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Solubility of Flaws in Heavily-Doped Semiconductors*
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The solubility of a charged impurity in a semiconductor depends upon the Fermi level. This dependence
may be understood in terms of a conceptual model in which an impurity is allowed to diffuse in a specimen
containing a p-e junction, so that the Fermi level varies in respect to the band edges. If the impurity can
exist in many states of charge (i:e., is a "flaw"), then the concentration of flaws with charge r times the
electronic charge varies as the rth power of the hole density. Summing the concentrations for the different
states of charge gives the solubility and its dependence upon hole concentration, and, hence, Fermi level.

' 'T is the purpose of this article to present a simple
& - model on the basis of which the dependence of the
solubility of a chemical imperfection can be understood
in regard to its dependence upon the donor and acceptor
concentration. The essential feature of the argument
is that thermal equilibrium is not affected by the in-
troduction of hypothetical processes which permit equi-
librium to be established but do not violate the prin-
ciple of detailed balance.

In Fig. 1 the potential energy distribution for an
electron in a semiconductor containing a p-rt junction is
shown. The situation corresponds to thermal equilibrium
with Ii representing the Fermi level and E; the intrinsic
level. By definition the electrostatic potential and Fermi
potential are

Last' are also shown. The potential that is shown cor-
responds to a linear graded junction with local space
charge neutrality, which will occur if the Debye length
for the intrinsic material is short enough at the tempera-
ture involved compared to the concentration gradient.
The criteria for shortnes~ is that given by Shockley. '

Figure 1(b) represents the predominant charge con-
dition, which is substantially the same as the average
charge on the Raw. In accordance with the Shockley-
Last model, this charge changes when the Fermi level
passes through any of the characteristic energy levels
for the Raw. Thus, the breaks in the curve of Figure
1(b) correspond to the points at which the flaw levels
cross the Fermi level in Fig. 1(a).

The problem with which we are confronted is to
determine the actual concentration of Qaws at each
point in Fig. 1 under thermal equilibrium conditions.
This is a problem which has been considered from a
different viewpoint by Riess, Fuller, and Morin.

In Fig. 2 a hypothetical system is represented. Here
the P rt junction-specimen of Fig. 1 is surrounded by
an impermeable membrane execpt for the attachment
of an i-type region which extends out of the original
specimen. The i-type region is separated from the source
of Qaws by a semipermeable membrane through which
only neutral Qaws may pass. When this system has come
to thermal equihbrium, the concentration of Raws in all
parts of the system will be the same as if the source of
Qaws with its characteristic chemical potential for Qaws
were put in contact with any portion of the body of
silicon. This is a consequence of the general theorem
that any mechanism of establishing the equilibrium

leads to the same final equilibrium state. In the intrinsic
region there will be a certain concentration of neutral
Qaws and these are in equilibrium with the source of
Qaws.

We now imagine that a neutral Raw can disuse. This

V= E,/q, @= F/—q,
—

where q=
~ tt ~

is the electronic charge and E; is the level
of energy for the Fermi level in intrinsic material.
Levels for the first donor (1d), first acceptor (1a), and
second acceptor (2a) for a hypothetical Raw, such as
gold in germanium, in the notation of Shockley and
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FIG. I. Distribution of charge on flaws in a p-e junction;
(a) Energy levels as a function of position; (b) Average charge
on a flaw in units of q= ~g~.
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certainly can occur to a very limited degree by simple
interchange of a neutral flaw with an adjoining silicon
atom. Although this may not be an important process
in the actual diffusion of flaws, it is a possible conceptual
process. If we consider this process we see that no force
acts to cause a neutral flaw to move. Consequently
its equilibrium distribution is determined solely by dif-
fusion. In other words, when equilibrium is reached
there can be no concentration gradient of neutral flaws
throughout the system. This neglects certain second
order effects such as a change in lattice constant with
doping level which will exert a mechanica, l force upon
a flaw. It also neglects electrical polarization effects on
flaws which may cause a neutral flaw to be concentrated
at the point where it is in the highest electrical held.

If the concentration of neutral flaws is known at any
point in the semiconductor under thermal equilibrium,
then t'ie total concentration is also known from the
Shockl. y-Last Theory, which shows that the ratio of
concentrations of flaws in any one of the charge con-
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ditions is given simply by the ratio of Boltzmann factors:

1'td, „'"'o."1't '. —,"2 ='.expL(Etd —F)/kT]: 1:
exp L(F—E,.)/&T):
expL(2F —Eto—E~,)/k T],

where the y"'s are the fractions of the flaws in the various
states of charge. From Eq. (2) it follows, for example,
that S 2, the concentration of flaws in charge state —2,
i.e., condition 2a, varies with position as

Z*E.=K«+E2.+— +E--
—= —(Et~+Etc+ +E-)
=—0

r&0
r&0
r=0.

