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tween the applied field (II.S) and the ra. t.io of the
transverse magnetoresistance to the longitudinal mag-
netoresistance (hR J /DRtt). In this relationship
DRJ /DRii A+—8—(II.S), changes in Os doping and
work hardening had little effect on the zero field inter-
cept A which remained relatively constant'„: about
ARJ /DRti 2. The slope (8) is also independent of
work hardening, but decreases with 02 doping and
reaches a minimum value for the conditions of Curve
III. This decrease can be inferred from Fig. 1, since

the Kohler plot of the transverse magnetoresistance is
the same for all samples.

Thus, the longitudinal magnetoresistance of copper,
as well as the low-temperature conductivity, is sen-
sitive to the presence of impurity induced effects
and due regard for their possible presence must be
given in any interpretation of data. For polycrystal-
line copper, the saturation value of the longitudinal
magnetoresistance for the pure metal appears to lie
between 1)ARit/Re. s K)0.
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Enormous capture cross sections in the range 10 " cm' to
10 " cm' have been observed for a wide variety of Coulomb
attractive centers in Si and Ge, some involving binding energies
many times the Debye energy. Whereas multiphonon transitions
to the ground state yield cross sections five to ten orders of mag-
nitude too small, capture into excited states of large radius
followed by a cascade of one-phonon transitions leads to cross
sections of the right order of magnitude. The initial capturing
event is likely to involve an optical phonon or an intervalley
collision in the room temperature range, but the acoustic phonon
contribution will predominate at low temperatures.

Subsequent collisions may eject the electron or cause it to
increase its binding energy. The "sticking probability, " or proba-
bility of eventual capture into the ground state, becomes sig-
nificant for binding energies of order kT. As the temperature is
reduced capture into orbits of larger radius becomes effective, and,
at least for the acoustic phonon case the cross section increases
rapidly with decreasing temperature, and with decreasing electron
energy. The large cross sections 10 ' cm' to 10 "cm' found for
neutral centers can be explained on a similar basis, the attractive
potential in this case being provided by the large polarizability
of the neutral center.

1. INTRODUCTION'

Traps and Recombination Centers

HE pioneer work of Shockley and Read' and Hall'
suggested that the recombination of electrons

and holes in solids could best be understood in terms of
the successive capture of an electron and hole at a
localized site ("recombination center") in the crystal.
Indeed Burton, Hall, Morin, and Severiens4 showed
that Cu and Ni impurities in germanium behaved as
recombination centers at room temperature, whereas

Shulman and Kyluda' showed that at lower tempera-
tures Cu behaves as a trap.

The distinction between a trap and a recombination
center is therefore a quantitative rather than a quali-
tative one. For the sake of definiteness we shall adopt
the following picture: A minority carrier is captured at

' A detailed summary of the results contained in this paper was
presented by M. I,ax at the Proceedings of the International Con-
ference on Semiconductors, Rochester, 795$ fJ. Phys. Chem. Solids
8, 66 (1959)].Our choice oi mechanism and partial results were
presented to the American Physical Society: M. I.ax, Bull. Am.
Phys. Soc. 1, 128 (1956); 2, 147 (1957).' VT. Shockley and %. T. Read, Phys. Rev. 87, 835 (1952).

3 R. N. Hall, Phys. Rev. 87, 387 (1952).
4 J. A. Burton, G. W. Hall, F. J. Morin, and J. C. Severiens,

J. Phys. Chem. 57, 853 (1953).
e R, G, Shulman and B.J. Wyluda, Phys. Rev. 102, 1455 (1956).

a center. If the carrier lives a mean lifetime in the
captured state and is ejected (e.g. , thermally), we may
regard the center as a trap. If, however, before thermal
ejection can occur, a majority carrier is trapped, re-
combination will have taken place, and the center may
be regarded as a recombination center. %hich role a
center will play depends then on the concentration of
majority carriers and on the relative cross section for
capture of minority and majority carriers.

Perhaps the simplest picture to adopt is as follows:
Centers that are singly charged and attractive to
minority carriers are likely to act as recombination
centers since the cross section for the subsequent neutral
capture of a majority carrier may only be one order of
magnitude lower than the minority carrier cross section,
but the number of majority carriers may be sufficiently
large that recombination will occur before ejection.
Centers that are doubly charged and attractive to
minority carriers are likely to act as traps. They will

possess a large cross section for the minority carrier,
but after capture will be repulsive to the majority
carrier. The repulsion can reduce the cross section by
many orders of magnitude so that ejection of the
trapped minority carrier will be much more likely than
recombination.
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Cross Sections and Rates

In an experiment, one does not observe directly the
capture cross section, but rather a capture rate constant
B cm'/sec that describes the rate at which electrons
leave the conduction band via the equation

dn/dl = Brrl—V

where e is the density of electrons, and E is the number
of empty traps. If all the electrons had the same energy
Eo, the rate constant would be related to the cross
section by a factor of the velocity

FIG. 1.The cascade theory, with
acoustic phonons as the mechan-
ism, is compared with experimental
results of S. Koenig for capture of
electrons on Sb donors in germa-
nium. The theoretical curve (with-
out a cutoft for the finite density of
donors} is computed by means of

= (4'/6) (a s/y')[In (y/1. 7815)
+ (b/v) j,
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where
B= (t p)o. = (4kT/m7r) *o, .

= &sp (Ep))/&np),

(1 3)

B(Ep) = pro(Ep'); tpp = (2Ep/m) *'. (1.2)

The experimental constant B is an average over B(Ep)
taking into account the ac)lal electron energy dis-
tribution. For the usual case in which a thermal
equilibrium distribution is present, we may write

a s = (s /12) (Ze'/essasc')'(I, ) t
=7&(10~cm',
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using Fig. 6 to interpolate for b.
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X10~ independent of tempera-
ture, based on a room temperature
mean free path of 8&&10 cm and
a room temperature y=hT/s2rac'
=2300.
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a.=~ Epa. (Ep) exp( —Ep/kT)dEp (1 4)
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Ep exp( Ep/kT)dE—p.

o, ,= (4/3sr)la, (1.6)

where o will be computed in our paper from Eq. (1.4).
In spite of the slight arbitrariness in defining a cross

section (which is unimportant when our chief aim is to
predict the correct order of magnitude) it is convenient
to quote cross sections since they convey an impression
of the eBective size of a capturing center.

Experimental Results

An adequate survey of the experimental work on
trapping and recombination cross sections is beyond
the scope of the present paper. A survey of early work
through 1954 has been given by Rose, ' and more recent
work has been reviewed by Bemski. ' Table I sum-
marizes cross sections on some centers of presumably
known charge. Additional experimental data can be

For a review of experimental work through 1954, see Albert
Rose, Phys. Rev. 97, 322 (1955); RCA Rev. 12, 362 (1951).

"Cr, Hemski, Proc, Inst. Radio Engrs. 46, 990 (1958).

In Eq. (1.4) two factors of Epl, one from np and one
from the Boltzmann distribution, give rise to the factor
QQ

The cross section most frequently quoted in experi-
mental papers is obtained by dividing the observed
rate by the root mean square velocity:

o„,=B/(3kT/ns) i..

The rms cross section may be computed from ours by

found in the proceedings of the 1958 Semiconduct. or
Conference. '

Cross sections have been observed which are ex-
ceedingly small —in the range 10 " cm' to 10 " cm'
for centers which are known or presumed to be repulsive.
(See for example Mn —in Table I.) Cross sections so
large, from 10 "cm' to 10 "cm', that we have dubbed
them "giant traps, " have been observed for centers
known or presumed to possess a Coulomb attractive
charge. ' " (See Fig. 1.) LBemski's cross sections (Table
I) for singly charged attractive Au centers in Si of
10 ' cm suggest that the traps observed by Haynes
and Hornbeck" in Si with room temperature cross
sections of 10 "cm' are doubly or triply charged. ")

Centers that are known or presumed to be neutral
are usually found to have large cross sections in the
range 10 ' crn' to 10 " cm' which are relatively in-
sensitive to temperature. LSome Cu cross sections
which appear to have a temperature dependence
characterized by an activation energy'" have been
more simply explained by Kalashnikov" by taking
into account the multilevel nature of the Cu center

Proceedzngs of the International Conference on Se»zzconductors,
Rochester, 795h' [J. Phys Chem. Sol.ids 8, 52—86 (1959) l.

S. Koenig, J. Phys. Chem. Solids 8, 227 (1959).
'0 S. Koenig, Phys. Rev. 110, 986, 988 (1958)."S.Koenig, International Conference on Solid-State Physics in

E'lectronics and Telecommunications, Brussels, June, 1958 (Aca-
demic Press, New York, 1960).' J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97, 311 (1955);
100, 606 (1955).

"Evidence that Cu and Au may act as triple acceptors in
germanium has been presented by H. H. Woodbury and W. W.
Tyler, Phys. Rev. 105, 84 (1957).' J. F. Battey and R. M. Baum, Phys. Rev. 100, 1634 (1955).

'e S, G. Kalashnikov, J. Phys. Chem, Solids 8, 52 (1959).
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TABLE I. Capture cross sections (in units of 10 "cm') and their temperature dependence
(the exponent n in T "is shown in the last column).

Co

Ni

Mn

Si

Ag
Au
Bl
Sb
Tl
Ga
Zn
Au

In

Host Center

Ge Sb
Fe

40
300'
300'
300'
300'
300'
300'
300'
300'
77'

300'
300'
20'

300'
300'
150'
300'
300'
300'
300'
300'
300'
300'
300'
300'
300'

77'
100'
100'

104
10

1000

1—10

1—10
10

20
1

1.5
&30

10
&0.01
&0.0004

5
20

0.8
3
6

0.1
0.15

0.15

& 10-4
1
2

0.3

10
&0.01

)3
20

1000

&40
200
100

500
0.4

100

10

3000
1500

~ 30 100

Exponent

2.7

2(u„& &)

2.5

O(0 „(0&)

First author

Koenig'
Glinchukb
Tyler'
Glinchuk"
Glinchukd
Glinchukb
Burton'
Kalashnikov'
Wertheimg
Newman h

Burton'
Mashovets'
Browne
Kalashnikov~
Newman h

Newman"
Glinchuk'
Glinchuk'
Alekseyeva
Alekseyeva
Alekseyeva
Alekseyeva
Kalashnikov"
Bemski'
Bemski'
Bemski'
Davisl'
Wertheirnq
Wertheimq

a S. Koenig, J. Phys. Chem. Solids 8, 227 (1959); Phys. Rev. 110, 986, 988 (1958).
b K. D. Glinchuk, E. G. Miseliuk, and N. N. Fortunatova, Ukrain. Fiz. Zhur. 4, 207 (1959).
e W. W. Tyler and H. H. Woodbury, Bull. Am. Phys. Soc. 1, 127 (1956).
d K. D. Glinchuk, E. G. Miseliuk, and N. N. Fortunatova, Zhur. Tekh. Fiz. (U.S.S.R.) 2'7, 2451 (1957) /translation: Soviet Phys. (Tech. Phys. ) 2,

2283 (1957)j.
e J. Burton, R. Hull, F. Morin, and J. Severiens, J. Phys. Chem. 57, 853 (2953). Charges on Ni could be one unit more positive than shown in this table.
f S. G. Kalashnikov and K. P. Tissen, Fiz. Tverdago Tela 1, 1754 (1959); 1, 545 (1959) Ltranslation: Soviet Phys. —Solid-State Phys. 1, 1604 (1959); 1,

491 (1959)$.
g G. K. Wertheim, Phys. Rev. 115, 37 (1959).

