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Anisotropy of the Intrinsic Domain Magnetization of a Ferromagnet
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The effect of pseudodipolar coupling on the intrinsic domain magnetization of a cubic ferromagnet at
low temperatures is investigated. Besides the anisotropy in the magnetization resulting from the dependence
of the thermal excitation of spin waves on magnetization direction in the crystal, the pseudodipolar coupling
is capable of making an anisotropic contribution to the magnetization, even at T=O'K, in the same approxi-
mation as its contribution to the 6rst order anisotropy constant E&, Both effects are calculated and found
to be in opposition to one another, tending to cancel in nickel at about 7.5'K.

I. INTRODUCTION

HE low-temperature behavior of an ideal ferro-
magnet was shown by Dyson' to be well described

by a theory of noninteracting spin waves. The isotropic
exchange between nearest neighbor spins on a cubic
lattice was treated very precisely, but other energies
were completely ignored. However, his work serves as
a basis for including other terms in the Hamiltonian.
Thus, Charap and gneiss' were able to treat the pseudo-
dipolar coupling between nearest neighbor spins and
show that the first order anisotropy constant, E&, as
calculated for this interaction, varies at low tempera-
tures as the tenth power of the magnetization. As was
first pointed out by Van Vleck, ' the biquadratic angular
dependence required to represent the cubic anisotropy
associated with EI could be obtained from this pertur-
bation in the second approximation. In such a case we
may also expect to find, even at the absolute zero of
temperature, an anisotropy of the intrinsic domain
magnetization to the same order in the perturbation as
the leading contribution to E1. It is the purpose of
this paper to calculate the anisotropy in domain
magnetization due to this pseudodipolar coupling.

The dipolar interaction has a twofold eGect on the
magnetization. In the first place, the magnetization
associated with a given state, as defined by the set of
spin-wave occupation numbers, varies with direction as
stated above. That is, because of the perturbatioa, the
low-lying states have admixed into them other states
diGering by the excitation of two spin waves of wave
vectors k and —k. The second-order energy is depressed
by this admixture by an amount dependent upon the
magnetization direction in the crystal. Those directions
for which the energy is depressed most are the easy
directions. These are the directions for which the
unperturbed states have the greatest admixture of
excited states, that is, states of smaller magnetization.
Thus, the eGect is one which results in greater magnet-
ization in the hard directions than in the easy ones.
It is a temperature dependent eGect, decreasing with

increasing temperature. Secondly, the spin-wave occu-
pation numbers become dependent upon the direction
of the magnetization with respect to the crystalline
axes. Such an effect was described by Callen4 on a
molecular field model. The spins are visualized as
precessing in a narrower cone when the magnetization
is in an easy direction than when it is in a hard one.
In the spin-wave picture, we use the fact that the
energy required to excite a spin wave is least when the
magnetization is in a hard direction. Thus, at a given
temperature, there will be more spin waves excited if
the magnetization is in a hard direction than in an
easy one. On either model we have an eGect which
vanishes at T=O and results in greater magnetization
in the easy directions. In the case of nickel we shall hnd
that the two effects tend to cancel each other at about
T= 7.5'K.

Ke omit the long-range magnetic dipole forces from
the present calculation. Thus, as a calculation of the
magnetization this work is incomplete. The result is,
however, a complete description of its anisotropic part,
to lowest order. On the other hand, we point out that
the Holstein and PrimakoG' calculation may not be
regarded as a complete treatment of the magnetic
dipolar interaction. In I it is shown that certain terms
in the dipolar interaction which are neglected by H-P
make important contributions to the anisotropy. It
should be noted also that the argument given by H-P
concerning the relative eGects of pseudodipolar and
magnetic dipolar interactions on the magnetization
does not apply to 3ftt (Mp is the H-P designation for
the deviation from the simple Sloch law which survives
at T=O). The important contributions to Mtt come
from the very short wavelength spin waves, for which
the pseudodipolar interaction far outweighs the mag-
netic dipolar coupling. However, on the basis of the
magnetic contribution alone, Mp was judged to be
negligible and dropped by them.

In Sec. II we brieQy present the low-lying energies
to second order in the pseudodipolar interaction. The

' F. J. Dyson, Phys. Rev. 102, 1217, 1230 {1956).
2 S. H. Charap and P. R. gneiss, Phys. Rev. 116,

Henceforth, this paper shall be referred to as I.' J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).

