattering are well understood, ' we shall not deal with
this topic, except incidentally, in the discussions to
follow, devoted to the inelastic magnetic scattering.
Concerning the latter, we shall only treat the cases
when (r,m) is equal to (0,1) and (1,0). In a number of
experiments of current interest, carried out for T«T„
these two cases can be expected to yield the largest
contribution to the inelastic magnetic scattering.

We shall first study the case (0,1).
The functions

f predicted by (4.11) and (4.12), modified as stated in
this paragraph, for exchange-coupled lattices conform-
ing closely to the conditions of applicability of the
spin-wave analysis" used in deriving this dependence. "
It should be kept in mind in an experimental investiga-
tion of this kind that the terms of d'o oi/dodQ involving

f can vanish identically for certain exchange-coupled
lattices, for example, for the class of antiferromagnets
in this section, as can be seen from (4.14b). There are
theoretical reasons" for believing that such vanishing
does not occur for Fe304.

We proceed to evaluate BR(e,q) and X(o,q) for
ferromagnets and antiferromagnets restricted by the
conditions in Sec. II. Moreover, we shall only deal
with antiferromagnets which, outside of having one
magnetic ion per primitive chemical unit cell, have
two such ions per primitive magnetic unit cell, employ-
ing the word antiferromagnet only in this sense from
now on. For this last class of substances, there exists a
vector w with real components, such that4'

o.;o,=exp[iw (X;,o—X, , o)], (4.13)
will play a central role in this investigation.

From (2.9a), (4.6), (4.7), (4.8), and (4.10), we get:

X(gi(e; n)OR(e, q)+P&(e; n)X(e,q)}. (4.11)

Equations (4.11) imply, in virtue of (4.5), that the
corresponding cross section obtained by summing over
o.=&1 is given by

d f701
=-', I'F(q) exp[ —2Wo(q)](h'/h)

dedQ

X([1+(e ti)']OR( q)

—2f(e. r.)(e to)X(o,q)}. (4.12)

For complete orbital quenching of the magnetic ions
and for T&&T„one concludes from the spin-wave
theory for the general class of exchange-coupled
lattices alluded to earlier in this section, "by a straight-
forward extension of previous arguments, that (4.11)
and, consequently, (4.12) hold in this general case,
with OR(o, q) and K(o,q) replaced by appropriate
functions of e and q which are independent of p, X, and
f. Earlier theoretical studies' "" for special exchange-
coupled lattices of the above class have established for
the case f=O the fact that d'ooi/dedQ depends on p in
the manner prescribed by (4.12). Brockhouse's experi-
mental results in his second paper' on the spin-wave
scattering of neutrons with f=O bv the (1,1,1) planes
of Fe~04 are in agreement with this p dependence. It
would be desirable to extend this interesting experi-
mental work, in the sense of testing thoroughly the
dependence of the scattering of type (0,1) on p, 0, and

OR(o,q) =S Z d~ ([(u.)+1]~(o+")

+(u„)p(o—o„)}8(q—x—2or~);

Ot(e, q) = —SP doo {[(r4)+1]5(e+e„) (4.14a)

—(e,)5(e—o„)}B(q—x—2or~);

E„=2S Q J.o;[1—cos(oo.X;,o)];

(n„)=(exp[j8o„]—1} ';

where the integral over x ranges over the fundamental
zone of the reciprocal lattice of the lattice of magnetic
ions; and 2m~ is an arbitrary vector of this reciprocal

~ The representation (4.13) is used, for example, in references
9 and 10. More general representations of antiferromagnetic
ordering have been derived by H. A. Gersch and W. C. Koehler,
J. Phys. Chem. Solids 5, 180 {1958).

where w is independent of i and j. For simplicity, we
restrict ourselves to the case when the anisotropy
energy is negligible. This restriction should be clearly
understood Az regard to the folloveieg comsideratiorts

referring to processes of type (0,1). In order to avoid
singularities in the limit H~ —+0, we first calculate
OR(o, q) and K(o,q) by means of (2.6), (4.6), (4.10),
(4.13), and familiar spin-wave methods oo with H~
+H)0 for ferromagnets and H~ —H&0 for antiferro-
magnets. After replacing the summations in reciprocal
lattice space by integrals, we take the respective limits
Hg+H ~0+ and Hg —H ~ 0+ in the final results for
these two types of substances. We find for ferromagnets:
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lattice. For antiferromagnets, we obtain:

aR(o,q) =SP dip {[(n„)+1]5(o+p„)