R. Newman and W. W. Tyler, in Advances im Solid-State Physics, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1959), Vol. 8, p. 49.
' T. V. Mashovets, Zhur. Tekh. Fiz. (U.S.S.R.) 28, 1140 (1958) )translation: Soviet Phys. (Tech. Phys. ) 28, 1062 (1958)$.
~ D. A. H. Brown, J. Electronics and Control 4, 341 (1958).
k S. G. Kalashnikov, J. Phys. Chem. Solids 8, 52 (1959); N. G. Zhdanova, S. G. Kalashnikov, and A. I. Morozov, Fiz. Tverdago Tela 1, 535 (1959)

I translation: Soviet Phys. —Solid-State Phys. 1, 481 (1959)j; S. G. Kalashnikov and A. I. Morozov, Fiz. Tverdago Tela 1, 1294 (1959) Ltranslation: Soviet
Phys. —Solid-State Phys. 1, 1182 (1959)j. See also K, Konstantinesku, Fiz. Tverdago Tela 1, 1766 (1959) Ltranslation: Soviet Phys. —Solid-State Phys.
1, 1616 (1959)1.

1 K, D. Glinchuk, E. G. Miseliuk, and N, N. Fortunatova, Fiz. Tverdago Tela 1, 1345 (1959) Ltranslation: Soviet Phys. —Solid-State Phys. 1, 1234 (1959)j.
m V. G; Alekseyeva, S. G. Kalashnikov, L. P. Kalnach, I. V. Karpova, and A. J. Morozov, Zhur. Tekh. Fiz. (U.S.S.R.) 27, 1931 (1957) ftranslation:

Soviet Phys. (Tech. Phys. ) 2, 1794 (1957)j.
n S. G. Kalashnikov, E. Iu. Lvova, and V. V. Ostroborodova, J. Tech. Phys. (U.S.S.R.) 27, 1925 (1957) )translation: Soviet Phys. (Tech. Phys. ) 2,

1789 (1958)j.
o G. Bemski, Phys. Rev. 111, 1515 (1958).
& W. D. Davis, Phys. Rev. 114, 1006 (1959).
q G. K. Wertheirn, Phys. Rev. 109, 1086 (1958).

using the statistics of Sah and Shockley. " A similar
situation seems to prevail" for Ni. j

The work of Bemski and Davis on Au in Si and of
Koenig' "on Sb in Ge (see Table I and Fig. 1) indicate
that the capture cross sections for Coulomb attractive
centers increase rapidly with decreasing temperature
as T "with n as large as 4.

Explanation of the Data: The
Cascade Hypothesis

%e propose to explain this enormous range of experi-
mental data as follows: The geometrical size of a center
10 "cm' is not an adequate estimate for cross sections
because the electron must not only come to the vicinity

' Chin-Tang Sah and W. Shockley, Phys. Rev. 109, 1103
(1958)."G. K. Wertheim, Phys. Rev. 115, 37 (1959); J. Okada, J.
Phys. Soc. Japan 12, 741, 1338 (1957).

of the center it must also perform the unlikely event
of losing perhaps 0.5 ev of energy. The conveyance of
such energy to phonons might require the production
of ten or twenty phonons. A direct transition to the
ground state of a trap involving such a multiphonon
process is likely to have an exceedingly small cross
section ""say 10 "cm' in a semiconductor where the
electron-phonon interaction is weak. For repulsive
centers, which possess no excited states, this is the only
process available (aside from optical and Auger proc-
esses which are also weak) and we therefore expect
such exceedingly small cross sections.

Centers with a long-range Coulomb attractive po-

"H. Gummel and M. Lax, Ann. Phys. 2, 28 (1957).
"For a review of earlier theoretical work see M. Lax, I'ro-

ceedzngs of the Conference on I'hotocomdlctivity, Atlantic City,
Sovember 4—6, 1954, edited by R. G. Breckenridge et a1. (Johrl.
Wiley 8z Sons, Inc. , New York, 1956), pp. 111—145.
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tential possess a series of excited states whose radius
increases without bound. The states of large radius
explain the large observed capture cross section. Indeed,
the total cross section for capture into all excited states
would diverge. Roughly speaking, however, one must
include only states whose binding energy is greater than
kT. Lowering the temperature then permits contri-
butions from states of increasing radius. Thus we
explain the rapid increase of observed cross sections
with decreasing temperature (see Fig. 1).

We assume that in the vicinity of binding energy kT
there are states closely enough spaced for one-phonon
transitions to be possible. As a result of these transitions
the electron escapes, or moves closer to the ground state.
The last step, from a first excited state to the ground
state may require a multiphonon transition, or the
emission of radiation. This last step is undoubtedly the
step limiting the rate at which electrons enter the
ground state of the trap. But the cross section, as
measured by the rate at which electrons leave the
conduction band, is not limited nor even affected by
the rate of this last step" (providing the ionization
energy of the first excited state is large compared to
kT): electrons caught in excited states are unavailable
for conduction.

For neutral centers, we suggest that a quasi-long
range interaction (an inverse fourth-power potential)
is provided by the polarizability of the center. (Traps
in solids are significantly more polarizable than free
atoms because of their lower ionization energies. ) Since
the radius at which the potential energy is kT now
varies as T', we expect a much less temperature
dependent cross section. Since the contributions come
from smaller radii than for the Coulomb attractive
case, the resulting cross section is much more sensitive
to the details of the potential at shorter ranges, i.e., the
chemical nature of the trapping center.

Classica1 Approximations

A calculation of the sum of the cross sections for
capture into all of the excited states of a center would,
indeed, be a laborious task. When highly excited states
are important, however, we anticipate from the Bohr
correspondence principle that a classical calculation
will be valid, i.e, , that the motion of the electron
between collisions can be described by a classical orbit.
The probability per unit time that a collision will take
place can be computed at each point of the orbit by
treating the electron as if it were a plane wave with
the energy and momentum appropriate to that point of
the orbit. This procedure is equivalent to neglecting the
accelerating eGect of the attractive field during the
collision and is valid if the fractional energy change

"The author is indebted to Albert Rose and G. H. Wannier
for illuminating discussions of this point. In particular see the
discussion following the author's paper in reference 19.

along the orbit is small over a time of the order of the
"duration of the collision. "

Mechanisms for Energy Loss

In order to be captured the electron must lose enough
energy in a collision to go into a bound orbit. The energy
can be carried away by: (1) a photon, (2) another
electron or hole, (3) optical phonons, (4) acoustical
phonons: (1) cross sections for radiative capture can
be readily calculated from first principles, or by scaling
similar calculations for proton-electron recombination.
The resulting cross sections are a few orders of mag-
nitude too low to explain observed results. (2) Auger
recombination with the help of another carrier will in
general lead to nonexponential decay, or in steady-state
experiments to a concentration dependence of the life-
time that is not usually observed. " Of course Auger
recombination should occur when high carrier densities
are present. " (3) Optical phonons are generally not very
effective in nonionic materials in producing the mo-
mentum transfers required to produce resistivity.
However, each optical phonon collision transfers so
much more energy to the lattice than an acoustical
phonon per collision that the Joulean heat loss to the
latter is often predominantly via optical phonons. "
YVe shall see later than optical phonons make a sig-
nificant contribution to the room temperature capture
cross section in silicon and germanium. (4) At low
temperatures, at large distances from the trap, electrons
will only have enough energy to emit acoustical
phonons. The enormous cross sections reported in the
helium temperature range (see Fig. 1) must then be
associated with acoustical phonons.

Thomson Theory of Recombination

The theory proposed in this paper leads to results
Lsee Eq. (2.7)$ that bear a close resemblance to the
Thomson'4" theory of recombination in gases. In the

"G. Bernski, Phys. Rev. 100, 523 (1955). See also reference 15.
~ Auger recombination is observed by Haynes and Hornbeck'~

with extremely low cross sections of order 10 " and 10 4' times
the concentration of majority carriers for electrons and holes,
respectively. This low cross section is presumably caused by the
Coulomb repulsion of the center for majority carriers. Conversely,
Auger trapping of electrons by attractive donors is observed by
Koenig' with the enormous cross section of about 10~4 n, where
n is the number of electrons per cm'. Koenig's data refer to
electrons of 100'K with the lattice in the 4'—10'K range. This
large cross section requires an electron-electron collision as the
first step, followed by a cascading process in which energy is
conveyed to the lattice. A rough estimate by the methods explained
later in this paper yields

0 (Eo)= (2ss/3)e(es/&Eo)3(es/kT)s.

The insertion of T=6'K, 80=k(100'K), and s=16, the dielectric
constant of Ge yields a~0.6)&10~4 n cm' t

~3 E. Conwell, J. Phys. Chem. Solids 8, 234 (1959);T. Morgan,
J. Phys. Chem. Solids 8, 245 (1959); and J. Yamashita, Phys.
Rev. 111, 1529 (1958).

2' J.J. Thomson, Phil. Mag. 47, 337 (1924)."H. S. W. Massey and E. H. S. Burhop, L~'Iectronic end Ionic
Inpact I'henomeno, (Oxford University Press, New York, 1952),
Chap. X.
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gas discharge case, one also has a "three-body col-
lision, "with the third body —a neutral atom —carrying
off the energy. Thomson reasoned that ions with kinetic
energy greater than (3/2)kT will lose energy on col-
lision. Ions with lower kinetic energy will gain energy
on collision. Thus within a critical radius ro defined by

Zes/ys ——(3/2)AT,

collisions will be effective in producing recombination,
whereas outside this sphere they will produce sepa-
ration. If /' is the mean free path for an energy losing
collision, and 4ys/3 is the average distance across a
sphere, (4ys/3l) is the probability of a suitable collision
if one hits the sphere and pro' is the cross section for
hitting the sphere. Thus Thomson proposed a cross
section of the order

&Thomson (4~/3)yes/'.

The Thomson theory is implicitly predicated on the
assumption that ro(l so that one or fewer collisions
will occur, on the average, within the critical radius.
In the opposite case, ro))/, many collisions can occur
within the critical radius. In this case, the reaction will

be diffusion limited" and the Langevin" " theory is
appropriate. The rate of infIux through a sphere of
radius r per unit density of electrons is

g —4~y2p —4~y2+(Ze/Kys) (1 9)
or

8=4vrZel"/K Cm%eC,

where the drift velocity z& is calculated by multiplying
the attractive field Ze'/Ky' by the mobility p, . ln the gas
discharge case, the Thomson theory predicts a re-
combination rate proportional to the pressure and is
observed at low pressures, whereas the Langevin theory
predicts a rate inversely proportional to the pressure
and is observed at high pressures when the process
becomes "dift'usion limited. "

The Langevin recombination rate can be converted
to a cross section according to Eq. (1.5) by dividing

by a thermal velocity. For electrons in silicon, the
Langevin cross section at room temperature is about
10 ' cm' or at least four orders of magnitude larger
than the largest observed cross sections. We may
conclude that diffusion does not limit any of the electron
trapping processes in solids.

To illustrate the Thomson approach, we shall apply
his type of reasoning to make an estimate of the capture
cross section associated with optical phonons of energy
Ace. In order to emit such a phonon, electrons must have
or acquire an energy Aco. They can certainly do the
latter by coming within the critical radius ys ——(Zes/KA").

' P. Langevin, Ann. Chem. Phys. 28, 289, 433 (1903).
~~ A generalization of the Langevin type theory to a case in

which diEfusion only partly limits the rate is given by S. I. Peckar,
J. Exptl. Theoret. .Phys. (U.S.S.R.) 20, 267 (1950) I translation:
Abhandlungen Soviet Phys. 1, 47 (1951)].For comments on this
paper see reference 19.