4E. R. Callen, Fifth Annual Conference on Magnetism and
Magmetic Materials, Detroit, Michigart, 1959 [J. Appl. Phys. Bl,

1372 (1939). 149S (1960)g.
~ T. Holstein and H. Primakoft, Phys. Rev. 58, 1107 (1940).

Henceforth, this paper shall be referred to as H-P.
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notation is thereby established for the magnetization
calculation of Sec. III. In Sec. IV we give an approxi-
mate calculation of the anisotropic Mp. Finally, in
Sec. V, the results are discussed for nickel and for iron.

II. SPECTRUM OF LOW-LYING LEVELS

We treat a cubic lattice of E identical spins. Each
spin is coupled only with its nearest neighbors by way
of the exchange (J) and short-range pseudodipolar (D)
interaction. The spin-wave Hamiltonian may be ob-
tained by use of the Dyson' formalism. This approach
was used in the anisotropy calculation of I for S=—,'
only. The extension to arbitrary S is straightforward.
Alternatively, one may use the prescription of Oguchi'
for handling the Holstein-PrimakoG formalism. This
treatment may be found in the analysis of the pseudo-
dipolar anisotropy problem by KeGer and Oguchi. ~

The spin-wave Hamiltonians resulting from the two
procedures are somewhat different in form. However,
the energy levels which have beeo calculated by means
of these are identical. For the purposes of this paper,
those spin-wave interactions are neglected which con-
serve the total number of spin waves. Of these the
most important is Dyson's' dynamical interaction.

The dipolar term is regarded as a perturbation on the
exchange and, to second order, the energy of the state
with spin-wave occupation numbers E1„E1,, E1, ,
is, except for constants,

In I, the pseudodipolar coupling was measured by the
parameter e, which is —4D. The eGect of a magnetic
field, H, along the s axis is taken in.to account by the
usual Zeeman connections; to E, we add —gp~ÃSH, to
Ak we add gp~H.

It is a rather good approximation to neglect the
second and third terms on the right-hand side of (2),
since Ek and Bk vanish for k=0, and D«J. The s'ums

on k appearing in Kqs. (1) and (2) have been treated
in some detail in I. It may be shown that

1 1t2
I
—l~kl'+I~»i'

l

W, &S )

is an isotropic quantity, i.e., a simple number, which
we may conveniently denote by p. The spin-wave
energy (2) may be rewritten

5 la, l

ek=~k+ —E»
2S A1,

We insert this expression into Eq. (1), noting that the
anisotropy is entirely contained in the sums on 8&, so
that we may immediately write for the first-order
anisotropy constant in terms of the thermally excited
spin-wave occupation numbers (Ek) (T),

E,(T)=Ere[1—(10/XS)gk(E»)],

+Z» &kek (1) Since, according to simple theory, the magnetization,
M, obeys the equation

The 6rst term is the anisotropic part of the ground-state
energy, E„and the second is the energy associated
with the excitation of spin waves. For small k,

1 loki
ek ~k+8k

2 A1,

M(T) =MP[1—(1/XS)pk(E»)$,

Ejp Mp

then, for the low-lying states

E (T) M(T) "
(10)

f 1, ,1 which is the well-known tenth power law.

1V Ak E2S j
III. THE MAGNETIZATION

Much of the notation used here is that of Eever and
Oguchi. ' We have

The magnetization is calculated from the partition
function, Z, according to the relation

Ak ——2SJ Qg[1 —exp(ik 1)$,

Ak —— ,'SD P)[1—3—(l—'/l)') exp(ik 1),

~,= —~SDg, P-/i) .p('k 1),

(3)

(4)

(5)

k~T 8
M = — lnZ.

BH

For the problem being treated here,

and Here k~ is Boltzmann's constant, the volume of the
&k= —(-,'S)l3D P&(l'l /l') exp(ik 1). (6) crystal is p', and

ln these expressions, the sums on 1 range over all the
nearest neighbor vectors of the lattice. The s direction
is the axis of quantization and

t+=t &st~.
6 T. Oguchi, Phys. Rev. 117, 117 (1960).' F. Eever and T. Oguchi, Phys. Rev. 117, 718 (1960).