For levels separated by several kT, only the predomi-
nant N„, term in the sum of Eq. (6) will be important
and consequently Nf, (F E,) will de—pend upon F, as
shown by the heavy line of Fig. 3. In each energy in-
terval Nf, (F E,) varies a—s exp f

—r(F—E~)/kTj where
the charge on the flaw is rq = r

~ q ~

.

The charge density due to the flaws is

py, (F E,) =Qqr1V„(—F E;) =q(r)Nf„— .

where (r) is a function of F E, and is th—e avera, ge
number of electron charges on the law. The line

~(r)N~, ~, which represents the density of electronic
charges is not shown on Fig. 3. It would lie on the
higher of the lines lV~, and X ~, for Ii &E2 and would
lie above N&, by a factor of 2 for F)E2, (There will. ,
of course, be transition regions of curvature near at
(E,.+E,g)/2 and E,.)

because Tp, 2', E,—E~, and E,—E. are all inde-
pendent. of position. Hence the distribution of flaws in
charge state —2q is given by the Boltzmann distribution
for particles of that state of charge.

Equa, tion (5) can also be reached simply by assuming
that the flaws of different states of charge disuse with-
out changing their state of charge. Under this assump-
tion they will evidently also reach the same Boltzmann
distribution.

The result just obtained can be generalized to give
the solubility of the flaw as a function of the Fermi
level. In a saturated crystal, the density of neutral laws
denoted by 1Vp„will be independent of F—E; for the
reasons discussed in connection with Fig. 2. The density
of Raws of charge rq is N„,(F E,) and—the saturation
solublllty Egg 1s thus

.Vg. (F E,) = Q—„N„,(F E,)—
=N„g„expL(—.F—P*E,)/uT], (6)

where

N e:Nf 1'2 =NpexpL(2F Et, E2,)/kT j, — —(3) t

where Xf is the total concentration of flaws at any
point and

E'p= Nfj
"p

is the concentration of neutral flaws.
Equation (3) may be rewritten in the form:

N 2= exp(2qV/kT)No

XexpL(2F+E, —Et,+E,—E )/he], (5)

using Eq. (1) to introduce the potential V. In Eq. (5),
only the 6rst exponential varies with position in Fig. 2
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FIG. 3. Saturation concentration of the Raw in various
charge states and solubility of the Raw.
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In a specimen with XD ionized donors andiV g ionized
acceptors, the electrical charge density is

p= q{ED—Ã~ —2N;sinhl (F—E;)/k2'j
+(r)Xf,(P 8;)—). (9) 20

For a given value of SD Ez—, Eq. (9) with p=0 gives
the value of Ii which leads to neutrality and hence to
the solubility of the Qaw for that doping level. If the
carrier charge density is large compared to the Qaw

density, as is represented for most parts of Fig. 3, then
the Fermi level is effectively unaltered by the presence
of the Qaws and may be calculated in the usual way.
On the other hand, if the Qaw charge density is larger
than the electron density, then the Qaw charge density
is equal and opposite to the chemical charge density
q(ED 1VQ) and the solubility of the flaw is

(10)
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This same conclusion is reached for the case of lithium
with (r)=+1 by Reiss, Fuller, and Morin' using a
different method of attack.

As an example of a multiply-charged Qaw, we con-
sider copper in germanium at 900'C. The levels, as
measured near room temperature, are as follows4:

Eg —E;=—0.35 ev,

E2.—E = —0.07 ev,

E3,—E;=0.13 ev.

FIG. 4. Solubility and charge density for saturated solid
solution of copper in germanium at 900'C.

Xc,s= (1VD Ez)/3. — (14)

On the basis of these values, Fig. 4 has been constructed.
Since k1'/q=0. 101 volt (or 0.232 volts per decade) at
900'C, there is conspicuous curvature at the intersec-
tions of the line segments. For values of XD—Ãg& 10'
cm ', the charge on the Cu ' ions dominates the elec-
trons, and

The solubility of Cu in a heavily-doped m-type specimen
is seen to be more than 104 times larger than in an
intrinsic specimen.

Copper is thought to be soluble chieQy in substitu-
tional sites, but also to be present at about 10 ' less
concentration in interstitial sites, where it has a positive
charge. ~ The diffusion is thought to occur chieQy as
positive interstitial ions. The solubility in the positive
ion form shouM increase in proportion to the hole den-

sity, if the charge is one electronic unit. The ratio of
concentrations of the two different forms of dissolved
Qaws, i.e., interstitial and substitutional, will depend
on temperature. Each form will have a diagram like
Fig. 3; however, the two diagrams will shift relative
to each other along the concentration axis as the tem-
perature changes.

(These values are probably temperature dependent and
possibly should be scaled in proportion to the energy
gap at higher temperatures. This would raise the pre-
dicted saturation concentration somewhat on Fig. 4.)
The value of e; is'

(12)e,=4X10"cm '.

The solubility of copper in intrinsic germanium at
900 C is'

(13)Ecv, s(O) =3X10ts cm—'.
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