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(817) using (815) as kernel can be rewritten as

X+4O+X) &—4

P(X) =[16(2+X)]—' I

where
a=0, for ) &24
=) —4(1+))*'—4 for X& 24.

In the region X((1 Eq. (819) reduces to

~3K

P(~) =—, ~~
—X'(A'PP. '),

32 ~p
(820)

I'=e ~ and ) =e ~, (823)

permits (822) to be rewritten after some rearrangement
in the form

ir (y) —p(y —ln3) =2y+lnA, (824)

The conjecture (821) can be verified by converting
Eq. (820) to the differential difference equation

32P"(X)=3P(3))+16M"(X)+P(X).

A transformation to the new variables p(y) and y

a deceptively simple equation. To obtain the analytic
dependence near X=O, one might try P('A') =(X')".
However, this yields P(X) ~ X"+', so that each iteration
raises the exponent, by two. Thus P(X) vanishes faster
than )"for any finite e. It is indeed not obvious, at all,
that there is any analytic behavior near ) =0 that will
satisfy Eq. (820).

We can, however, obtain the nature of the singu-
larity at X=0 by a physical argument. Equation (820)
indicates that the probability of each (downward) step
is of the order ), so that e downward steps occurs with
a probability of the order )".Since the binding energy
can at most change from ) to 3X, i.e., triple in each step,
if X((1, the number of steps e to go from X to a binding
energy 6 of order unity is given by

b/X =3", ri = lns(1/X)+lnsb, (821)
so that we expect

P(X) ~ )" with rr = insb+1ns(1/X),

as stated in Eq. (2.23) of the introduction.

A = (32/3) t'y'+ (p')' —p")+ (16/3) y'e '& e—'" (8.25)

We are concerned with the solution of (824) in the
region of large y. The term in 2y is dominant, and may
be used to obtain an approximate solution rp=y'/ln3
that already contains the dominant behavior described
in Eq. (1.23). One iteration using the dominant term
in A, i.e., A = (32/3) (y')' leads to

9 (y) =y'/ln3+ (2/ln3)y lny+cy+, (826)
where

1 t' 128
c= ln~ [

—2 =3.52.
ln3 (3(ln3)')

A return to the original variables gives I'=)" with

n=ln(1/) )/ln3+3. 52+2 ln ln(1/X)/ln3. (827)

Equation (827) verifies to good approximation our
original conjecture Eq. (821), and supplies us with an
understanding of the nature of the essential singularity
near ) =0.
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Anisotropic Ferromagnetic Resonance Linewidth in Ferrites*
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In disordered magnetic materials such as the ferrites, the dominant source of resonance linewidth can be
attributed to processes involving only two elementary excitations: the destruction of a magnon with the
creation either of another magnon or a phonon. We here consider only the primary magnon-magnon scat-
tering process. We show that the random variation of the spin-orbit coupling parameters of the disordered
ions leads to a resonance linewidth comparable to that observed in ferrites. The particular symmetry of the
crystalline fields around the octahedrally coordinated sites causes an anisotropy in the linewidth with a
nunimum in the L100) directions and a maximum in the L111$directions. This anisotropy of linewidth is in
general agreement with experimental observations on typical ferrites, as for example, the measurements of
Schnitzler, Folen, and Rado on disordered lithium ferrite.

1. INTRODUCTION

HE source of resonance linewidth in disordered
magnetic materials such as the ferrites has been

discussed by Clogston, Suhl, Walker, and Anderson, '
*This work was supported by the Office of Naval Research.' A. M. Clogston, H, Suhl, L. R. Walker, and P. W. Anderson,

J. Phys. Chem. Solids 1, 129 (1959).

who pointed out the possibility of two excitation proc-
esses conserving energy but not momentum. The pri-
mary mechanism of magnon scattering was attributed
to the random pseudodipolar interaction. However, the
subsequent discovery by Folen and Rado' that the

s V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958).
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magnetocrystalline anisotropy is single-ion additive
provides an upper limit to the strength of the pseudo-
dipolar interaction; this upper limit is too small to
account for the observed linewidths.

That the pseudodipolar interaction is small has been
suggested also by White' on the basis of observed
paramagnetic linewidths above the Curie temperature,
and by Yosida and Tachiki4 on the basis of theoretical
calculations of both the pseudodipolar and single-ion
contributions to the magnetocrystalline anisotropy.

We show that a relatively strong loss mechanism
exists in disordered ferrites because of the variation
from ion to ion of the intra-atomic spin-spin and spin-
orbit coupling parameters. These interactions contribute
terms to the eff'ective Hamiltonian in first- and second-
order perturbation theory, respectively, and give strong
magnon scattering from the homogeneous mode to the
degenerate spin-wave modes.

The interactions which we consider are, of course, the
same interactions which give rise to the one-ion ani-

sotropy, as calculated by Vosida and Tachiki. 4 However,
in an ordered structure the erst and second-order
perturbation terms reduce to constants when summed
over all equivalent sites in a cubic unit cell, and the
scattering and loss thereby disappear. The magneto-
crystalline anisotropy arises in third order (two spin-
orbit and one spin-spin interaction) or in fourth order
(four spin-orbit interactions). It should perhaps be
noted here that no simple correlation exists between our
scattering mechanism and the magnetocrystalline ani-

sotropy because of the diGerent relative admixtures of
the underlying spin-spin and spin-orbit interactions in
each order of perturbation theory.