1 BEg 1. Be1,
M = —— —— Qk(Xk).

V BH VBH
(12)



S. H. C HA RAP

In the. simple. theory, B~=Fk=0, and we have

1 BEg=gyes/V =Mp,
V BH

where Me is given by Eq. (16) and is anisotropic.
Finally we have

and
B8g gp~ Mg

V BH V iVS
(14)

AS By) 1
Mo+10Me ! P»(&&») (20)

V BH) ÃS

These results lead immediately to Eq. (9). The thermal
spin-wave excitation numbers are given by the Bose
function

(S»)= /exp (e»/h11 T) 1j—'.— (15)

1 B ( !8»!2)
k

VBH( A» )
gym

4U

and to Eq. (14) we must add,

In the presence of the pseudodipolar interaction two
anisotropic effects may be distinguished in Eq. (12).
The first of these is the deviation of the derivatives
with respect to H from the values given by (13) and
(14). The second is the variation of the expectation
values (X») as given by Eq. (15), with the direction
of the magnetization in the lattice. The deviation from
Eq. (13) due to the pseudodipolar coupling in second
order is

We neglect the isotropic term (iVS/V) By/BH in
comparison with Mo and separate the magnetization
into two parts,

where
M(T) =M1(T)+M2(T),

M1(T) =Mp! 1—(1/XS)p»(E»)$, (22)

M, (T)=M,L1—(10/XS)g»(X»)]. (23)

M2(T) -M, (T)-1o

Mp Mo
(24)

In the spirit of the approximations of this paper, the
value of P»(A'») to be used in Eq. (22) is that of Eq.
(18), but in Eq. (23) the value at +=0, i.e., the Bloch
value is appropriate. Thus the two anisotropic sects
are completely separated in the formalism. Note also
that M~, like E~, obeys the tenth power law;

gl~ 5 !&»!2 1 Bv—2» +-
ÃU 2S Ag' V BH

(17)
IV. CALCULATION OF Mp

The evaluation of

In the simple theory e& includes only the exchange
energy which is approximated by its leading term,
quadratic in k. This leads to the well-known Bloch Tpr

law, i.e.,
(1/ES)P»(X») =CT2.

Mp=-
4U Ag'

is made in a manner similar to that used for the energy
in I. Thus we write

The addition of other terms, independen. t of k, to the
spin-wave energy modifies this result. We may make
use of an expansion due to Robinson' to show that where

gy129 (l1+l2 l '
Me ——— S'O' Q 11,12! —

! d 11+12, (26)
4V4 & l2 )

(1/ES)Q»(E») =CT2(1—1 32n*+0 552.9n.
—0.0398n2+0.00163np+ ) (18)

where for our problem, according to Eq. (7),

5 !a»!2
hr1To.—=gI2~H+ Q»——

Ã 2S Ag
(19)

Robinsons expansion of the Bose-Einstein integral
converges for !n! &~22r and the terms given in Eq. (19)
are accurate to at least 1/o for 12&~1. For nickel the
latter condition will be satisfied in zero field for temper-
atures above about 0.6'K.

At the absolute zero of temperature, then, the
magnetization consists of two parts;

Mp+Mp,
8 J. E. Robinson, Phys. Rev. 83, 678 (1951).

d, =—Q» A»
—' exp(ik. r).

The expression for Me (Eq. 26) is anisotropic by virtue
of the fact that l+ and l are defined in terms of a
coordinate system whose s axis'is the magnetization
direction. Except for some constant factors, the defi-
nition (27) is a direct analog of the h, used in I. By
dr, » we shall mean (as in I) that d, associated with the
lattice vector whose components along the cube edges
are, in units of the length of a component of a nearest
neighbor vector, the integers fgh Thus, for the .face-
centered cubic, that d, which is associated with a
nearest neighbor vector is d~xo= d&oi= doii. The d, arise
in combinations and we define

f~=dooo+dpoo 2d11o, sim—Ple cubic,
=dow+d222 —do22 —dpoo, body-centered cubic, (28)

dooo+d220 d211 doll face-centered cubic,
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and for the face-centered cubic only

fr= 2dooo Aii —doii. (29)