Thus we may estimate the cross section to be

4 (Zes'l'1
Oppt

3 &KA) ls
(1.10)

' Q. H. Wannier, Phys. Rev. 91, 207(A) (1953).

where the mean free path for 10 emissioe of an optical
phonon can be estimated from the "classical" mean
free path /, for emission or absorption of acoustic
phonons by

1/4 ——u (A"/2kT)(1 —exp( —A&a/kT) j '(1/l. ), (1.11)

where w=(E2/Ei)' is the ratio of the squares of the
interaction (or deformation) constants for the two
types of modes; 1//, is proportional to the temperature
and is defined by (1.22).

We shall see in Sec. 2 that the Thomson theory
neglects a factor E/Ee where Es is the initial energy of
the electron and E is the electron energy when the
collision takes place. Thus our result LEq. (1.10)j
should be corrected roughly by a factor Ace/kT. Taking
this correction into account a„s behaves as 1/T when
kT&(A~ and as independent of T when kT&A~. When
kT))A" Eq. (1.10) must be reduced by an appreciable
probability of escape.

A similar qualitative analysis can be made for the
case of acoustic phonons, but it must take proper
account of the spectrum of possible energy losses. A
careful qualitative estimate will therefore be as difFicult
as the more quantitative treatment presented later and
we omit it here.

Divergences

We may mention here that Wannier has previously
considered the interaction with acoustic phonons. He
noted that electrons whose velocity v is twice the
velocity of sound c can lose all their energy in a single
collision with an acoustical phonon. Thus for these
electrons the critical radius and the capture cross
section are in6nite. Wannier then suggested that
observed lifetimes would be limited by the rate at
which the supply of electrons of velocity 2c could be
replenished. Such a rate would be independent of the
number of traps present in contradiction with the
experimental results for which the rate is proportional
to the number of traps.

For optical phonons, a similar divergence occurs.
Electrons of energy Eo really have a critical radius
ys

——Zes/LK(Ace —Ep)7 since a gain in kinetic energy of
Ace —Eo is sufFicient to permit radiation of a phonon of
energy Ace. Thus as Eo ~ Ace a divergence occurs.

These divergences occur because the assumption has
been made that any electron that goes into a bound
orbit is eventually captured regardless of the size of the
orbit. There are, obviously, some limits on the possible
sizes of orbits: (1) the screening radius (for distances
larger than the screening radius, there will be no po-
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tential to produce a bound orbit), (2) the average
distance between traps (otherwise one assumes that a
given center captures an electron that in reality is
captured by another center), (3) the mean free path
(at distances larger than the mean free path one should
use a Langevin diffusion type of theory).

o.(EO) = o(Eo,U)dU P(U), (1.12)

where 0 (EO, U)dU . is the cross section for capture into
a state with binding energy between U and U+dU.

To enter a state of binding energy U, the electron
of energy E0 must at least gain in kinetic energy an
amount U, so that the critical radius is (Ze'/zU), and
Eq. (1.8) suggests that the cross section diverges" as
1/U'. The 6nal result converges only because P(U)
vanishes sufficiently rapidly for small U.

In a fully quantum mechanical treatment Eq. (1.12)
would be replaced by

~(Ep) =g., i o.,((Ep)P. , g, (1.13)

where 0„,& is the cross section for capture into a hydro-
genic state with quantum numbers e and l, and E„,& is
the corresponding sticking probability. Our treatment,
for simplicity, makes the approximation of neglecting
the dependence of I'„,~ on /, i.e., on the angular mo-
mentum, and replaces the sum over e by an integral
over U. The last step should be a good approximation
if the main contribution comes from excited states that
are reasonably closely spaced.

The sticking probability P(U) can be calculated by
making use of the idea that it depends on the binding
energy U but not on how that state was reached. Thus
if E(U,Ace)d(A") is the probability that an electron in
state U will emit a phonon Ace in d(fuv), then

Sticking Probability

In most experimental situations, however, we believe
there is a more important limitation than those men-
tioned already. An electron captured into a state with
binding energy U small compared to kT will find it
easy to escape in a subsequent collision. If P(U) is the
"sticking probability" for a state of binding energy U,
i.e., the probability that the electron will enter the
ground state before escaping, then the cross section for
capture of an electron of energy Eo should be written

ground state. Absorption of phonons is included in
Eq. (1.14) by allowing A" to be negative. The lower
limit expresses the assumption that once a state of
negative binding energy (i.e., positive energy) is
reached, the probability of capture into the ground
state is negligible (the probability of any subsequent
collision into any bound state is small if rp((l).

The total probability of all possible steps out of V
is of course unity:

f
E(U, A(u)d(ken) = 1, (1.15)

1/l(E) = ' [1/l(E, her)]d(Ace), (1.16)

then we shall refer to 1/l(E, Ace) as the differential
reciprocal mean free path. Energy gains are covered
by the case A~ (0. The appropriately normalized
E(U,Aa&) can now be written in the form

1/l(U, ka))
E(U, A(o) =

j'[1/l(U, A(u)]d(I'(v)
(117)

For acoustic phonons, conservation of energy and
momentum dictate that the integration range in Eqs.
(1.16) and (1.17) be limited by

but the total probability within the range U+A"&0
is less than unity for those states V from which escape
is possible in a single collision. These assumptions about
the kernel E(U,A") are sufhcient to ensure that P(U) —= 1

is not a solution and that not more than one solution of
Eq. (1.14) exists. (A proof has been given by E. N.
Gilbert of these laboratories. )

The virial theorem implies that an electron of binding
energy U has an average kinetic energy equal to U.
Consistent with our neglect of the dependence of P(U)
on the angular momentum of the state, we shall neglect
the fluctuations in kinetic energy over the orbit. Thus
E(U,A") can be obtained by calculating the (usual)
rate at which free electrons of kinetic energy U, moving
in a plane wave, have collisions with an energy loss Ace

and normalizing the result in accordance with Eq.
(1.15).

If the total reciprocal mean free path 1/l(E) for
electrons of energy E is displayed as a sum of contri-
butions with specific energy loss 5~,

P(U)= "
U+Aco& 0

E(U,A(o)d(fi(v) P(U+h(u) (1.14)
leo/-,'mc'&4[(E/-, 'mc') —:—1], (1.18)

5(o/-,'mc') —4[(E/-', mc')'+1], (1.19)

represents the probability of entering the ground state
as the probability of any first step times the probability
that the first step leads to eventual capture in the

29 Actually the probability of emission of a phonon varies as
(E—Puo)&= (Ep+U —Ace)&= U& for Ep=kco, so that the divergence
is really (1/U").

the maximum possible phonons that can be emitted,
or absorbed, respectively, by an electron of energy E.

Within this range, the deformation potential theory,
without neglect of phonon energy [see Appendix A,
Eq. (A11)] indicates that for acoustic phonons the
differential reciprocal mean free path has approxim. ately
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1/t(E, A(u) =8
i

hu)
i (her/kT)

X $1—exp( —A&o/kT)$
—', (1.20

where 8 cancels out of Eq. (1.17) but is given by

8= [SEmc't.] ', (1.21)

where l„ the mean free path for electrons in the classical
limit kT»Ace, is given by

1/t, =ErxkTm'/(rr Ape') . (1.22)

Here c is the velocity of sound, m is the effective mass
of the electron, p is the crystal density, and E& is the
deformation potential constant. LIn practice we shall
determine /, from the experimental mobility rather than
Eq. (1.22).]

Since electrons with a velocity less than that of
sound can absorb phonons but cannot emit them,
electrons with binding energy U& 2'mc' must eventually
escaPe. Thus P(U)=0 for U&srmc', and the singu-
larity" in o(Es, U) ~1/U" at U=O will not cause a
divergence. Even so, if P(U) does not decrease rapidly
as U gets small (faster than U') it will turn out that
the predominant contribution to the thermal average
cross section will come from electrons of energy Eo in
the vicinity of —,'mc'.

An analysis of the capture integral equation (1.14)
by a Fokker-Planck type of diffusion approximation
indicates that P(U) varies as U' in the region —,'mc'«U
((kT. The contribution to the capture cross section by
electrons of various energies then goes as dEo/(Eo)'
(See Sec. 5.) The low energy cutoff in Ee must come
then from an analysis of P(U) in the low-energy region
U&-', @ac'. In this "tail" region, however, the electron
can escape in one jump, and the diffusion approxi-
mation is not valid.

To resolve these difficulties, the capture integral
equation was solved by an iteration procedure using the
diffusion solution as a 6rst approximation. It was found
that P(U) does indeed decrease more rapidly than

(U——',mc')' for (U/-', mc') &about 4. In addition, it was
found possible to simplify the integral equation in the
tail region. When X=—(U/-,'mc') —1«1 it was possible
to show that P(U)=P()t) has an essential singularity
near ) =0 of the form

P(~)
(1.23)I=3.52+ in (1/)t)/ln3+ 2 ln ln (1/)t)/ln3+

so that a more rapid vanishing than X' is in general to
be expected.

In using the concept of a sticking probability we
have tacitly assumed that the diffusion up and down
the energy scale occurs so rapidly that all time delays
may be neglected. The electron is either captured into
the ground state or escapes in a time small compared
to the decay time in the experiment —otherwise non-
exponential decays would be observed I

Additional Simplifying Assumptions

In addition to our major assumptions concerning the
use of classical mechanics and a sticking probability,
depending only on binding energy, we shall make some
nonessential but convenient assumptions: (1) the
electrons motion is describable in terms of an isotropic
effective mass (denoted simply by m). (2) The effects
of transverse and longitudinal acoustic modes can be
lumped together by using a single average velocity of
sound and a single constant for the interaction of these
modes with the electron. (3) Optical modes can be
characterized by a single energy —the Einstein
approximation.

The uncertainties introduced by these additional
approximations, e.g. , by our lack of knowledge of what
to choose for the appropriate effective mass and inter-
action constant may easily cause an uncertainty of a
factor of 2 or 3 but is unlikely to change the cross
section by more than one order of magnitude.

2. QUANTITATIVE FORMULATION

In view of the large experimental cross section we
conclude that the important contribution to capture
comes from large orbits which may according to the
Bohr correspondence principle" be treated classically.
We shall therefore make an impact parameter calcu-
lation of the cross section

o.(Ep)=) 2xbdb P( pE, b), (2.1)

where b is the impact parameter (see Fig. 2) and
P.(Ee,b) is the probability that an electron with impact
parameter b and energy Eo will somewhere along its
orbit have an effective capturing collision. The above
formulation emphasizes a single important collision
and hence is a Thomson rather than I angevin approach
to the problem.

The probability of capture along the orbit P( Ebs)

can be written in the form"

where W(E,Sa&)d(A~) is the transition probability per
unit time for a collision with energy loss between Ace

and fico+d(5~), P(A~ —Es) =P(U) is the sticking

3' The classical viewpoint will be valid providing the important
contributions come from distances large compared to the Bohr
radius in the solid zk /(Z~g ).

3' Strictly speaking (2.2) is the expected number of capturing
events along the orbit. For the case of Poisson statistics
expL P, (Eo,b)5 is th—e probability of having no such collision,
and 1—exp/ —P.(Eo,b)g is the probability of capture along the
orbit, which is of necessity less than unity. For the case in which
r0« l, considered here, E,«1, and the linear approximation
1—exp( —P,)=P, is adequate.