We find a contribution to the linewidth of the form

y&&-&oI,=&o~'"+) o~'"(~1 &2'+~1 &8'+&2 &8), (1)

where e~, n2, o, a are the direction cosines of the mag-
netization with respect to the crystal axes. The quanti-
ties XpA,"' and Apl, (" are coefficients which we calculate;
they depend on the applied Geld, sample shape, spin-
spin, and spin-orbit coupling parameters, and the
strength and symmetry of the crystalline fields. The sign
of Xpg, (' is independent of the sign of the spin-orbit
interaction (which usually dominates the spin-spin con-
tribution) but depends on the symmetry of the crystal-
line fi.elds. For the octahedral sites in the spinel structure,
the crystalline fields have trigonal symmetry along the
$111jaxes, and XoI,"' is found to be positive. Thus the
contribution to the linewidth is maximum in the L111j
directions and minimum in the L100j directions. In a
typical resonance experiment on a spherical ferrite
sample )I,oo"l/y and Xo j,"&/y are calculated to be of the
order of 4 and 45 oersteds, respectively, corresponding
to a linewidth of 1 oersted in the $100] directions and 16
oersteds in the L111]directions.

3 R. L. White, Phys. Rev. 115, 1519 (1959).
4 K. Yosida and M. Tachiki, Progr. Theoret. Phys. (Kyoto) 17,

5 (1957).

The primary process of magnon scattering from the
k=0 mode to degenerate modes is found to be tempera-
ture independent. The secondary process of equilibra-
tion among the kWO magnons cannot proceed by
two-excitation processes and is strongly temperature
dependent. We assume the temperature to be suKciently
high that the secondary equilibration process proceeds
much more rapidly than the primary process. At low

temperatures, however, failure of the kWO magnons to
relax among themselves can lead to a saturation of the
primary transition and a decrease of the contribution to
the linewidth.

Preparatory to the detailed calculations we brieQy
discuss the relationship of magnon scattering to ferro-
magnetic resonance linewidth in Sec. 2. In Sec. 3 we
summarize the theory in such a way as to exhibit its
main qualitative features. In Sec. 4 we compute the
contribution to the linewidth, its dependence on the
orientation of the external Geld, its dependence on the
magnitude of the external 6eld (or resonant frequency)
and its dependence on sample shape. Finally, the results
are discussed in Sec. 5.

2. MAGNON SCATTERING, DYNAMICAL RESPONSE,
AND LINE%IDTH

The dynamical response of a ferromagnetic material
to an applied 6eld has been analyzed in terms of magnon
scattering probabilities by Callen. ' For an ellipsoidal

sample symmetric around the applied magnetic field the
dynamical equation follows from two basic results of
spin-wave theory. Every magnon excited reduces the z

component of magnetization by one unit (ph) of mag-
netic moment. That is

where e is the total number of magnons present, and 3fp

is the saturation magnetization. However, the magni-
tude of the magnetization M is reduced only by the
magnons with nonzero wave vector;

M =Mp —gee',

where e' is the number of magnons with kNO. Sub-
tracting these two equations yields the relation

where no =I e' is —the —number of magnons with k=0.
Alternatively, e, e', and np can be interpreted as the

numbers of magnons in excess of the thermal equilib-
rium numbers; Mp then represents the equilibrium
magnetization at the given temperature. We adopt this
interpretation henceforth.

Two-excitation scattering processes are represented in
the Hamiltonian by products of a creation operator for
one excitation and a destruction operator for the other
excitation. Such terms give rise to simple first-order
equations for the rates of change of the magnon numbers

' H. Callen, J. Phys. Chem. Solids 4, 256 (1958).
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of the form
iio =~o'"' —(&op+&o.)~p,

n =XpIep —Xg,e,~ I (6)

where rip&o& is the rate of creation of k=O magnons by
the applied magnetic fields, and where Xp~ is the
probability of magnon-magnon scattering from k=O to
k/0. That is, Xp& is the probability of destruction of a
k=0 magnon with the creation of a kWO magnon. Xp,
is the probability of destruction of a k=O magnon with
the creation of a phonon, and XI„ is the probability of
destruction of a k&0 magnon with the creation of a
phonon.

Expressing ep and e' in terms of 3f, and M through
Eqs. (3) and (4) and substituting into Eqs. (5) and (6)
gives immediately

M, =—y(MXH, ),+ho. (M—M,)+Xp. (Mo —M), (7)

M= —Xp p(M —M,)+Xk.(Mo —M). (g)

In the first term of Eq. (7) H; is the sum of external
and demagnetizing fields, and this term describes the
precession of the magnetization around the field II;.The
part of this term involving the dc field gives a pure loss-
free precession which is not represented in Eqs. (5) or

(6), and which has been added in accordance with the
familiar loss-free quantum mechanical equations of
motion. The part which involves precession around the
rf field is responsible for the absorption of power from
the rf generator and is represented by the term rip'"' in
Eq. (5).

It is useful to regroup the terms in Eqs. (7) and (8) as
follows:

where Bp is the externally applied magnetic field in the s
direction. It is to be recalled that Mp is the equilibrium
magnitude of the magnetization at the given tempera-
ture, whereas 3f is the instantaneous magnitude.