+(n„)b(p p„—)}{[f„—g„]'b(q—u —2~~)

+[f.+g,]'8 (q —io—w —27r~) };
Ot(p, q) =0;
p„=[A ' 8']'—

A„=—2S Q Jo;{o, ,'(1—+—(r,) cos(x X;,p)},

It can be concluded, for example from (4.5), (4.15a),
and (4.15b), that the inelastic magnetic cross sections
of type (0,1) corresponding to a summation over
n=~1 are given by

d Opy
=-,'rp (q) exp[—2Wp(q)](k'/k)

AdQ
X Q [1+(e p)'+2rtf(e 2)

X (e p)]U( —rto)m(p, q); (4.16a)
~4.14b) d'&p

=-'«(~) -p[-2W. (q»(k/k)

X[1+(e p)']5K(p, q); (4.16b)
8,= —SP—Jo;(1—o;) cos(v. X;,p),

f„=2—i[A,—/p„+1]&,

g,=2 &[A„/o„—1]&exp[i'„],

&.=—arg{a„},

provided that A„&
~
B„~, a condition equivalent to the

positive semidefiniteness of the matrices of the above
quadratic forms in p, and q; pertaining to Hp, where
the integral over x extends over a fundamental zone
of a sublattice with o.;=~1; 2m~ is an arbitrary vector
of the reciprocal lattice of the entire lattice of magnetic
ions; and (n„) is defined by (4.14a), with p. given by
(4.14b).

From (4.11) and (4.14a), one obtains for ferro-
magnets:

d'aoi(~)
=-'I'F(q) exp[—2Wo(q)](k'/k) 2 [41(e &)

d d

—it/i(e; n)]U( —itp)OR(p, q); (4.15a)

where U(t') —=1(0) for f)0((0); and where it is clear
that rt=1(—1) corresponds to one-magnon emission
(absorption) processes.

Using (4.11) and (4.14b), one finds for antiferro-
magnets:

d 0'pi(CK)
=-', I'F(q) exp[—2Wo(q)]

ddQ
X (k'/k)Pi(e; a)OR(p, q). (4.15b)

It can be seen from Eqs. (4.14a) to (4.15b) that the
scattering of type (0,1) is most intense in the vicinity
of the Bragg reQections specified by qp= 27t-~ for
ferromagnets, and qp

——2ir~ and qp
——2ir~+w for anti-

ferromagnets, provided the average magnitude of the
energy changes of the scattered neutrons is small
compared withF ~.~-

for ferromagnets and antiferromagnets, respectively.
From (4.16a), one finds for ferromagnets that the

relative contribution of magnon emission and absorp-
tion processes to d'0 oi/dpdQ in the case of strongly polar-
ized neutrons can be altered markedly by varying the
relative orientations of 2, p, and e. This coestANtes the

spin uane ege-ct alluded to in the Introduction. In sharp
contrast to this situation, Eq. (4.16b) implies that
d'o pi/dpdQ is independent of f for antiferromagnets.

The above spin-wave phenomenon for ferromagnets
can be exhibited experimentally very clearly in terms
of the total cross section 0-p&', obtained by integrating
d'ooi/dpdQ over the energies and the angular distribu-
tion of the neutrons scattered by processes of type
(0,1) for a given k and ~. In our calculation of o.pi we
shall limit our attention to the case when the crystal
is set su@ciently near to a Bragg position. Moreover,
we shall deal solely with crystals of cubic symmetry
and with the situation when only magnons of sufticiently
long wavelengths are of importance in processes of
type (0,1), so that we can replace p„ in (4.14a) by

A2

p,=-a[a[',
2m

(4.14a')

where u is independent of x. Noting that one can
replace Wp(q) by Wp(qp) in the vicinity of a Bragg
reflection, and e by ep in the neighborhood of such a
reflection with ~ Wo, we find in this last case by employ-
ing (4.16a), where we make these replacements, in
conjunction with (4.14a), (4.14a)', and elementary
calculations":

&01 Q &pl (g)
~+1

p pi (it) —= (ir/2)SI'P(gp) exp[ —2Wp(qp)]

X [(k'/2np)aPkki] —'[1+(eo y)'
+2itf(ep X)(eo p)] in{(expgp+(it)] —1)