P, (Ee,b) = )I dt ~ WLE(t), ken]d(h(u)
~ a~&zo

XP( E,), (2.2)—
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IMPACT PARAMETER CROSS-SECTION CALCULATION
db

t+dt

r
I

consistent with a given r. If the integration over U is
saved for last, the result may be written in the form
(1.12) where the cross section o (Ep, U)d U for a collision
into the binding energy U, U+dU is given by

o (Li'p, U) = 4rr'dry�(r)/Ep]

XL1/t(E(r), Ep+U)], (27)
(7 (Ep) = 2V'0 db &c (Eos

~c(Eo, b) = dt w(t. )

w(t) = W(E(t), ~u) d(~co) P(~~-Eo)

where we have used the relation

1/l(E, It(o) = W(E,Soi)/e. (2.8)

E(t) = Eo-v(r), r= r(t)

FIG. 2. The cross section is computed from the area struck
(i.e., 2s-bdb) times the probability P, (Ep, b) that a capture pro-
ducing collision will occur somewhere along an orbit that starts
with an energy Ep and an impact parameter b Here w. (t) is the
probability per unit time of such a collision, when the electron
has kinetic energy E(t); W(E(t), h«)d(b««) is the probability per
unit time of a collision in which the energy Ace is lost, Pun —E0 is
the resulting binding energy and P(b4« E«) is the —probability
that an electron with this binding energy will "stick," i,e., enter
the ground state before escaping.

probability for an electron with binding energy U and

E(t):Ep VLr(t)] —=Ep+—Ze'/Lsr(t)] (2.3)

is the kinetic energy at the time t on the orbit. The
function r(t) is to be obtained by solving the classical
equation of motion for an electron with initial energy
Ep, and impact parameter h.

It seems expedient to change the variable of inte-
gration from t to r. The Jacobian of this transformation

dr/dt= (2/m) &LE(r)—Ep(b'/r')]& (2.4)

The upper limit rp is the largest radius at which a
collision with energy loss Ep+U is possible. "Note the
similarity of (2.7) to Thomson's original formula
4rrrp'/3l' when l' is some effective mean free path.

Equation (2.7) is general in that the mechanism of
col&ision has not yet been specified: it may be, for
example, collisions with lattice vibrations, or other
carriers, in a solid, or collisions with neutral atoms in a
gas. Furthermore, explicit use has not yet been made
of the form of the potential V(r). The only basic
assumption has been the use of classical mechanics in
the formulation of the capture cross section.

An acoustic phonon energy loss Ep+ U, according to
Eq. (1.18), requires an electron kinetic energy E)E
where

E„=,' mc'(1+-,' (-Ep+U)/-', mc']'. (2.9)

Thus the electrons must convert at least the energy
E —Ep from potential energy to kinetic energy, i.e.,
it must come within a radius rp determined by

is known from conservation of energy and angular
momentum, without explicit need for the solution r(t).
If, in addition, we multiply and divide by o=L2E(r)/
m]b, (2.2) can be rewritten as

—V(rp) =E Ep. —

For the Coulomb attractive case this yields

(2.10)

LE(r)]'*
P, (Ep,b)=2 I dr

LE(r) —Ep(b'/r')]'

f 1
X W(E(r), Ep+ U)dU P(U—), (2.5)

v

or
16Ze'(-', mc')

rp ~
z(Ep+ U)'

(2.12)

(2.11)
~ —',mcsL1+-'. (Ep+ U)/-', m.s]s—E,

where the factor 2 is inserted because the region from
the minimum distance of approach r to infinity is
traversed twice once inward, and once outward.

If (2.5) is inserted into (2.1) the integration over b

can be performed explicitly":

Equations (1.20) and (1.21) show that E/l(E, N) is
independent of E, so that the integration in Eq. (2.7)
can be performed:

kr rp' (Ep+U) X
o(Ep, U) =—— (2.13)

3 Ep 8me't, 1—exp( —X)

Jp =rsE*/Ep

p ~M

bdbttE Ep(b'/r')] '*=E &bi—r'

(2.6)

where

X = (Ep+ U)/kT. (2.14)

Making use of Eq. (2.11) our differential cross

where b~= r(E/Ep)'* is the maximum impact parameter

"If b~ exceeds the screening radius, the distance between
traps, or the mean free path, this upper limit must be modified.

"It should be remarked that if another cutoff r, is present-
due to screening, or the distance between centers, etc.—then the
upper limit of (2.7) should read r0 or r, whichever is smaller. See
also footnote 32.
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section can be expressed in the form obtain for the total cross section

L (Eo+U)/-,'mc']'
&o~(Eo,U) =~i

(L1+-', (Eo+ U)/-', mc']' —Eo/-', mc') '
with

o = o (g)dg P(g), (2.19)

where

X- (2 13)
1—exp' —(so+ U)/hT]' cr(g)= ' ooa(oo, g) exp( oo/p)doo/&'

~ t' Ze' p' 1 -', mc'
Oy=—

12 &a,' mc-') („hT
(2.16)

(«+n)'00

e—'«&dip
v' ~ o (L1+-,'(oo+q)]' —eo)'

is independent of temperature and has the units cm'.
It is convenient to introduce the dim ensionless

variables:

oo =Eo/-,'mc', rj = U/ ', mc', y = h-T/ ,'mc' (2.—17).

Then a(Eo, U) =0.(oo,q) can be obtained from

(oo+n)'
coo(oo, 'g) =0'y'

{L1+~ (oo+v)]' —«&'

X . (2 21)
1—expL —(oo+g)/y]

3. ESTIMATES OF THE TOTAL CROSS SECTION:
COULOMBIC CENTERS, ACOUSTICAL

PHONON CONTRIBUTION

The dominant behavior of 0 (g) as given by Eq. (2.21)
is as (q+4) ' if 4«g«y. We therefore introduce into
(2.21) the transformation

eo ——(q+4)x, (3.1)

(2 lg) so that the dominant behavior is displayed in the form
1—expL —(oo+g)/y]

If Eq. (2.18) is averaged over a Boltzmann distri-
bution of electron fluxes, in the manner of Eq. (1.4) we

1.0

09

4' a.
g

~(n) =— h(v, v),
v (v+4)'

where

h(g, y)= I g(x)dx,

(3.2)

(3.3)

0. 7

0.6

0.5

CL
0.4

0.3

g+4
g(x) = exp ——x

7 (g g+4

~v v

g —4
x'+2 x+1

q+4

(3 4)

0.2 We expect h(p, &) to be a slowly varying function. If
4«g«y, we see that

g(x) = (1+x)—', h(q, y) =—,', (3.5)
0
0 3 4

')/7
whereas if merely

g+4«p,
FIG. 3. A starting approximation E,q, t for the sticking proba-

bility is plotted against n= (p —1)/y, where q= U/-,'mc', y=kT/
-';wc', where U is the binding energy, T the absolute temperature,
m the carrier effective mass, and c the velocity of sound. The
starting approximation 8=1—{1+a+—',cP) exp{—a) is a simpli-
fication valid for y))1 of the solution (86) of the diffusion {Fokker-
Planck) treatment of the sticking probability integral equation.

g
—4

g(x)=i +x i
x'+2—x+1

)

h(g, y) = ', +4 '(rl+4) 4g "I, -— —

(3.6)

(3.7)
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where

and

dyI=
(1+vs)s

~= E(n/4) —Ijv'n

(3.g)

5.0

g, p

I l -1 I I I I
I

00 00 dI'
a= a(rf )dIs' dr).

0

(3 9)

A rough approximation to the total cross section can be
obtained assuming

~(n) = (4'~tive'), (3.10)

and from Appendix B, or Figs. 3—5

dI'/drf= (rp/2y') exp (—rf/y) for ri) 8

=0 for rf (5, (3.11)

where 8 of 4 to 10 represents a cutoff in the region where
o. (rl) begins to level off and P(tl) decreases more rapidly
than (3.11a) indicates. These crude approximations
lead to

or

4'0-g |"e *
0~ I dg

6y4 ~pi~ x

4'o. t f' y ) fIi+-,
6&4 E1.781')

(3.12)

(3.13)

i+2 --
I I I I I Ill} I I I I Ill I I I I I lll

1.0—

The second term in Eq. (3.7) varies as ti
—' for large

q and is negligible compared to the first except for small
rl. (At rl =4 the two terms are almost equal. ) Near rl =0,
the second term diverges as p ".This is essentially the
divergence found by Wannier, whose origin is discussed
in the Introduction. "If one were to assume I'(rl) = 1 as
Wannier does (or even a small constant) the integral
Eq. (2.19) for the total cross section would diverge.
However, as we show in Appendix B, P(rl) varies faster
than (z—1)', so that the second term in Eq. (3.7) has
indeed little effect on the result.

If Eq. (2.19) is integrated by parts,

g. 3.0
F a:
Q

2.0

l.p

0
1 g6 e iO 20 30

FIG. 5. The ratio of the sticking probability P(s) to the starting
approximation P,I«I, (rI) of Fig. 3 is plotted against q= U/-, mc'.

where the last step replaces the exponential integral by
an approximation valid when fi/y(1.

A more accurate evaluation of Eq. (3.3) for h(ri, y)
was made using the ten point Gauss-Laguerre quad-
rature formula'4 and the numerical capture proba-
bilities P(If), see Fig. 4, were obtained by numerical
solution of Eq (B1). for the cases y=2, 10, 50 and 200
as discussed in Appendix B. The results obtained for
Ir/Irt are presented in. Table II. A change of two orders
of magnitude in y produces a change of 7 orders of
magnitude in o/or. Column 3 of the table demonstrates
that y4Ir/Irt ChangeS muCh mOre S1OWly.

In order to be able to interpolate or extrapolate from
the four numerical results in Table II, it is desirable to
have an even slower varying function than &4o/Irz. This
desired property may be achieved by requiring the
approximate formula (3.12) to agree with the machine
results by allowing 8 to be a function of p. The values
of 8 needed to achieve agreement are shown in column
3 of Table II and do indeed vary slowly. A plot of 8

versus y is shown in Fig. 6. Use of this figure to extra™
polate to larger values of p is not risky since 5 varies
slowly and moreover according to Eq. (3.13) appears
essentially as the argument of a logarithm.

0.8—

0.4-

TAnLE II. Results of the machine computation for 0/0 & where

1 Ze2 tf' Ze' t'
01=——

12 l, ~kT t,~qmc'j

0.2—

0 1

2 3 4 6 8 10 20 40 60 1 00 200 400 1000

FIG. 4. Numerical solutions P (p) of the sticking probability
integral equation (B1) are plotted versus dimensionless tempera-
tures y=kT/ —,'mc'=200, 50, 10, and 2. These solutions were ob-
tained by an iterative procedure using the starting approximation
shown in Fig. 3. The dashed curves indicate the corresponding
starting approximations. For y=50 and 200 the correct solution
is indistinguishable from the starting approximation on the scale
shown, but their rg, tio is shown in Fig. 5,

2
10
50

200

0/01

7.~ X10 '
1.03X10 '
3.6gX10 '
2.62X10 '

(3/2) (7/4)'~/~r

0.070
0.603
1.35
2.46

3.5
4.7
8.6

10.0

Here y =k'J'(-,'mc2) and t) is computed from the second column by the
requirenlent that the approximate formula Eq. (3.12) yield results in
agreement with the machine calculation.

~ H. E. Salzer and R. Zucker, Bull. Am, Math. Soc. 55, 1004
(1949).
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)0—

I I I I I lilt I I -I I I I I I) temperature region may be checked by noting that
Eq. (3.14) yields a mobility of 4'K of 3)&10' cm'/volt
sec in agreement with the mobilities observed by
Koenig' " on his unusually pure sample in the He
temperature range. We find then, that our temperature
independent unit of cross section is given by

0,=Z'(7r/12)(e'/x-, 'mc')s(l. y) '=7X10 sZ'cm' (3.17)

I I I I IIII I I I I I IIII I I I I IIII
2 3 4 6 810 20 40 80 l00 200 400 &000r

Fxo. 6. The dimensionless cutoR binding energy 1)I is chosen as
a function of dimensionless temperature y=kT/-, 'mc' so that the
approximate equation (3.12) yields a cross section in agreement
with that computed numerically for p=200, 50, 10, and 2. This
figure, by interpolation, permits the use oi Eq. (3.12) to compute
cross sections at other temperatures.