Each of the terms in the dynamical equation (15) can
be interpreted in a direct physical way. The 6rst term
is, of course, the loss-free precessional term. The second
term has the direction HpX (MXHp), which is perpen-
dicular to the s axis in the plane containing M. This
term therefore describes the relaxation of the transverse
component of M. It is proportional to (Xoq+Xp, ), or to
the rate of destruction of k=O magnons. This is reason-
able since the k=O magnons decrease M, without de-
creasing M; that is, they "tilt" the magnetization and
account for its transverse component. The 6nal term in
Eq. (15) describes the relaxation of the s component of
the magnetization. This relaxation arises from two
mechanisms; the change in the magnitude of M and the
change in the tilt. The two terms in the square brackets
of Eq. (15) represent the sum of these two mechanisms,
the contribution of A, p~ to each cancelling out as it did
in the derivation of Eq. (7).

The dynamical equation (15), or the equivalent pairs
of scalar equations (9) and (10), or (13) and (14), pro-
vide a basis for the analysis of magnetic response. Three
independent constants appear in the equations, in con-
trast to a single constant in the Landau-Lifshitz' equa-
tion and to two constants in the Bloch-Bloembergen'
equation.

Ke consider specifically a ferromagnetic resonance
experiment in a spherical sample, with an rf field applied
in the x-y plane. If the components of the 6eld are h and
h„we de6ne h+, h, and m by

M, = —y(MXH;), +Xp, (Mp —M,)
( )+ (Xp.—Xp.) (Mp —M),

M= —&oi (Mo —Ms)+ (Xoi,+XI,.) (Mo —M). (10) also

kg= h,+ih„,

M=MpHp/Ho+m,

(16)

An alternative pair of equations can be written in
terms of M, and M~, the transverse component of M,
defined by

whence
MP+M, '=M',

M—M M P/2M M P/2Mp. (12)

To first-order equations (7), (8), and (12) give

M, =—y(MXH;), + (Xo.—Xp,)MP/2Mp
( )+ho. (Mp —M,),

M~= —y(MXH;) c
—P pi+ho, )/2M (14)

Finally, these two equations can be represented by a
single vector equation

h+= hpe'"' m+= mme'"' (21)

The solution of Eq. (19) is

m = yMoho/t yao (i/—2) (Xoi,/Xo, )—), (2—2)

whence the half-width of the resonant response is

m+ mg+wsgo

Then, the dynamical equation becomes

m+ = [iyH p ,' (X(),+Xp
—
g) )—m+ iyM ph+, —

m, =—iy(m h —m h )/2
'

+m~m (Xp.—Xo.)/2 —Xp.m, . (20)
If we let

=—y(MX 8,)—(Xpi, +'Ao.)
ya~X = lI op+Xo' (23)

XPHoX (MXHo))/2Hp +DI o (Mo —M)

+ (M&o M ' Ho)1% o /&o)Ho/&o (15)

L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153
(j.935).

7 F. Block, Phys. Rev. 70, 460 (1946); N. Bloembergen, Phys.
Rev. 78, 572 (1950).
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Solutions of Eq. (20) have been given by Seiden' in
connection with an analysis of the "roll-oG" region of
decreasing rf susceptibility with increasing rf power.

From Eq. (23) it is seen that measurements of reso-
nance linewidth evaluate only the sum of A.o~ and A.o, the
total scattering probability of the k=0 magnons. How-
ever, Fletcher, I e Craw, and Spencer' have used both
Eqs. (13) and (14), which they rederive by an exactly
equivalent energy argument, as the basis of an experi-
mental method for measuring Xo~, )o„and XI, sepa-
rately. They modulate the rf power in a resonance
experiment, observe 3f & in the usual way, and observe
3II, by an additional pickup coil with its axis parallel to
the applied dc field.

In this paper we are concerned only with a theory of
the magnon-magnon scattering parameter XOI, in ferrites.
However, the method of Fletcher, I.e Craw, and Spencer
has not yet been applied to the measurement of A, OI, in
ferrites, and we will therefore be able to compare our
results only with the general magnitude and angular
dependence of the observed resonance linewidth.

t'4orMo) 1 ( 3000 ) *

I
=I I

=10s
( 3H. ) E3X10'J

(24)

or )~600a for a typical ferrite.
The transition probability from the k=0 mode to the

degenerate modes is given by the standard expression

)~„=(2 /A) I3d„I &(Z), (25)

where &01, is the matrix element of the scattering per-
turbation and p(E) is the density-in-energy of final
states. Since the number of states in the Brillouin zone
is E, and its volume is (2sr/a), the density is

Elk' dk Sku
(26)p(&) =

(2n/a)' dE 4rr'yAH

' P. E. Seiden and H. J. Shaw, Fifth Conference on 3Eagnetisrn
and Mugnetsc 3IIatenals, Detroit, michigan, 1959 g. Appl. Phys.
31, 225S i1960)g.' R. C. Fletcher, R. C. Le Craw, E. G. Spencer, Sell Telephone
Laboratories Technical Report (unpublished).

3. GENERAL CONSIDERATIONS

In this section we discuss the general features of
magnon scattering processes and of magnetic loss pre-
paratory to the detailed calculation of Sec. 4.