X (exp[P. (~)]—1)-'},

~These conclusions are identical, as expected, with the cor-
responding ones for this type of scattering in the case f=0 in
reference 9, Secs. 2.2 and 3.4.

a+it itk'
0& 1—

a eked'
(4.17)
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and &rot'(rt) =—0, otherwise;

fP )
e~(rt)=—

I
k'—

2m E

ki=—
I
~+2~~

I

a'kg'
{1ar[1—a '(a--+rt)

(a+a)'

&& (1—rtk'/akio)]'*)'
I

.

where g =&1 has the same physical meaning as
in (4.15a). In the derivation of (4.17), the two condi-
tions a&1 and k'/kto(a were assumed to hold. Since
a))1 for typical cases of experimental interest, the
second condition is well satisfied in the vicinity of a
Hragg reQection.

De6ne an angle of misset

d8—=8—8~, (4.18)

44 As follows from (4.17) and (4.18), or from reference 9, p. 56,
the restriction

~
d8 ( & (2al ' cosec2ee excludes a mixture of

magnon emission and absorption processes. This mixture would
spoil the simplicity of the above rule. The presence of relatively
weak dipole-dipole interactions among the magnetic ions makes
the rule in question invalid for small enough ~d8~. See reference
9, pp. 51—53, for details on the efI:ect of dipole-dipole interactions
on the purely magnetic scattering of neutrons with f=0 by
ferromagnets at T((T,.

4' See, for example, reference 20, Sec. -11."Reference 17, p. 318.

where 0 is the glancing angle between k and the
rejecting crystal planes specified by ~, and where 8~
is the corresponding Bragg angle. If ~NO, if the first
condition in the preceding paragraph holds, if Id8I is
small enough so that the second condition therein is
satisfied and the above replacements in (4.17) are
good approximations, and if 2a sin28~&&1, which holds
under typical experimental circumstances, one obtains
from (4.17) and (4.18) the following simple rule for
neutrons with arbitrary f incident on ferromagnets:

Let
I
d8

I
& (2a) ' cosec28ii."Then the cross section 0'ot'

for ferromagnets is given by a factor independent of y, 2,
and f times the factor [1+(eo p)'&2f(eo X)(eo tt)$, '

where +(—) corresponds to d8&0((0).
The special case for which If(eo X)(eo tr) I

=1
appears to be particularly convenient experimentally,
not only because of the obvious fact that the absolute
value of the polarization-dependent portion of the
factor in this rule is maximized, but also because the
scattering of type (r,0)(r=0,1) vanishes theoretically,
either exactly (r=0) or to a good approximation
(r=1), under the conditions of applicability of our
rule given above. This last theoretical prediction follows
from a result in the last paragraph of this section. It
would be interesting to carry out such an experiment
for iron, especially because of the controversial question
of the applicability of the exchange Hamiltonian (2.1b)
in this case."A single crystal should be employed and,
in the spirit of a previous suggestion in a similar
connection, " it is desirable that this crystal should
only contain iron isotopes whose coherent nuclear

scattering lengths are small in comparison with their
corresponding magnetic scattering lengths, so as to
minimize coherent nuclear phonon scattering.

We shall now treat the magnetic scattering of type
(r,0)(r=0,1). A~ferely for the sake of obtaining simpler
formulas, we shall only deal with ferromagnets which
do not have any nonmagnetic ions (v=1) and with
antiferromagnets. No particular difFiculties will be found
in treating more complicated cases.

Employing (2.9a), (2.9b), (4.5), (4.6), (4.7), and
(4.8) in conjunction with the equations

(s)s= t

for

(5'o, .)p,
exp[iw X;,o7

ferromagnets

antiferromagnets

(4 19)

which follow from (3.8), (4.13), and standard spin-wave
resiilts, "we obtain:

d' aoo(n) 4 '
[b'(qo)$o(eo, o)+2aob(qo)xo(eo, 'ir)]

d dQ Vp

Xexp[—2Wo(qo)]g &(qo —2~~)8 {e);

d'o. ,o (rr) 1 k'
=——[b'(q)yo(e; n)+2aob(q)xo(e; n)]

dedQ 2 k

(4.20a)

N—1

)&—P exp[iq (X,, o
—X;,o)jy,,"(e,q);