Also, for the face-centered cubic only, we define the
vector 1* as one of the nearest neighbor vectors which
is normal to 1. Then by the techniques of appendix A
ln I,

gpB 9 t'I+l
Vp= — S'D' f—~ PiI

4V4 E p)
)l+l*-~ '

+f~ &il I (30)
p )

4 (1—I') sc
~l+l-y '

I
= (32/9)(1+I) l «,~p) .2(3+I') fcc

(31)

)+)Q—
) 2

I =2(1—31') «ckp) (32)

In the energy anisotropy calculation, functiolls analo-
gous to f& and f& were evaluated by calculation of the
individual b, involved. In the present work we calculate
only the combinations f~ and f~ in the following
approximation. The Zeeman contribution to Ai, is
neglected. The numerators and denominators are
separately expanded in powers of k and the leading
terms are proportional to k4. Only the leading terms
are kept and the sums converted to integrals. In this
way we find

1/15 sc

and

f„= & 2/45 bcc
(2S1)' .1/80 fcc

I

(33)

In terms of I'= +tons'+ni'no'+no'oo', ni, o.s, and no being
the direction cosines of the magnetization with respect
to the crystal axes,

For the case of nickel a numerical estimate of the
pseudodipolar coupling parameter was made. Com-
parison with the experimental ground-state value of Xi
gives D/J=0. 12, with 1=230kii.

V. DISCUSSION

We have calculated the anisotropic contributions to
the magnetization of a cubic ferromagnet, using as their
source the pseudodipolar coupling. Thtere are two
effects. One of these, the anisotropic thermal excitation
of spin waves, is contained in that portion of the
magnetization which is denoted by M&. The other,
denoted by M2, is the anisotropy of the moment of a
given spin-wave state and is essentially given by the
magnetic field dependence of the anisotropy coefFicient
E~. Contributions to 3f2 arising from a magnetic field
dependence of the coupling parameter D have beep.
neglected. We note that the terms calculated here are
of magnitude (IJii/kT. )Et, where T, is the Curie
temperature. We may argue on the anisotropic exchange
model described by Van Vleck' that the neglected
terms have the order of magnitude (pii/kv)Ei, where
hv is of the order of magnitude of the crystal 6eld
splitting. Thus the neglected term is smaller by a
factor kT,/hi( i'o) than what we have calculated
here.

It is instructive to consider the relative magnitude of
the effect of the pseudodipolar interaction in Mi(T)
versus that in Ms(T). For the purpose of this compari-
son we note that the temperature dependence of M2 is
quite negligible at low temperatures so that we need
only consider Mp. It is also necessary to suppose that
a magnetic field of the order of magnitude of the
"effective anisotropy field" ( 3000 oe for nickel) is
applied so that the magnetization may be equally well
oriented in hard and easy directions. In the presence
of such a field, for the face centered cubic we have

fcc.
(2SJ)' 240

(34)
D2

k gTo. =0.56—I'.J (38)

Finally then
(3/80) (1—I') sc

Mo (D)'
(1/45) (1+I') bcc. (35)

S &S) .(3/1280) (4+3I') fcc

We include a summary of results from I for the purpose
of evaluation of the quantity n in Eq. (19).These are,

This field will have a negligible effect on Mp because it
is the short wavelength spin waves excited in the inter-
mediate states that are most important for its calcula-
tion. Unless an even larger field is applied we always
have n&1 for T&0.6'K.

For nickel (fcc, s= —',) we calculate from Eq. (35) for
the easy directions

and

sc

bcc, (36)

.0.0223(12+5r) fcc

1.899 sc
D2

1.612 bcc.J .0.644 fcc

(37)

0.476 (1—I')
1 IBgI' D'

=—0.268 (1+I")
2$5 Ai, J

~p= —3.4X10 4MO. (39)

The change in 3Ep, which results from the rotation of
the magnetization from a hard to an easy direction, is
-', of the value given by Eq. (39) and is comparable to
the change in magnetization resulting from heating the
sample from 3'K to 6'K. The deviation of Mi(T) from
the T*' law value when n=1 is, using C=8.6X 10 '('K)

' M. Fallot, Ann. phys. 6, 305 (1936).
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for nickel, approximately 3.4)&10 'ufo. As the tem-
perature is increased the n& term will tend to domi-
nate among the deviations in 3f1, and grows linearly
with T. The two anisotropic eGects tend to cancel each
other at about 7.5'K. At temperatures above this the
M1 effect dominates, i.e., the greater magnetization
occurs in the easy directions. Below this temperature the
greater magnetization occurs in the hard directions.