In a finite ferromagnetic sample the k=0 mode is
degenerate with modes of very small k, or very long
wavelength. In a spherical sample the k=0 mode has a
frequency of co(0) =yHo, whereas modes of wave vector
k have frequencies co(k)=y)Ho (4sr/3)3d'o+H, a—'k'],
where H, is the exchange field and a is the inter-atomic
distance. This latter dispersion equation actually applies
only to modes with k parallel to s, but for the purpose of
our present qualitative discussion we can ignore the
directional dependence of the dispersion law. The mode
degenerate with the k=0 mode then has

where dk/dE=dk/Addio is evaluated from the given
dispersion law. If Eqs. (24) and (26) are inserted into
(25) the result is

ÃI3Io&I' p4~3loy '
)os=

~As~ ~ 12H.') (2&)

I.et us suppose that the underlying perturbation
which acts on the spins and causes the magnon scatter-
ing can be represented by an effective magnetic field
H(r;) which is a random function of position. Let H(k)
be the kth Fourier component of this random magnetic
field

H(k) =S—*' P; H(r, )e'" ". (28)

The perturbing energy acting on the ith spin is
pASH(r;) and the kth Fourier component of the per-
turbing energy is yASH(k). The matrix element between
the k=0 spin wave and a spin wave of wave vector k is
therefore X lyASH(k), whence

yS'I H(k) I' t 4orMoq l

( 12H,s)
(29)

(H(r~)H*(r;)), =(HP)„3;;,

whence, for any k,

IH(k) I'=(H")-.

(31)

(32)

Here (HP), is the mean square of the random field
acting on a representative ion. If we insert Eq. (32) into
Eq. (29), we obtain directly the result of Clogston, Suhl,
Walker, and Anderson; their more detailed analysis
simply replaces our numerical factor S'/7r(12)'* by a
lattice sum with a value of the order of 3/20. The con-
clusion to be drawn from this analysis is that whatever
the perturbation, be it pseudodipolar or otherwise, it
must have an rms value of 10' oersteds if it fluctuates
without correlation from ion to ion.

If the Fourier spectrum of the perturbation were not
"white, " or constant through k space, but were peaked
in the vicinity of those k's corresponding to 3,~600a, the
required rms field would be much smaller. Suppose, for
instance, some impurities were to strain the lattice and
through magnetostriction were to produce a random
anisotropy field. If these ions had a mean separation of
600a, the Fourier spectrum would be peaked at

If we are to find a linewidth AH=)tos/y of the order of
10 oersteds, Eq. (29) requires a perturbation H(k) of the
order of 10' oersteds.

The central problem of the theory now becomes evi-
dent when we translate this requirement on H(k) back
to the spatial representation. Let us suppose, first, that
the fluctuating field has no correlation from ion to ion.
Then from Eq. (28)

H(k)H*(k) =$ 'P;;H(r;)H~(r~)e'" " '~&(30)—'

and if we take an ensemble average
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k~2m. /600a. Let us suppose the half-width of the
Fourier spectrum to be hk. Then by writing the equa-
tion analogous to Eq. (30) for H(r, )H*(r,) we find

IH(r') I'=(1/&)E. IH(k) I'
—

I H(ky) I'a'k 'Ak/2'' (33)
or putting d,k~k„

I
H(r, ) I'

I H(k„) I'(k„u)'/2m' 500. (34)

Thus, if the Fourier spectrum were peaked in the
vicinity of P 600a, with a half-width of the same order,
an rms fluctuating fieM of only 20 or 30 oersteds would
be sufficient to give the observed loss. Local anisotropy
fields of this magnitude can be produced magneto-
strictively by the strains in the vicinity of impurity
atom clusters, dislocation lines, or other such defects,
and it is plausible that these contribute a structure-
sensitive background to the observed linewidths.

The model of scattering which we propose in this
paper is a single-ion theory in which the perturbing field
is not correlated from ion to ion. As mentioned in Sec. 1,
the perturbing field is obtained in first- and second-
order perturbation theory from the intra-atomic spin-
spin and spin-orbit interactions, respectively. The
second-order spin-orbit contribution is of the order of
X'I.'S'/8 where XL S is the spin-orbit interaction and 6

is the energy difference of the orbital states split by the
crystalline field. Equating this energy to &ASH; we find
the order of magnitude of the effective perturbing field
to be

H ~X'i.'S'/y58~2)& 10' oersteds, (35)

where we take the values A.~10' cm ' and 6 10' cm '
from Yosida and Tachiki's calculation for Fe'+ ions on
the octahedrally coordinated sites of ferrites. Thus, on
the basis of these qualitative arguments, it is plausible
that the random variation of intra-atomic spin-spin and
spin-orbit interactions will lead to the observed magni-
tude of resonance linewidth, as we shall corroborate in
detail.