PT i, 7=P

d'o oo(n) 4''
b'(qo)4o(eo; ) exp[—2~o(qo)3

'Vp

)&P b(qo 2or~ w)—b(e);—

'd& t(on) 1 k=-—b'(q)eo(e; ~)—2
dedQ 2 k E ', ~=p

(4.20b}

&& exP[i(q —w) (X;,o
—X,; o)]P,,'o(e,q);

for ferromagnets and antiferromagnets, respectively,
where vp is the volume of a primitive chemical unit cell
and

b(q)
—= [I'P(q) ji(So„) . (4.21)

If the average magnitude of the energy changes of
the scattered neutrons in processes of type {1,0) is
small compared with E&, it can be shown from Eqs.
(4.20a) and (4.20b) that this scattering is most intense
in the vicinity of the Bragg reQections specified by
qo=2or~ for ferromagnets and qo

——2or~+w for anti-
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ferromagnets. " For crystal settings which fuMll suf-
ficiently closely one of these two Sragg conditions
with qeYO, we may replace pe(e; n) and xe(e; cr) by
$p(ee, n) and xe(ee, n), respectively. Carrying out
this replacement in (4.20a) and (4.20b) for r = 1,
and using (4.5), it is seen that, for such settings and
under the condition

~
(ee ts)

~

= 1, d'o. re(u)/dedQ vanishes
to a good approximation, while one easily verihes

by a parallel argument the well-known fact that
d'ace(cr)/dedQ vanishes exactly under this condition.
Under the same circumstances, these conclusions
regarding the vanishing of the scattering of type (r,O)

can be shown to hoM for the general class of magnetic
lattices alluded to earlier in this section. " Exception
made of the presence of w in (4.20b), one readily sees
that the portions of d'o.„e(cr)/dedQ in (4.20a) and
(4.20b) independent of 2, Ir, and f are proportional to
the differential cross sections per unit-energy range
for the coherent, purely nuclear, scattering of neutrons
corresponding to zero-phonon processes and to inelastic
phonon processes of all orders, respectively, in the
cases r=0 and r=1.
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APPENDIX. PROOF OF EQS. (3.13c) AND (3.13d)

We begin by proving (3.13c) under suitable restric-
tions on H.

According to (3.14), (3.13c) is equivalent to

Now,

tracef([S,',H7 'Sp)}=trace{([Sp,H7 'S;)},

n =0,1,2,
(A2)

$, , s„+r r
———trace{ ([S,H7s„+r' Sp)H}/(25+1) x;

$, , s, e
——trace{ ([S,,H7s, Se)}/(25+1)~'x;

r,s=0,1,2

(A4)

From (A4), (3.13d) is equivalent to

trace( ([S;,H7r~+s Se)}
= —2 trace( ([S,,H7s~+r Se)H}, (AS)

3=0,1,2,

To prove (A5), we note that, for any H,

trace f ([S,,H72l+2'SO) }
= —trace{ ([S,,H7sg+r Ss)H}

—trace( ([So,H7si+i S )H}, (A6)

in particular, if H has properties A and 8. This last re-
sult also holds for crystals sufFiciently large in all direc-
tions without the introduction of periodic boundary
conditions, for a wide class of Hamiltonians H, which
includes H=HO as a special case, in virtue of the
assumed short range of the corresponding magnetic
interactions. This class, whose exact definition we
shall omit, is characterized, roughly speaking, by the
fact that the H therein involve couplings of a short
enough range and are invariant under rigid crystal-
lographic displacements and inversions of all the S; for
the case of lattices of infinite extent in all directions.

On the other hand, for any H,

tracef ([S,,H7 .So)}= (—1)"trace{([Se,H7 S;)},
(A3)

v=0 1. 2
7 ) )

Equations (A1) follow immediately from (A2)
and (A3).

If H has properties A and 8, Eqs. (3.13c) can also be
obtained with the aid of (2.6), (3.2a), and (3.2b), which
imply that ((S,(0).SO(t)))s=e is then even in t, and of
(3.12) and (3.14).

We now prove (3.13d).
From (3.13c) and (3.14), we 6nd:

trace{ ([S;,H72~r Se)}=0,
(A1)

0 1 2 e s ~

)

If H has properties A and 8 or belongs to the class of
operators alluded to earlier in this Appendix, one can
show that the two terms on the right-hand side of (A6)
are equal and therefore that (A5) holds.

1=012 .
) )

' These results agree in essence, as expected, with the cor-
responding ones for this type of scattering in the case f=0 in
reference 9, Sec. 4.