0
1

In order to compare our results with those of
Koenig' " for electrons captured by donors in ger-
manium in the range of 9'K to O'K we must choose an
effective mass m, and a velocity of sound. Without a
complete theory taking into account the mass ani-
sotropy and the relative proportion of longitudinal and
transverse phonon contribution to the capture all we
can do is choose reasonable intermediate values, e.g.,
m= ~ms and c=4)(10' cm/sec. Since the final results

LEq. (3.13)) indicate that the cross section is (aside
from a logarithmic factor) proportional to (mc')' our
results can easily be modified by a factor 3 by using
other, equally reasonable values of m and c. With these
choices, srmc'=1. 13&10 ' ev=0. 131'K and e'/(-', xmc')
=7.9&(10—4 cm.

Another dificult thing to do accurately is to deter-
mine the mean free path I„ for acoustic phonon scat-
tering. Morin and Maita" have attempted to separate
the acoustic phonon contribution. Their conclusion for
the mobility in the presence of pure acoustic scattering
1s

p, =2.4)(10~T ") (3.14)

with a room temperature mobility of 4600 cm'/volt sec.
The mobility is related to the transport mean free time
r by

Is =er/mr, (3.15)

where the inertial mass mI is the harmonic mean of the
parallel mass mll=1. 64 and the two perpendicular
masses m~=0.0819, i.e., my=0. 12mo where mo is the
free electron mass. Thus the room temperature r is
3.15X10 " sec, and the room temperature mean free
path is

J,= (9s-kT/Sm) &r, (3.16)

or /, =8.0&(10 ' cm if one uses m= —„'mo. The room
temperature value of y=kT/-, 'mc' is 2300. But the
product y/. =1.84X10 ' cm is independent of tempera-
ture. The applicability of this result in the helium

'5 F. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954}.

With this unit of cross section (for Z= 1), Eq. (3.13)
and Fig. 6 as a means of interpolating 6, cross sections
were calculated in the range O'K to 10'K. Our theo-
retical results and Koenig's experimental results' " are
shown for comparison in Fig. 1. Both experimental and
theoretical results increase from 10 "cm' to 10 " cm'
in the range from 10' to O'K, with the experimental
results increasing slightly less rapidly and showing
definite signs of a level-o6 near O'K. Confirmation of
this level-oB is shown in more recent data extended to
lower temperatures. See Fig. 7.

For comparison, we note that the (acoustic phonon)
theoretical cross section at room temperature 5.1)&10—"
cm' is so small as to be unimportant.

For silicon, we shall use m= —,'mo, —,'mc'=10 ' ev and
for electrons l,=3.2&(10 ' cm based on a room tem-
perature mobility of 1200 and an inertial mass of
0.259mo. Thus we obtain as a unit of cross section
0~=5.45)&10 " cm' for electrons in silicon. At room
temperature &=260 and Eq. (3.13) with 8=11.5 yields
o/o&=10 r so that o.=0.5&(10 "cm'. This cross section
is about one order of magnitude lower than Bemski's
reported cross section for electrons on Au+ of 3.5&(10 "
cm'. However, Bemski's cross sections in the range
200' to 500' show a T "behavior rather than a T '
behavior. We believe this is due to an appreciable
contribution from intervalley collisions and optical
phonon collisions whose contribution will be estimated
shortly.

For holes in silicon, the mobility is about one-fifth
that of electrons. Other things being approximately
equal, this leads to a cross section five times larger or
2.5&&10 " cm' at room temperature, a result that is
still low compared to Bemski's value (Table I) of
1)&10 "cm' for holes on Au . Optical phonon contri-
butions are also to be expected for holes in silicon since
the hole mobility" varies as T "deviating from the
ideal acoustic law of T ".

4. OPTICAL AND INTERVALLEY PHONON
CONTRIBUTION ' COULOMBIC CENTERS

For' optical and intervalley phonons we may take
(see Appendix A) the differential reciprocal mean free
path to have the form

(E—Ao))'*

l(E, Es+U) 2l, 1—exp( —X)

XS(a~—Z,—U), (4.1)
"F.J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).
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The integral in Eq. (4.6) may be evaluated. by using
a mean value y= g in the factor (1+o,y)i. The optical
phonon cross section (3.35) then becomes

pr' w Ze' ( Ze') ' X
Eoo'osp(E0) =——

8 l, K &Kfuo) 1—exp( —))
P(Atp —Eo)

X (1+ug)'. (4.7)
L1—(Ep/Aa)) ]'

The mean value appropriate to the case a((i is y= 1,
and the mean value appropriate to the case a=1 obeys
(1+g)&= (64/15pr) or g=0.85. However, when a«1,
it does not matter what we put for y, so that we shall
incur a small Anal error by setting y=0.8S.

The cross section (4.7) for capture via optical
phonons averaged over electron energies in accord with
Eq. (1.4) becomes

0
0

I

O.I
I

0.2
I

0.3
I

I

0.4
I

0.5 0.6

s'w Ze' /'Ze'y' X
~.0~(T) =—— c()i),

8 /, KkT EKAtp) 1—exp( —X)
(4.8)

FIG. 7. Recombination of electrons on Sb donors in Ge at low
temperatures by S. Koenig. The measurements shown in Fig. 1
have been extended to lower temperatures and continue to display
the level o8 in the cross section which starts at about 4'K.

where Aa& is the single phonon energy, X= App/kT and w
is Herring's'7 factor describing the squared ratio of
optical to acoustical matrix elements. The assumption
that optical or intervalley phonons can each be repre-
sented by a single phonon energy is certainly accurate
enough for our purposes.

If Eq. (4.1) and Eq. (2.7) are inserted into Eq. (1.12)
the integration over U can be performed immediately
with the result

P(y) =1—(1+y+ly') exp( —y) (4.10)

is the sticking probability" expressed in dimensionless
units y= U/kT, and A=hen/kT. Since x/X&1, and the
integrand weights small values of x/X, a maximum
error of 35% and usually a much smaller error will be
incurred if t 1+g—g (x/X)]l is approximated by (1+g)l
=64/15pr. Thus we may write

C()t) = P() —x)e-*(1—(x/)i)]-~dx
~p

X51+g—g(*/~)]' (4 9)
where

oont(T) =os/1 —exp( —X)] 'D(X), (4.11)
Eoo'o t(Ep) =2pr(w/t. )XL1—exp( —X)] '

&(P(A~ Ep)1, (4.2)—where
8pr wZ' e' ( e' )'

0 p

15 iq KkT LKAro)
(4.12)where

7'0

J= r'drPE(E Aa))]'*, —
0

E=E,—V(r),

(4.3)
is a unit of cross section independent of temperature,

(4.4)

and the upper limit rp occurs when E=Lr. For the case
of a Coulomb potential V(r) = —Ze'/kr, we may use
(4.4) to introduce E as a new variable of integration:

)Ze'q ' q" dE
J=

i i
i LE(E—As))]i. (4.5)( K ) ~s~ (E—Ep)4

The transformation E—Ep= (A~ —Ep) (1+y) leads to

(Ze') ' (Atp)'* t
" dy —yl(1+ay) l, (4.6)

( K ) (A(o —Ep)'*30 (1+y)4

where a= (A~ —Ep)/Ace& 1.
"C. Herring, Bell System Tech. J. 34, 237 (1955).

D(X) = P(X—x)I 1—(x/X)] ' exp( —x)dx, (4.13)
0

D(X) =Ale—"
y lP(y)epdy. — (4.14)

By expanding the integrand of Eq. (4.14) in powers
of y, we obtain an expansion convenient for small values

' This sticking probability is obtained in Appendix B by
assuming that bound electrons "diffuse" up and down in energy
by absorbing or emitting acoustic phonons. Optical phonons can,
and should, be included in this di6'usion process. This would
require the solution of a new integral equation in Appendix B.
The additional labor does not seem warranted in view of the fact
that the general character of P(U) will not change, i.e., P(U) is
small for U(kT and approaches unity when U»kT.
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of X but convergent for all values of A. :

P4 31 3 1
D(&) =—e-~ 1+--)tP-

9 54 745
3

+—— )t'+ . (4.15)9456

2.7

2+6

2.5

2.4

2.2

By expanding (1—(x/)t)] ' in powers of x and using
the relations

D(w) '

rr4(M

f(r)() y)4 =-drs f(ri)dri,
pi pX )ccs

0 J,
p

ic ()t y) cc ~
X

~ ccnyc

f(y) &y= dr-+i ' dy-
0 ef &0 &0

(4 16) l ~ S

1 ~ 7

1 ~ 5

we obtain the expansion

(a 92

X ~ dyif(yi), (4.17)
0

5ix5 571 m6

D()~) =tr4()c) 1+ -+
2 X vr4 2 2 X' 7f.4

5 7 9 1 7t-7

+ . , (4.18)
2 2 2 X' m-4

convenient at large A. but convergent for small P. The
functions tr, =tr„()t) are defined by

4 1 1 l i t l I t

0 1 2 3 4 5 6' 7 8 9 10

»o. 8. A plot of D(lc)/s-4(lc) versus ), vcchere

s 4 (&)= 1—(1+lc+-,'X'+ c6) ')e
—i,

vchere &=Ace/)'cT, and D(lc) enters into the equation (4.11) for the
cross section for capture by emission, of an optical phonon of
energy leo.

cr,~c=cr0$1 —exp( —lc)g 'D(lc),
where

8s tccZ' e' ( e' 'l'
Op=—

15 f, ccfcT (cci'ceo)

Z=the charge on the trap, &=dielectric constant, /, =mean free
path for an acoustical phonon collision, and a=squared ratio of
optical to acoustical matrix elements.

tr„() ) = e—"Q —= 1—e
—' Q —.

j=V j I 7=0 jI
(4.19)

Using l, =320 A for electrons, we find that

cr0, eteecrons cn st =3 5 X 10 "wZ'(0. 1 ev/Aoi)'. (4.20)

These functions are cumulative Poisson distributions
and are tabulated by Fry."The ratio D()t)/tr4()c) is a
slowly varying monotonically decreasing function with
the value 8/3 at X=O and 1 at )c= ~. A calculation of
D/tr4 for a few values of )t yields Fig. 8 which can be
conveniently used for interpolation. Figure 8 and Fry's
table of 7r4 permits a ready evaluation of D()c) and the
complete temperature dependence

)t(1—exp( —)t)] 'D()c)

which are both shown in Fig. 9. We see that D(X)
varies as X' for small )c, (i.e., T 4 for large T) and ap-
proaches unity for large A. or small T. The complete
temperature dependence varies then from T 4 for
kT) Ace to T ' in the region A~))kT with an exponent
of about 2.5 in the region Aco=4kT.

A rough estimate of the size of the cross section in
silicon can be obtained by evaluating the temperature
independent unit of cross section crs given by Eq. (4.12).

If we use as Acr=0.06 ev for the optical phonons, "we
get 0-0=10 "m cm' for a singly changed center. At room
temperature, however, )t= ken/kT=2. 4 and, according
to Fig. 9, the temperature dependent correction factor
)c)1—e "] 'D()c) is about 1.5, so that the final estimated
cross section 0-,~&=mZ'1. 5X10 "cm' is larger than the
3.5&&10 " cm' observed by Bemski for electrons in
Au+ if we assume that the coupling constant ratio has
a reasonable value m&1 from the point of view of
mobility. "

For holes in silicon, whose mean free path for acoustic
scattering is perhaps five times smaller than for elec-
trons, we find O,~t=mZ'7. 5)&10 " cm' which appears
five times larger then the just quoted cross section for
electrons. However z for holes is undoubtedly smaller
than for electrons since the hole mobility varies as
T "whereas the electron mobility varies as T ".