The angular dependence of the loss can be understood

by a semiclassical symmetry argument as well. Consider
a single ion in an octahedrally-coordinated site with
spin-spin and spin-orbit parameters which deviate from
the average values. By perturbation theory we obtain
terms in the effective spin Hamiltonian which are
second order in the spin operators —the first-order terms
vanishing by inversion symmetry. These terms must
reQect the symmetry of the crystalline field. The
crystalline field at an octahedrally-coordinated site in a
ferrite has trigonal symmetry about a body diagonal. If
we choose a site with trigonal field along the I 111]
direction, the perturbing term therefore must be of the
form CS'~nij, where S~iuj is the component of S along
L111].Let us first suppose that the average magnetiza-
tion is along the L111]direction, so that the k=0 spin-
wave mode consists of all spins precessing in phase
around the

I 111]axis. The perturbation CS'~1$u is then

equivalent to an additional field acting on the particular
ion, which consequently precesses with a different fre-
quency and destroys the coherence of the k=0 mode.
Quantum-mechanically this corresponds to scattering
from the k=O mode to other spin-wave modes. Now let
us suppose that the average magnetization is along the
L001] direction, and that the k=0 spin wave consists of
all spins precessing in phase around the L001] axis. If
the perturbation is expressed in terms of S„S„,and S„
it has the form

CS'(ggu =-',CI S(S+1)+2S,S„+2S,S,+2S„S,],
of which the classical average over a precessional cycle is
zero. This perturbation therefore produces no shift in
the energy levels nor in the precessional frequency and
does not scatter the k=0 mode when the magnetization
is in the

I 001] direction. We conclude that the total loss
vanishes in a (100) direction; it must be fourth order in
the components of the magnetization and hence must
have the form X,~o&(nPn2'+. n, 'na'+n3'nP) with a posi-
tive value of Xoq'". The constant term Xol,&') in Eq. (1)
would presumably be zero but in our more detailed
calculation we actually find a small but nonzero value
of A, OA,

(" which results from the effect of magnetic dipole
interactions in a finite sample. This long-range inter-
action makes the k=0 mode less simple than the pure
homogeneous rotation assumed above. From the formal
point of view the Holstein-Primakoff transformation
diagonalizes the magnetic dipole interaction by ad-
mixing shorter wavelength spin waves in the homogene-
ous mode. Nevertheless, the essential features of the
above symmetry argument hold true.

4. CALCULATION OF Xpg

To simplify the calculations, we adopt the simplest
model of a crystal structure which has the relevant
features of the true ferrite structure. We assume a
simple cubic array of magnetic ions situated on four
different kinds of sites which are distinguished only by
the direction of the crystalline field acting on each type
of site. The crystalline fields have trigonal symmetry
about the four separate body diagonal directions. In
obvious analogy to the ionic distribution on the
octahedral sites of a partially inversed ferrite we assume
the four interpenetrating lattices to be populated at
random by two types of ions; A ions with fractional
concentration c, and 8 ions with fractional concentra-
tion 1—c.

The Hamiltonian of the system consists of the inter-
action of each spin with the external field, the exchange
interactions between nearest neighboring spins, the
dipolar interaction, the spin-orbit coupling ),L S of each
ion, the intra-atomic spin-spin interaction —

pI (L S)
+-', L S——,'I.'S'] of each ion, 4" and the crystalline field
potential. The complicating feature of this Hamiltonian

'0 A. Ahragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).
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is the difference between the A and 8 ions, and the
disorder of the spatial distribution. We consequently
proceed by introducing an "unperturbed" or average
Hamiltonian, in which we ignore the difterence between
A and 8 ions and replace exchange integrals, spin, and
magnetic dipole moments by their average values. The
perturbing terms in the Hamiltonian arise from the
deviations of the ionic parameters from these average
values.

Pote Added in Proof. The —contribution to the line-
width from variations in spin magnitude is- clearly
isotropic and these variations consequently do not
contribute to the anisotropic linewidth here calculated.
Actually it can be shown that variations in spin magni-
tude make a completely negligible contribution even to
the isotropic component of the linewidth.

The average, or unperturbed, Hamiltonian can be
reduced to an effective spin Hamiltonian by the method
of Yosida and Tachiki. 4 We assume that the orbital
states of the ions are qualitatively similar to the orbital
states of the Fe'+ ion, so that a perturbation treatment
of the spin-orbit and intra-atomic spin-spin interactions
yields a one ion anisotropy, and hence an unperturbed
Hamiltonian of the form

~p ———M H —J P„„S,"S;
+-, p, , , D,,Ls,- s,—(3/. ,, ) (s,—.,) (s, ',,)]

+(a/»)2 (5 ~'+5 '+S.') (36)

The quantity D;; is the dipole interaction strength,
equal to the product of the magnetic moments divided

by the cube of the distance between the ith and jth ions.
The vector r,, is the vector from the ith to the jth ion.
The quantity a is the (average) single-ion anisotropy
coefficient and is a function of P, p, and the crystalline
field splitting parameter 6.' The crystallographic axes
are designated by $, z, p. We assume the sample to be an
ellipsoid of revolution. We designate this symmetry
axis by s', and the two orthogonal axes by x' and y'.
Finally, we introduce a third coordinate system x, y, s,
with the s axis parallel to the equilibrium direction of
the magnetization M, as determined by the externally
applied field.

To summarize: $, p, Ip are along crystallographic
L100j, L010j, and L001j directions. z' is along the sym-

metry axis of an ellipsoidal sample. s is parallel to
equilibrium direction ot M.