There is an interesting application of this work to
the case of iron. Although the pseudodipolar coupling
may be present, the problem of the anisotropy in iron
has been treated more easily than that in nickel because
of the possibility of using a pseudoquadrupolar inter-
action, which yields E1 in first order. "This interaction
must be measured by a parameter whose magnitude
is Ds/J, if it is to explain completely the anisotropy

in iron. The anisotropy in magnetization resulting from
pseudoquadrupolar coupling again has the two parts.
The contribution to F1 will be exactly the same as in
the dipolar case. However, the contribution to 3E2 must
occur in a higher order of approximation than the
contribution to E1. That is, in second order, we may
have a term in 3IIs of order of magnitude (D/J)4 coming
from the pseudoquadrupolar coupling. According to
our discussion, such a term cannot be observed at any
reasonable temperature. Thus, we can imagine the
possibility of determining, experimentally, to what
extent the anisotropy in iron is due to pseudodipolar
coupling by observation of magnetization anisotropy.

"See reference 3; also C. Zener, Phys. Rev. 96, 1335 (1954),
and 1'. Eever, Phys. Rev. 100, 1692 (1955).
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The magnetic scattering of slow neutrons of arbitrary initial
polarization by an extensive class of magnetically-coupled lattices
is treated by a time-dependent operator approach for the case of
complete orbital quenching of the magnetic ions. This magnetic
scattering is carefully divided into purely magnetic and magrieto-
vibrational scattering, the types thereof involving, respectively,
only zero-phonon processes and solely nonzero-phonon processes,
and general formulas for these two types of scattering are obtained.
These formulas are applied in temperature regions which are
sufficiently large (I} or su%ciently small (II) compared with the
temperature above which paramagnetism obtains. In region I,
for the purely magnetic scattering and under certain invariance
requirements on the above magnetic coupling, we analyze the
energy spectrum of outgoing initially unpolarized neutrons of
sufficiently high incident energy by a moment method. We thus

obtain general formulas for the energy-integrated effective
differential cross section defined in this paper and for the moments
of energy transfer defined therein. These formulas involve certain
spin averages, explicit equations being given for a wide range of
these averages for exchange-coupled lattices. These results are
illustrated numerically and compared with experiment for the
case of polycrystalline MnF2. In region II, we discuss certain
broad features of the purely magnetic one-magnon scattering of
arbitrarily polarized neutrons by exchange-coupled lattices of the
class alluded to previously and by more complex ones, studying
this scattering in detail for ferromagnets and certain antiferro-
magnets. A new spin-wave effect is pointed out for polarized
neutrons incident on ferromagnets. Brief treatments of the
magnetovibrational scattering in regions I and II are also given.

I. INTRODUCTION

' 'N this paper, we- shall investigate the magnetic scat-
' - tering of slow neutrons by a wide class of lattices
having magnetic ions which are orbitally quenched
and are magnetically coupled with one another. Our
objective is twofold. First, we want to derive formulas

which are general enough to encompass the case of
neutrons of arbitrary initial polarization f incident on

lattices of the above class at any temperature T.
Second, we desire to employ these formulas in a detailed

study of magnetic neutron scattering by certain lattices
of this class, and particularly by exchange-coupled

*The main results of this paper were 6rst reported in Bull. Am.
Phys. Soc. 2, 49 (1957); 3, 203 (1958).

ones, ' for temperatures T which are su@.ciently high
or low compared with the temperatures'7, above which
they are paramagnetic, a restriction which permits us
to base our results on reliable quantum-statistical
methods.

In what follows, the neutron magnetic scattering
processes of interest, in which the initial and 6nal
lattice states are the same or different with regard to
their vibrational quantum numbers, shall be defined
as corresponding to purely magnetic or to magneto-
vibrational scattering, respectively. In general, the

purely magnetic scattering is of greater physical

' The term exchange is employed in this paper to denote both
ordinary exchange and superexchange, it being hoped that no
confusion will be caused by this usage.