For the first time in the history of calculating capture
cross sections we are in the embarassing position of
having theoretical answers larger than those observed

' T. C. Fry, Probability and its Engineenng Uses (D. Van 'B. N. Brockhouse, Phys. Rev. Letters 2, 256 (1959). H.
Nostrand Company, Inc. , Princeton, New Jersey, 1928), Table Palevsky, D. J. Hughes, W. Kley, and E. Tunkelo, Phys. Rev.
VII, p. 463. See p. 336 for definition of symbols. Letters 2, 258 (1959).
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experimentally. There are two possible reasons for our
overestimate:

(1) For X)3, we see that DP.)=1, i.e., we have
effectively used sticking probabilities of unity. Our
sticking probability was computed using an integral
equation that involved emission and absorption of
acoustic phonons only. "If we were to take into account
optical phonons, then the sticking probability would be
raised for binding energies large enough (U&k~) to
permit optical phonon emission. For lower binding
energies, only optical phonon absorption is possible,
and the latter will raise the probability of escape.

(2) In silicon e'/Ir (0.06 ev) =20 A is comparable to
the Bohr radius of a donor state. Thus a strictly
classical calculation will be somewhat of an overestimate
since it includes some transitions to binding energies
larger than the ground-state binding energy.

6—

f'0—
0.8—
0.6—

0.4—
0.3—

0.2—

O. f

0 08—

e-x) D Ixl

Another mechanism that may be of importance for
electrons in silicon is intervalley scattering via an
Umklapp process. The electronic band edge points in
silicon are on the 100 axes about 85% of the way to
the zone boundary. ' Thus a transition to the ellipse
just across the zone boundary can be accomplished via
an Umklapp process using a phonon4P about 30% of the
maximum longitudinal acoustic phonon or about 0.019
ev. Thus ra=10 "mZ', A. =0,73 and

006—

0,04-
0,03

0.02 —,

0,0f I I II
0.6 0.8 f

I I I I I I I I I

2 3 4 6 810
~cu
kT

20 30

%[1—exp( —X)] 'D(X)

is about 0.024, so that ointervalley=2. 4'')&10 ' cm .
This process involves larger orbits, is less subject to
quantum mechanical corrections, and is in rough
agreement with Bemski's room temperature cross
section of 3.5)&10 "cm'

5. DEPENDENCE OF THE ACOUSTIC PHONON
CROSS SECTION OF ELECTRON ENERGY

The dependence of the cross section on electron
energy is shown explicitly in Eq. (4.7) for the optical
phonon case. For the acoustic phonon case, we may
start with Eq. (2.15) for o (Ep, U) and integrate over U.
In the physically important case kT))-,'mc' we may
approximate Eq. (2.15) by

~FIG. 9. A plot of D(X) and X[1—exp( —X)j 'D(X) versus
X=fkp/kT The cross s. ection for capture via optical phonons is
given by o =opX[1—exp( —X)] 'D(X) where op is a unit of cross
section independent of temperature given in Fig. 8 and Eq. (4.12).
0 varies as T 4 for 'A«1, and as T ' for A»1.

where
F(y)/(x+y)'

F(x)=6 dy,
~ p 1—expL —(x+y)]

and F(y), the sticking probability, is given by Eq.
(4.10), except in the region y&8/p where a cutoff is
more appropriate Lsee Eq. (3.11)j. If the cutoff is
neglected, Eq. (5.4) yields

1 1 Ir 1
F(*)=——ln~ ~+O(x lnx) x&&1, (5.5)

4x 4 E 1.781x)
4so.tL-', mc'/(Ep+ U) ]4

Epo (Ep, U) =
1—expL —(Ep+ U)/k T]

(5 1)
2 expL9/(x+3) ]

F(x)=
(x+6)' 1—exp( —x)

x»1. (5.6)

If we substitute Eq. (5.1) into Eq. (1.12) and intro-
duce the dimensionless variables

x=Ep/kT, y= U/kT, y= kT/ ,'mc'-(5.2)

then the dependence o (x) of the cross section on
dimensionless energy x is determined by

Numerical results for F(x) in the range 1/16&x&4,
obtained by numerical integration are shown in Fig. 10.
Outside this range Eqs. (5.5) and (5.6) are good to
within a few percent.

Equation (5.5) implies that xo.(x) 1/x for small x
so that the total cross section

xo.(x) = (4'/6) (0]/y )F(x),
4' G. Feher, J. Phys. Chem. Solids 8, 486 (1959).

(5.8) f
o = xo.(x) exp( —x)dx, (5.7)
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I I I f III I 1 I- shown in Fig. 11 vary with the effective electron tem-
perature as (T,)'e corresponding to a cross section o.

which varies as (T,) ".

$.0

0.07
0.05

0.03
0.02

0,01
O,O5 Q,) . 2 0,4 1.0 2 3 5

x= Ee/aT

FIG. 10. The theoretical dependence of the cross section on
electron energy E0 is represented in the form

(*)=(4'/6)( / ')~(x)/x,
where

x=Ep/kT, 7=kT/( ,'mc'). -
T is the lattice temperature and 01 is a unit of cross section
deaned by Eq. (2.16). In the region 0.1&x&1,0 (x) ~ x~'.

6. TRAPPING BY NEUTRAL IMPURITIES

Polarization Potential

A charge e at a distance r from a center with polariz-
ability n will induce a moment p=ne/(xr2), where lr

is the dielectric constant of the medium. This dipole
will produce an attractive force on the charge of
2pe/(zr') =2ne2/(x2r'), so that an attractive potential
exists of amount

(6.1)

(6.2)

The usual formula for the polarizability of an atom
applies to our case

n= (e'h'/4m'rN) Q~ f~/(he~)' (6.3)

where hv is the energy diBerence between the ground
state and state I, and f„is the corresponding oscillator
strength. For an extended center, the electronic mass

would diverge at x=0. However, the cutoff in dI'/dy
for y(8/y used in Eq. (3.11) implies that for x«1, the
behavior 1/(4x) is to be replaced roughly by

NO 2xto /CM

NA ~ 5 x I 0 /C M

so that Eq. (5.8) is convergent and yields approximately
the answer (3.12) obtained when the integrations over
Eo and U were performed in the opposite order.

The first term of (5.5) implies that over the range
of importance Ii(x) ~1/x and o.(x) ~1/x', i.e., o(Ep)
~(1/Ee)'. Experimental decay times for a mono-

energetic electron beam should then vary as
L(Ee)&&r(Eo)] ' or Ee".

Actually as Fig. 10 shows xF(x) is not constant but
varies as roughly (1/x)" over the range 1/16&x&1.
This wouM raise all exponents by 0.3. This small

modi6cation, however, is largely cancelled, if one takes
account of the fact that one has a distribution of
electron energies. For example, if the electrons have a
temperature T,AT, Eq. (1.4) with the modified dis-

tribution yields

o (T,T,)= (T/T, )' xo.(x) exp/ Tx/T, fdx. (5.9)—
The first factor indicates a behavior 1/T, ' in agreement
with the previous result 1/Ee', and the integral is

practically independent of T, since it can be evaluated
approximately by replacing the exponential by unity.

Koenig's (reference 11) experimental decay times,

Oz0 f.o
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FIG. 11. The dependence on electric field of the lifetime for
thermal recombination of electrons with Sb donors in Ge as
measured by S. Koenig. In the straight line region the "hot"
electrons have an energy approximately proportional to the field,
so that the recombination time varies roughly as (electron
energy)".
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mo is replaced by the effective mass m. (For a highly
localized electron it is more proper to use the ordinary
mass me. ) Since Pf =1 a rough estimate can be made
from (6.3):

ol

cr = (e'h')/ (41r'mI')

~/~&= (m,/m) (I /I)',

(6.4)

(6.5)

where I is the ionization energy of the center, I~=13.6
ev is ionization energy of a hydrogen atom, and

nrt= (9/2) (art)'=0. 666&(10 "cm' (6.6)

where

(A+ 2m~ —I
~

«=wIt, (67)
&r i

r, = (A/I):.

In terms of the dimensionless variable

X,=r,/a=[A/(IZ )]: (6.8)

is the polarizability of a hydrogen atom. 4' We see that
large polarizabilities may be expected in solids because
I&(III and memo. In order to have a typical number in
mind, we shall suppose that I(0.5 ev and m=mo for
a moderately localized electron so that cc by Eq. (6.5)
is )4X10 "cm'. (We assume that I may be taken to
be & half the energy gap since a neutral center can be
regarded as a charged center that has trapped an
electron or a hole, and the smaller of the two ionization
energies will determine the polarizability. )

For silicon, with ted= 12, Eq. (6.2) yields A =2)&10 "
ev cm'=20 ev (A)'. Of course, different centers in the
same or diferent host lattices will have diGerent
polarizabilities. All we hope to do here is indicate the
order o$ magnitude or the results, and many crude
approximations will have to be made. For one, the
potential A/r' must be cut off at some radius E. We
shall assume that the potential is Qat with the value
A/F' for 0&r &E, see Fig. 12, and shall choose It.'small
enough so that the second electron, the one to be
captured, will have a binding energy I in the %KB
approximation. This leads to the condition4'

(A q
& t"

2m~ I [
d—r—

)

POLARIZATION POTENTIAL &F NEUTRAL CENTER

V(r) CX = POLARIZ ABILITY

K = DIELECTRIC CONSTANT

I
I I
I I
I

I
I

VN
I

where

(F(xr)=
(

1—
I x,—1.20

x, )

is obtained from the second term in (6.7) by means of
the transformation r=r&y' followed by an integration
by parts and l.20 is an approximate value for
I'(3/4) I'(1/2)/I'(5/4). Since Xr) 1, F(xt) can be
adequately approximated by

F(xr) =Xr—1.20—1/(3xre)+O[(xt) '$. (6.11)

If we choose I=0.5 ev for the ionization energy (of the
second electron) and A=20 ev (A)' the right hand of
Eq. (6.9) is approximately w, the solution for Xt is
2.16 and E using Eq. (6.8) is 1.16 A. This rather small
value for E is obtained because a fairly strong potential
is needed to give the extra electron a 0.5-ev binding
energy. The potential in the Qat region is

FIG. 12. The attractive potential exerted by the polarizability
of an atom on a charge carrier has the form V(r)= A/r' for—
r PR. We assume V (r) = —A/R4 for r &R The radi.us r~ is defined
by V(rq)=I=ionization energy. The cutoff radius R is chosen
to be enough smaller than r1 to produce a state with binding
energy I.

Equation (6.7) can be rewritten

Xr[1—(Xt) ']&+F(xr) =n [It/(2mI)&j(I/A)'*, (6.9)

V =A/R4,

or approximately 11 ev.

(6.12)

4e H. A. Bethe and E. E. Salpeter, Qtcantlm Mechanics of One
and Tsoo Electron Atoms (Acade-mic Press, Inc. , New York, 1957),
Sec. 52, Eq. (52.3) with m=0, n& —n&=0, re=1.

43 The usual one-dimensional%KB method between two turning
points would have (n+y)xk on the right-hand side of Eq. (6.7).
For a radial function, finite at the origin, the correct WKB con-
dition leads to (n+r3)nL However, the correct answer is obtained
in the hydrogenic case if one uses (m+1)7fk, or ~A for the ground
state, so we make the latter choice in (6.7). +1++2) (6.13)

Optical Phonon Contribution to
Neutral Capture

Equations (4.2) to (4.4) remain valid for the neutral
case with V(r) replaced by —A/r4. Equation (4.3) for
J can be written
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where the contribution for the region where the po- in order of magnitude agreement with Semski s ob-
tential is Rat is served cross section of 8)&10—"cm' for electrons on Au —.