The rotation matrices which relate these coordinate
systems are defined by

Also rc~~ If
Sg Qy

IlS„ = Qg
If

Spy Q3

QI Q] S~
I

Q2 Qg Sy
I

Q3 Q3 Sz~

(38)

5;,=5—S,-S,+/25. (41)

If these equations are inserted into the Hamiltonian
(36) and only those terms not greater than second order
in the spin-wave operators are kept, the result, expressed
in the notation of Van Kranendonk and Van Vleck, "
becomes

Sep ——-„' Q,{A(k)[a+(k)a(k)+a(k)a+(k)]
+B(k)a(k)a( —k)+B*(k)a+(k)a+(—k) ),

where

A (k) = 27k (H,+By)+4JSa'/p"-

+4z.ykiVpLA, .(k)+A „„(k)j (43)
+(8 V/ES)Mo (-',I—N) Mo,

B(k)=4prp@~pLA (k) A (k)+2iA (k) Q (44)

A (0)= 2yh (Z,+Hg)+ (4m V/)VS) Mp'(-'pI —N)
~ (2~~-~'~'- ~"K'),

B(0)= (4z.VMp'/ES) (N ——',I)
(YIl'+&"S"+2'K~"),

where H, is the s component of the external field, B~ is
the effective anisotropy field, N and I are the sample
demagnetizing tensor and the unit tensor, respectively,

g is the vector with components Pi, Pp, Pp as defined in

Eq. (37) and g and I3" are de6ned similarly to g. The
quantity Ilg is the dyadic tensor product. The tensor
components A„(k), A»(k) and A,„(k) are lattice
sums which have been computed by Cohen and Keffer, "
who show that for wavelengths small compared to
crystal dimensions

A..(k) =k '/k' —-'„

A „„(k)=k„'/k' —-'„

A,„(k)=k k„/lp'.

(47)

(48)

(49)

We introduce the spin-wave variables by the substi-
tution

5+=S +iS = (25/E)& Pp a+(k)e—'"'~' (39)

5;—=5,,—iS;p ——(25/1V)l P~ a(k)e"'~', (40)

n llS p]
y= p'
.z. .pi

p
II

pp'

pp

n ff ~ l~
p3 S

p
If ff

Qy Qo
I I

QI Qg

If~
Q3

np' q . (37)

The Holstein-Primakoff transformation which diago-
nalizes the Hamiltonian is

a+(k) = cosh P p/2)o. i+ (k) —sinh(X p/2) o"&'oi(—k), (50)

a(k) = cosh(XI/2)o i(k) —sinh(Xq/2)e "&'oi+(—k), (51)

QI Q2 Q3 P&

The direction cosines of the equilibrium magnetiza-
tion with respect to the crystal axes then are Q~, Q2, Qs.

"J.Van Kranendonk and J.H. Van Vleek, Revs. Modern Phys.
30, {1958).

"M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 and 1135
{1955).
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where

App(k) coshXk=-', A(k),

A (k) si hX = —', ~

B(k) ~,

B(k)= )B(k) ~e&'»

App(k) =-'[A'(k) —B(k)B*(k)]&.

(52)

(53)

The average Hamiltonian thereby reduces to

Xp ——p k [o i (k)o i+(k)+ -', ]Ap~ (k), (56)

where o i (k)pi+(k) is the number operator for magnons
of wave vector k.

We now consider the scattering eGect of the random
deviations of the Hamiltonian from its average value.
The variations in dipolar interactions give rise to
linewidths of the order of a tenth of an oersted, as can be
seen easily from the discussion of Sec. 3, and hence, will
be ignored. Variations in exchange interactions con-
tribute isotropic terms which commute with the total
spin and which therefore cannot scatter the k=0 mode;
we therefore do not consider these variations. The re-
maining perturbations arise from variations in spin-
spin, spin-orbit, or crystalline field parameters. For an
ion with crystalline Geld axis along [111]the first- and
second-order perturbation of spin-spin and spin-orbit
interaction terms, respectively, contribute terms to the
Hamiltonian of the form CS'~i~~~, as discussed in Sec. 3.
Yosida and Tachiki, 4 by a direct perturbation treatment
of the orbital states of an Fe'+ ion split by the cubic and
trigonal fields appropriate to an octahedrally coordi-
nated site, show that C has the value

C=—(3p+ 7.5X'/108), (57)

X=Xp+ (Cg —Ce)g;, , (q, —c)Pi;(E, S;)'. (59)

The third term in Eq. (58) is simply the average value
of the second term and is obtained by replacing q, by its
average value c; this term must be subtracted in order

where p is dehned in the second paragraph of Sec. 4. For
Fe'+ the parameter p has a value of approximately 0.95
cm ' whereas X 102 cm ' and 8~10' cm ' so that the
spin-orbit contribution to C is larger than the spin-spin
contribution for this ion. In the case of disordered
ferrites we must consider two values of C appropriate to
the two diGerent types of ions; i.e., Cz and Cz. In order
to write these terms in the Hamiltonian explicitly, we
define several useful quantities: Ri is a unit vector
along [111],Ep is a unit vector along [111],Ep is a
unit vector along [111],E4 is a unit vector along [111],
P&; +1 if the site j——has crystalline Geld parallel to E, ;
zero otherwise, and q, =+1 if the site j contains an A
atom, and q, =0 if the site j contains a 8 atom.

The total Hamiltonian can then be written as

X=Xp+ P;, g [q,C~+ (1—q, )Cii]Pr, (Eg S;)
—P;,i [cd+ (1—c)Cii]Pi;(Ei S;)', (58)

that the average value of 3C shall be 3'.0, as defined. In
Eq. (59) we see that the perturbation terms vanish if the
two ions become identical (C~ ——Ce) and that it is the
deviation from the average distribution (q, —c) which
is significant.

From Eqs. (37) it is evident that n", with components
ei", ep", ep" in the g, p, p coordinate system, is a unit
vector along the x axis; a similar relation exists for n'

and e so that we may write

S;=n"5,,+n'5, „+eS;„
and then from Eq. (41)

S,=- -(5,++5,-)+ (1/2 ) (5,+-5,-).
+n(5 S; —5;+/25) (6.1)

If this equation is introduced into Eq. (59), the result
1S

X=Xp+ (Cg —Cii)P;, i Pr, (q; c)—
X{5(R, n) +-;[R, ( "—i ')5+] —S,-S,+(E, . )P

+-,'[Ei (n"+in')5, —]'
+-,'[1—(Eg n)'](S+S —+5,—5;+)
+5(E, e)(E, n")(5,++5,-)

+iS(Ei n)(Ei e')(S, —5,+)}. (62)

If the spin-wave variables are introduced through
Eqs. (39)—(41) and the subsequent Holstein-Primakoff
transformation (50)—(51), the resulting Hamiltonian
contains terms of zero, first, and second order in the
spin-wave variables. The first-order terms are easily
eliminated by the canonical transformation

o i+(k)+d*(k) =o+(k), (63)

ei(k)+d(k) =o.(k), (64)

where d(k) is a constant.
Finally, after considerable algebra, the introduction

of the final spin-wave variables defined in (63) and (64)
transforms the Hamiltonian to the form

X=Xp+Qk, k {fi(k,k')[p+(k)o (k')+p (k')a+(k)]
+ a+(k) o+ (k')fp*(k,k')

+o (k)p (k') fp(k, k') }, (65)
where

fi(k,k') =P, ,(5/2E)Pr;(q, —c)
X (C C )er'(k' —k) .r&

X{Gr[sinh(lip/2) cosh(rip /2)e "»
+cosh (Xp/2) coshX pi/2

+cosh(Xp/2) sinh(A, /2)e"&"'

+sinh(lip/2) sinh(li, /2)e"~' "»]
+Lr[—cosh(lip /2) sinh(Xp/2)e P'»

+cosh(Xp/2) cosh' p /2
—cosh(X„/2) sinh(lip /2)e"»'
+sinh(Xp/2) sinh P,p~/2)e"»' "4"]
+2igr[sinh(h, p/2) cosh(Xp /2)e "»

—e"»' cosh(li, /2) sinhlik /2]}, (66)
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S
f (k,k')= Z I';(g;—)(C —C ) """"'

2S ~, t'

X{IG&+L,jLcosh(l(k/2) cosh'(k /2
+2 cosh(Xk/2) sinh(Xk /2)e "&"'

+sinh(l(k/2) sinh(l(k /2)e "&k "l"]
+2iQ(I cosh(l(k/2) cosh'(k /2

—sinh() k/2) sinh(l(k /2)e "» "&']}, (67)

G,=(E, n")'—(E, n)' (68)

L,= (E, ')' —(E, )' (69)

»Q(= («n')(El n"). (70)

The matrix element for scattering from the mode
k=0 to k' is simply 2f)(0,k'), whence

~o =(S/Io)(C C)E—,
I' (V )'""—

X I
cosh (l(„/2) (G,+L,)

+sinh (l(0/2) e"4'"(G(—L~—2iQ,)]. (71)

Squaring 3fo~, summing over r; —r; = l and taking the
ensemble average with the assumption that there is no
correlation of the q s from ion to ion, gives

&I~pkl') = (S'/4&)(C~ —Ce)"(1—c)
( Lcosh'(Xk/2) (L,+G,)'

+ IG(—Lg —2iQgI' sinh9, ./2
+cos2pk cosh(l(k/2) sinh(l(k/2) (Gp —Lp)
+4 sin2$, sinh(l(k/2) cosh(Xp/2)

XQi(G(+L,)3. (72)

It is evident immediately from (72) that the loss
depends on the concentration solely through the factor
c(1—c); the loss therefore goes to zero for c=0 or 1, as
it should, and is a maximum at c=~, which is to be
expected.

If we now insert the specific values of Ei into (72) via
Eqs. (68)—(70), we find Xpk reduces to the expected
form, Eq. (1).That is, from (25)

l(0 ——Xok'"+l(ok'" (ni'no'+ni'n '+no'n ') (73)
where

S'V (c—c') (Cg —Cs)'
&oI,"'=

9m%'S

l(k Bk
sinh' —0'

0 0 — 8~(k)- ra(k)=(u(0)

Xsin8kd8„dp„, (74)
S'V(c—c') (Cg —Ce)'

~oA:"'=
7{-'k'E

l(k l(k)
I

cosh' —+—', sinh' —
I

&0 &0 ( 2 2&

2500(k)

I
B(k)

I
2oryhM0 sin'8k

sinhXI, =
2fi(o(k) A(o(k)

4vryAMoÃ,
(78)

k(o(k)

(79)

To evaluate the integrals in Eqs. (74) and (75) we
rewrite these equations in the following form:

l(pk(0) t'Cg —Ce) ' (4~%pq &

=s (c—")I

&a & (Heo&

) He' ~: 2'
X ~

I

—
I I

cosh' —+—', sinh' —
I

L4prM p i 15prX ( 2 2 &

( k'dk y r (Heo lx
I

—
I

sin8kd8k-
EBcu(k) & (k)= (p) ~ o &40r~o&

2' dk
X sln8@fN@

15pl X l9(0 (k) (g(k) —(g(0)

pC& —Cey ' )4~Mop '
=—S'(c—c')I

I I I (I —I )
yk & ( He'&

(Cg —Ce) ' (40rMp) '

yk & L He'&

(80)

)( He' q '4' t' l(k
X

I

—
I I

cosh' —+—', sinh' —
I

(4)rM0& 3m.N ( 2 2 &

Bk
X

I
k'

I
sin8kd8k

Bp) (k) & ~(k) =~(0)

( IIe' ) & 2 Vy Bk
+

I I
k' sin8kd80"o &40r3Io& 30' 8(o(k)

Those parts of Eq. (72) containing terms linear in
sin2&k and cos2(tk vanish when integrated over the
variable pk and so have been omitted in Eqs. (74)
and (75).