J,= [E(E—h~o) ]'* r'dr (6.14) Acoustic Phonon Contribution to
Neutral Capture

or
=[(Ep+V ) (V —h~o+Ep)]'R'/3, (6.15)

J'i = V~'/3 =A/(3R),

H we combine Eqs. (1.12) and (2.7) and use Eq.
(1.20) to specify 1/l(E, h~o), we find that the cross section
o (Ep) for electrons of energy Ep obeys

since V =A/R4=11 volts is large compared to hco and
Ep. The portion of J associated with the inverse r4 4ir r'" P(h~o —Ep)X~ hpi~d(h~o)

region can be rewritten using E=Ep+ (A/r4) as variable
8mc'l, & p [1—exp( —X)]of integration:

p &m+1'0

[E(E—hio)]l, (6.16)
(E Ep) 'P4—

X r'dr, (6.23)

or, letting E—5m=V s,

ds
J,=-'A'V ' (f+ )

(b+s) Vi4

where A=he/kT as usual. Since an electron of kinetic
energy E large compared to —,'mc' can according to Eq.
(1.18) lose a maximum energy of 4(E-,'mc')~, the maxi-

(6 17) mum acoustic phonon that can be emitted is roughly

where h~o =4(V —,'mc')&, (6.24)

f=hio/V «1 and b= (ha& —Ep)/V «1.
A suf6ciently accurate value obtained by setting
b= f=0,

Jp=A'V '=A/R, (6.18)

is three times as large as the contribution J& of the Oat
region. The combined value J=4A/(3E) with Eq.
(4.2) yields a cross section

E (E)=(8 /3)(~/l )(A/E)~[1 —exp( —~)1 '

XP (hco —Ep). (6.19)

rp =2 (A/-,'mc') l (-,'mc'/hco) l. (6.25)

Combining Eqs. (6.23), (6.24), and (6.25) we find

where V =A/R4=11 ev is the maximum depth of the
potential, so that Ace =0.13 ev if we use —,'mc'=10 ' ev
which is appropriate for silicon. Of course, we must
replace Ace by the highest available acoustic frequency
of roughly 0.049 ev, Conversely, in order to be able to
emit a phonon of energy Lr the electron must come
within a radius of roughly

The cross section for a thermal distribution of electrons
according to Eq. (1.4) is

o = (8ir/3) (u/l. )[A/(kTR)]X[1 —exp( —&)] 'P, (6.20)

2x A ' 1 —,'mc': kT
o(Ep) =—

3 -', mc' L, kT Eo

P(X—x)X:dP

JX (6.26)
1—exp( —X)

where.

(6.21)P=
) P(hpo kTx) exp( —*)—dx.

0 where we have written X=hpo/kT, X =hpo /kT,
x=Ep/kT; P has been rewritten as a function of
dimensionless variables and vanishes for A. (x. Since

)1, one may approximate P(X—x) by unity and
exp( —X) by zero so that the integral in Eq. (6.26) is
roughly (2/3) (X )'*. Taking a thermal average by means
of Eq. (1.4) we obtain

The sticking probability P(U) should be recomputed
for an inverse r4 potential. In such a potential, however,
there are no stationary closed orbits. The electron
spirals inward (at least until the flat portion is reached).
Thus the sticking probability should be larger than the
corresponding P(U) in the Coulomb attractive case.
We shall therefore assume that P(U) =1 as long as
U/kT is not small compared to unity. As long as
Ace&kT then, we can approximate I' by unity. The
temperature dependence in Eq. (6.20) now resides
entirely in the factor X[1—exp( —X)] "namely o con-
stant for hio(kT and o 1/T for kT«h~o. Using

l, =320 A for electrons in Si, A =20 ev (A)' and R = 1.16
A, we get

2ir t' A q
*

1 ('-,'mc') l

3 E-',mc'l l, L. kT J &p

r
'" P(X—x)X'dX

X ]' . (6.27)
"p 1—exp( —X)

o.=uih[1 —exp( —P)]1.7X10 "cm',
Making the approximation P(X—x) = 1, when x(X the

(6.22) double integral in Eq. (6.27) then reduces precisely to
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(2/3)()b, )&, so that

4n |' A ) —: 1 L-', nsc'(5(u„)'j'
0

9 (-,'mc') l,
(6.28)

Wertheim for his invaluable help in constructing
Table I.

APPENDIX A

Collision Rates: Acoustic Phonons
and the cross section varies as 1/T. Inserting A = 20 ev
(A)', —,'nsc'= 10 ' ev, l, =320 A, h~ =0.049 ev, and
kT=0.026 ev we get a cross section at room tempera-
ture of roughly 6&10 "cm'.

'F. SUMMARY

In this paper we have explained giant trapping cross
sections associated with Coulomb attractive centers by
means of a large capture rate into highly excited states
followed by a cascade process in which a certain fraction
of the captured electrons reach the ground state.
Acoustic and optical mode phonon creations provide
the mechanism for energy loss.

Capture by neutral centers is treated in a similar

way with the polarization of the neutral center pro-
viding excited states via an inverse fourth power
potential.

A detailed summary of the results obtained here has
been presented to the 1958 International Conference
on Semiconductors and will not be repeated here. We
only mention here that our theory for the acoustic
phonon contribution predicts a cross section which
increases rapidly as the temperature is lowered (because
of effective capture into larger and larger orbits) in
agreement with Koenig's experimental data (see Fig. 1).
Koenig's cross section, however, starts to level off at
4'K (see Fig. 7) whereas ours continues to rise. We have
previously suggested that this level-off must occur
because at these temperatures contributions to the
cross section comes from orbits comparable in size to
the separation between the centers. Our computed
levelled-off cross section, however, was too large to
agree with Koenig's measurement.

Mattis44 has recently suggested another reason for
the observed cross section to level off. His reasoning is
based on our result that the cross section varies approxi-
mately as (1/E&)' for electrons of energy Es Lsee Eqs.
(5.3)—(5.5) and Fig. 10$. Mattis suggested that in
Koenig's experiment the large capture cross section for
low-energy electrons depletes the supply of low-energy
electrons so that the "average" cross section is reduced.
Perhaps a combination of these explanations can yield
quantitative agreement.
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The total rate of collisions of electrons with lattice
vibrations can be written, using the deforma, tion
potential theory, "in the form

where"

EPkT p c'i y' —y i'
1/7(E) = i dy' M

4n%4pc' ~ (Sa))'
(A1)

M =-,'A(o/kTf(n+1)8(E(y') —E(p)+Au))
+nb(E(p') —E(p) —bar)$, (A2)

n=
t exp(Aa&/kT) —1] ', (A3)

and E~ is the deformation potential constant and p the
density of the crystal. We shall furthermore make the
Debye approximation in which the phonon energy is
given approximately by

Acu=c)p' —pi. (A4)

For comparison. , we note that in the usual ("classical" )
treatment of mobility, one makes the further assump-
tion that Ace((kT which is valid for the sort of collisions
important in conductivity, but not for the collisions
important in capture processes. In this "classical"
approximation

and
M = &(E(p') —E(y)), (AS)

dy'b(E' E) =4&27rns~E—l. (A6)

1/l(E) fdp'M

1/l, J'dy'8 (E' E)—(A8)

The relation (A4) permits one to rewrite dy' a.s
dE'd(Ace)d p where p is an azimuthal angle and dp may
be replaced by 2x.

dp'= (2nns/pc')
~
A~

~
d(Au) dE'. (A9)

4' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
'The second term in the expression for M (the absorption

term) can be omitted if we allow co in the first term to take negative
values since co[8 ( ca)+1g —con (a&)— =—

With these approximations, one obtains a "classical"
mean free path approximately independent of electron
energy:

1 1 1E2kTm:

57., x' ApC

where m is the eGective mass in the crystal.
Comparing (A1) with the corresponding "classical"

approximation we obtain
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If one uses (A6) for the denominator in (AS) and (4(gn —1), and E(n) is the normalizing factor
integrates over E' in the numerator of (AS), the mean
free path is given by r

4(v'q —n

~(n)=
~

4&~„~n yL1 —exp( —p/y) j
&co 1

l,/l(E) = (SEmc') '
i

Ao)
i d(A(o) . (A10)

g
—hco/kT The lower limit n+p, )1 is in accord with our discussion

following Eq. (1.22) that P(n) =0 for n(1.

Collision Rates: Optical and Intervalley

For optical and intervalley collisions we may regard
the phonon energy Ace as a constant, and modify the
interaction EP by a factor w Thus, if we rewrite (A2)
as

M = r'~f1 —exp( —X)) 'b(E' —E+A&u), (A12)

(A13)

with absorption included when co is negative then Kq.
(AS) becomes

l,ll(E) =~ 3(E'-E)dp'

=-,'u XL1—exp( —)I,)j 'L(E—5 )/E]'*, (A14)

and the reciprocal differential mean free path for energy
loss Ee+ U can be written

1 m P )E
l(E, Ee+U) 2l, 1—exp( —X) E E

&&8(fice—Ep —U). (A15)

APPENDIX B

Sticking Probability Integral Equation

The integral equation (1.14) can be rewritten in
terms of the dimensionless binding energy n= /U(~~wc')

and the dimensionless energy loss y=h~/(~mc') in the
form

I'(n) = &(n,I )dI I'(n+I ),
4m+& &~

where E(n,p) is simply the differential reciprocal mean
free path of Eq. (A11) normalized to unity:

Comparison of Eq. (1.16) with (A10) yields the
reciprocal diGerential mean free path

1/l(EP~) =
L I
~~/(SE~~'l. )j(&~/&2')

&& t 1—exp( —A~/kT)] '. (A11)

Diffusion Approximation

We note that for g))1, the maximum energy loss
4+n is small compared to n. It seems reasonable,

then, to expand I'(n+p) in powers of p. The sticking
probability Eq. (81) then becomes

~(n)=„" &(n,u)d~I'(n)+ &(n,I )I dI I"(n)
q+p&1 ~e+I &&

1+-
)

&(n, I )~'I'"(n)+" . (84)
2 g+p&l

Such an expression is analogous to the Fokker-Planck
treatment of the Brownian motion problem4': for
sufficiently small steps an integral equation is replaced
by a differential (diBusion) equation.

The first integral in Eq. (84) represents the proba-
bility that after one collision the new binding energy
n =n+p& 1, i.e., the integral in question is the proba-
bility of not escaping on the erst collision. For g&25
the maximum energy gain 4(gn+1) is insufEcient to
produce escape in one collision. Only in the region
g))25 will the energy gain or loss be small compared to
q. Thus the integral equation itself must be used to
investigate the tail region g&25, whereas the diffusion
equation (84) has some validity for n))25. In the
latter region, the requirement p) —(n —1) can be
dropped since p) —4(gn+1) is more stringent. Thus
Eq. (84) can be rewritten approximately as

I'"(n)/I" (n) =d»I" (n)/dn= 2( )/(I"}=—f(n) (85)—

where

(~')= &(n,I )~'dI

is the normalized sth moment of p, . In other words,

(p) is the mean energy loss and (p,') is the root mean
squared energy loss. The general solution to (85) is

00

E(„)=1—A I d p — f(*)d*, (86)

&(n,~) =
&(n) v 1—exp( —I/v)

where we have made use of the boundary condition
P(~) = 1. Strictly speaking the integration constant A
should be so chosen that P (n) matches with a solution

where%(n, P) is understood to vanish outside the range 4'f$ Cgaagraeekhar Reve Meter Phy ($1 (1943) chap
of permissible energy losses and gains —4(gn+1)(p I, $ec. 5.
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suitable for the tail region. Roughly, however, we may
extend (86) into the tail region, and determine A so
that P(1)=0.