Of particular interest are the dependence of Aop on
static Geld direction for a spherical sample, and the
dependence of ) o~ on sample shape and resonant fre-
quency for a 6eM along the symmetry axis of the sample.
When the field is along a symmetry axis Eqs. (43) and
(44) become

A (k)
coshh, p =

25(o(k)
'
2yh (H, +H~) +4JS(J'k'+'47ryhM 0 sin'8k

Xk'
800 (k) - (o(k) =co(0)

80 ——sin—'L (k '+k ')/k'g&

y, = tan-ik, /k„.

Sln8kd8kdpk, (75)
pC& —Csy ' ~4~cVoq —:

=So(c—co)
I I I

—
I

(10I,+5I,). (81)
& &Heo&

(76) The integrals Ii and Ip are dimensionless functions
(77) depending only on sample shape and on (o(0)/4s.&Mp,
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FIG. 1. Dependence of the resonance linewidth, AH, on the
transverse demagnetizing coeKcient of a sample which is an
ellipsoid of revolution.

FiG. 2. Dependence of the resonance linewidth, AH, on direction
of the applied static iield in the (110) plane for spherical samples
of disordered lithium ferrite.

where &p(0) is the resonant frequency. The first integral,
I&, has been evaluated numerically by Clogston, Suhl,
Walker, and Anderson', our integral 13, is equal to
I/45rr in their notation. The integral Is has been
evaluated by us' in term. s of Legendre elliptic functions
of the first, second, and third kind. The relevant quanti-
ties (Ii—Is) and (10Ii+5Is) are plotted in Fig. 1 as a
function of reduced resonant frequency, pp(0)/4rr&Mp,
and of the transverse demagnetizing coeKcient of an
ellipsoidal sample with applied static field along the
symmetry axis. These two graphs, together with Eqs.
(1), (80), and (81), then determine Apl, directly.

With the representative values 5=2, c=-,', (4mMp)&

=70, H, =1. )8&10 , sand C~ —Cii ——2)&10 " ergs, the
ordinate 0.1 in Fig. 1 corresponds approximately to a
value of Xpi'/y of 34 oersteds, where it is to be recalled
that S is the average spin on a lattice site, c is the frac-
tional concentration of A ions, B, is the exchange field,
and Cg, Cii are coupling parameters for A ions and 8
ions respectively, and are defined in Eq. (57).With these
values of the sample parameters and for a spherical
sample with pp(0)/4rryMp=2. 0, the quantities Apse'&/y

and Xps "&/y have the values 0.3 oersted and 36 oersteds,
respectively, so that the line width is approximately
12.3 oersteds in the L111j direction and 0.3 oersted
in the L001$ direction.

5. DISCUSSION

In Fig, 2 we show the experimental observations of
Schnitzler, Folen, and Rado" on disordered lithium
ferrite, and a theoretical curve of the form o.3'o.2'

+nssnss+nssnis which has been fitted to the data ob-
tained at 77'K to compare the predicted angular
dependence. By fitting A. o,(" to the anisotropy of the
experimental data at each temperature, we find

15 oersteds at 77'K
~ox"'

14 oersteds at 196'K

i14 oersteds at 300'K.

At O'K the data does not fit the predicted curve, and
it is probable that other processes dominate in this
region, as discussed in Sec. 1. At the higher tempera-
tures the results are reasonably constant with tem-
perature, as theoretically predicted. The experimental
values of XOA,

O) are in good agreement with the value of
Xo "' estimated by taking the parameter C& for the
Fe'+ ion as equal to that of Fe'+ ions (because each has
the same order of magnetocrystalline anisotropy),
taking C&=0 for lithium ions, and c=0.8; in this way
we estimate for a spherical sample with an external field
Hp=grrMp (approximately 8&& 10' oersteds)

&01
"'

(theor. ) 16 oersteds.

Paradoxically the linewidth of ordered lithium ferrite
is comparatively large, rather tha. n being small (com-
parable to that in yttrium iron garnet) as we would
expect. However, the cubically symmetric component
of the linewidth does vanish with the onset of long-
range ionic order.

Further comparison of the results with experiment is
difficult until some method such as that of Fletcher,
Le Craw, and Spencer is used in ferrites to measure XOI„

rather than merely hH; a direct test of the results shown
in Fig. 1 should be feasible, as should a test of the pre-
dicted concentration dependence of Xo~&". Nevertheless,
the good agreement with experiment of the general
order of magnitude of the loss, and particularly its
predicted directional dependence, seem to indicate that
this effect is the dominant source of loss in many
disordered ferrites.
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