It is clear that a necessary requirement for the
existence of a solution, is that the integral in Eq. (86)
converge at infinity. Such convergence is assumed if
limgf(q) )1, i.e.,

lim 2g(p)/(p') )1. (87)

( )=83(n/2v) —1j
(p') =Sg,

f(v) = (1/v) —(2/n),

(89)

(810)

dP(rl)/dg=ArP exp( q/v)— (811)

=A (q
—1)' exp) —(g —1)/v) j. (812)

Equation (88) indicates that the mean energy loss (p)
becomes positive at g= 2V (or binding energies of 2 kT).
From Eq. (85), the zero of (p) at g =2v is also the point
of inflection of P(g). Thus the region in which P(iI)
varies significantly is verified to be q/v &1, so that the
approximations used in. (88)—(810) are legitimate.
Equation (812) does not differ signicantly from Eq.
(811) within the approximation 1/q«1 but has the
desirable property of vanishing at g = 1.The integration
of (812) yields

P(g) =1—exp( —n) L1+n+-'n'] exp( —n)
&

(813)
where

The moments (p) and (p') are expressed by (85) and
(82) in terms of tabulated definite integrals. For very
large p these integrals yield the asymptotic values

(p) ~ 3' and (p') ~ 48rl/5 so that condition (87) is
easily satisfied, and a solution exists. We could, then,
tabulate the function f(g) using (85) and P(g) using
(86).

We did not follow the above course of action since
we did not wish to expend this much labor to obtain a
solution only of the diGusion approximation. Instead,
we note, that the diGusion approximation is likely to
be valid only if p))1 and p))1. In addition, we note
that in the important region q=p, the energy loss

4+g«v. Neglecting terms of order 1/v, 1/q, and

4'/v, we find that

ture diffusion result, we shall use Eq. (813)as a starting
approximation for the iterative solution of the original
integral equation (81). The Bell Laboratories analog
computer was used to perform the iterations. Figure 5
shows that for y=200 the high-temperature approxi-
mation is indistinguishable from the Anal correct result
down to g=20 (the first iterate agreed with our trial
function to within the accuracy 1% of the computer).
A similar remark applies to y= 50 down to g= 40. Note
that p= 200 and 50 are roughly room temperature and
liquid nitrogen temperature, respectively, for silicon.
At lower temperatures (v=10 and v=2) the high-
temperature approximation can no longer be expected
to be valid, although it is qualitatively right. In Fig. 5
we see that the correct P(g) in general exceeds the
diffusion approximation, except at low binding energies

(g &8), because P (g) vanishes much faster than (il —1)'
as 4l ~ 1. Qualitatively correct results can therefore be
obtained by using the diffusion approximation Kq.
(813) cutoff at g=5 or with n replaced by (q —8)/v
where 8 is a number of the order 5 to 10. See Fig. 6.

lf(n, p) ~ L16(m+1)3 'Ir
I (815)

The kernel (815) appropriate to the tail region is also
the kernel of the infinite temperature (v= ~) case.
Kith the latter viewpoint, we may consider g&25 as
well as g(25.

Since E(g,p,v) becomes independent of v for small g,
as in Eq. (815), we may expect then, that the tails of
the solutions for all y will be the same aside from a y
dependent proportionality factor. This behavior is
illustrated in Fig. 13. In that figure we see that the
infinite temperature solution is the envelope of the
solutions v'P (g,v).

If a Fokker-Planck expansion of the type (84) is

applied to the kernel (815), one obtains a differential

equation of the form

Tail Region

Since the total cross section might be significantly
altered if P(q) did not vanish as rapidly in the tail.

g((25 as we claim, some detailed investigation of the
tail region is in order. In the tail region 4/q«v, so
that we may assume p/v«1 in the kernel (82), with
the result

For small n,

n= (n 1)/v— 1)
0= —2i rl+ — iP'+ (~l'+6g+1)P"

33

P (~) =-'n'= (~—1)'/6v' (814)

A plot of (813) is shown in Fig. 3. We shall refer to
(813) as the high-temperature diffusion approximation.

In the region in which 4'/v becomes comparable
to unity, P(p) will already be so close to unity that the
neglect of 4'/v is unimportant.

Instead of attempting to improve the high-tempera-

16 8——(Sg'+ 10q+ 1)P4'& —-(vP+ 15rP+15rl+1)P&4&

15 9
+O(q')P'5' ., (816)

in the region g) 25. The first two terms in Eq. (816)
suggest that for large g there is an approximate solution
of the form g'. Iteration, or the use of an assumed form
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FIG. 13. A log-log
plot of izP(zz, i) ver-
sus q —1 where
y=hT/-zzzzzcz is a di-
m ensionless tem-
perature and q=U/
-,'-mt, 2 is a dimension-
less binding energy.
The common enve-
lope of these curves
indicates that in the
tail region q«25,
within one jump of
the boundary, solu-
tions at different
temperatures are
similar except for a
temperature de-
pendent normali-
zation factor.
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FIG. 14. The sticking probability P(q) in the tail region divided
by a starting approximation (zz

—1)' is plotted against zz. P(zz) is
obtained by numerical solution of Eq. (81)using the kernel (815)
appropriate to the tail region, obtained by setting the temperature
equal to infinity. The starting approximation is based on a
Fokker-Planck treatment of the same equation.
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of solution leads to

7i 128 128 1
P(zl) =c rls+rl' —zl+ ln—zl+

3 45 15 g

(817)

P '(zl) has a discontinuity at zi= 25. This discontinuity
arises because the lower limit to the integral equation
(81) changes from p) —

(zi
—1) to p& —4(uzi+1) at

zi=25. Equation (817), therefore, may n.ot be valid
until p is so big that only the z' term is of any
consequence.

A reasonable procedure might be to use Eq. (817)
as a starting function in an iterative procedure. We
shall see, however, that P(zi) vanishes quite rapidly as

q —+ 1. Therefore, a more suitable trial function over
the whole range is

(818)

The higher order terms in Eq. (816) are of the form
g"+V'~'"' and g"+'I'('"+". The introduction of higher
order terms permits the determination of additional
terms in Eq. (817) without affecting the coefficients
of the earlier terms. Thus a solution is uniquely
determined.

It is clear that if we would impose the boundary
conditions P(~)=1 on Eq. (817) we would have
c=P(zi)=0, i.e., at infinite temperature the sticking
probability at all binding energies is zero. For large but
finite temperatures, there will be a region in which

25((zl((p. In this region, Eq. (817), representing the

high-energy end of the "tail solution" can be matched
with the low-energy (zi/y«1) end of the finite tempera-
ture solution. The latter is given roughly by Eq. (814)
so that we expect the constant c to be of the form
(6ys) '. Thus we expect that the functions p'P(zi, y)
will coincide for sufficiently small g, with the infinite
temperature solution providing an envelope (see Fig.
13).

Equation (817), however, only represents an ap-
proximation, asymptotic for large p to the in6nite
temperature solution. Equations (817) and (816) are
both invalid at g =25 or even somewhat larger g because

As evidence for the suitability of Eq. (818) at large zl

we note that if Pi(zl) is the first iterate, Pi(100)/
Ps(100)= 1.0029, so that Eq. (818) is good to within
a fraction of a percent at q=100, and better for larger
zl. Because of this success, we are able to assume (818)
to be valid for g)100, and to iterate below g=100.
For practical purposes it is only possible to iterate over
a finite region. Therefore it is necessary to have a
solution good outside the finite region. And this is the
reason we derive the asymptotic solution (817). It is
only by accident that the more convenient trial func-
tion (zl

—1)' is actually slightly better than the analyti-
cally obtained asymptotic solution (817).

How good our trial function is may be seen by
examining Fig. 14 which plots the ratio of P(zl) obtained
after several iterations to Ps(zl). This ratio is close to
unity in the region ~&p&6. For smaller values of p,
P/Ps decreases rapidly, reaching 0.5 near zi=3 and 0
at zl=1. Thus we find that in the region rl(6, P(zi)
decreases much more rapidly than (zl —1)s.

We now propose to explain the rapid decrease in

P(X) as X=zl—1 approaches zero.
l P(X) is simply P(zl)

regarded as a function of 'A.] The integral equation
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(817) using (815) as kernel can be rewritten as

X+4O+X) &—4

P(X) =[16(2+X)]—' I

where
a=0, for ) &24
=) —4(1+))*'—4 for X& 24.

In the region X((1 Eq. (819) reduces to

~3K

P(~) =—, ~~
—X'(A'PP. '),

32 ~p
(820)

I'=e ~ and ) =e ~, (823)

permits (822) to be rewritten after some rearrangement
in the form

ir (y) —p(y —ln3) =2y+lnA, (824)

The conjecture (821) can be verified by converting
Eq. (820) to the differential difference equation

32P"(X)=3P(3))+16M"(X)+P(X).

A transformation to the new variables p(y) and y

a deceptively simple equation. To obtain the analytic
dependence near X=O, one might try P('A') =(X')".
However, this yields P(X) ~ X"+', so that each iteration
raises the exponent, by two. Thus P(X) vanishes faster
than )"for any finite e. It is indeed not obvious, at all,
that there is any analytic behavior near ) =0 that will
satisfy Eq. (820).

We can, however, obtain the nature of the singu-
larity at X=0 by a physical argument. Equation (820)
indicates that the probability of each (downward) step
is of the order ), so that e downward steps occurs with
a probability of the order )".Since the binding energy
can at most change from ) to 3X, i.e., triple in each step,
if X((1, the number of steps e to go from X to a binding
energy 6 of order unity is given by

b/X =3", ri = lns(1/X)+lnsb, (821)
so that we expect

P(X) ~ )" with rr = insb+1ns(1/X),

as stated in Eq. (2.23) of the introduction.

A = (32/3) t'y'+ (p')' —p")+ (16/3) y'e '& e—'" (8.25)

We are concerned with the solution of (824) in the
region of large y. The term in 2y is dominant, and may
be used to obtain an approximate solution rp=y'/ln3
that already contains the dominant behavior described
in Eq. (1.23). One iteration using the dominant term
in A, i.e., A = (32/3) (y')' leads to

9 (y) =y'/ln3+ (2/ln3)y lny+cy+, (826)
where

1 t' 128
c= ln~ [

—2 =3.52.
ln3 (3(ln3)')

A return to the original variables gives I'=)" with

n=ln(1/) )/ln3+3. 52+2 ln ln(1/X)/ln3. (827)

Equation (827) verifies to good approximation our
original conjecture Eq. (821), and supplies us with an
understanding of the nature of the essential singularity
near ) =0.
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Anisotropic Ferromagnetic Resonance Linewidth in Ferrites*
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In disordered magnetic materials such as the ferrites, the dominant source of resonance linewidth can be
attributed to processes involving only two elementary excitations: the destruction of a magnon with the
creation either of another magnon or a phonon. We here consider only the primary magnon-magnon scat-
tering process. We show that the random variation of the spin-orbit coupling parameters of the disordered
ions leads to a resonance linewidth comparable to that observed in ferrites. The particular symmetry of the
crystalline fields around the octahedrally coordinated sites causes an anisotropy in the linewidth with a
nunimum in the L100) directions and a maximum in the L111$directions. This anisotropy of linewidth is in
general agreement with experimental observations on typical ferrites, as for example, the measurements of
Schnitzler, Folen, and Rado on disordered lithium ferrite.

1. INTRODUCTION

HE source of resonance linewidth in disordered
magnetic materials such as the ferrites has been

discussed by Clogston, Suhl, Walker, and Anderson, '
*This work was supported by the Office of Naval Research.' A. M. Clogston, H, Suhl, L. R. Walker, and P. W. Anderson,

J. Phys. Chem. Solids 1, 129 (1959).

who pointed out the possibility of two excitation proc-
esses conserving energy but not momentum. The pri-
mary mechanism of magnon scattering was attributed
to the random pseudodipolar interaction. However, the
subsequent discovery by Folen and Rado' that the

s V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958).


