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matrix as
M(y) =M.+yM&, (A.17)

Clearly
M(3) U(3) =~(y) U(3)

~(y) = (U(y), MU(y) )/(U(3), U(3) ).
Letting prime indicate differentiation with respect to y,

where M, arises from the A Bin-teractions, yMb from
the 8 Bint-eractions (M, and M& are independent of y).
The eigenvalue equation, in vector notation, is

we have

B—nt„(k) ~&0, all t, k.
By

(A.19)

re'(y) = (U(y), MbU(y) )/(U(y), U(y) ). (A.18)

But Eq. (7) shows that the B Bin-teraction is negative
semidefinite; since the right-hand side of (A.18) repre-
sents the 8-8 interaction energy for some set of devia-
tions, it follows that
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Magnetic Properties of Mns04 and the Canted Spin Problem*
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The magnetic properties of single crystals of hausmannite (Mn304) have been investigated between
4.2'K and the ferrimagnetic Curie point at 41.9'K. The c axis was found to be the hard direction of mag-
netization and the c plane was found to possess considerable anisotropy, with respective anisotropy fields
of about 10' oe and 104 oe. These anisotropy energies decreased slowly with increasing temperature, whereas
the coercive force at 15'K was about an order of magnitude less than at 4.2'K. The spontaneous magnetiza-
tion is 1.85 pn/molecule, which agrees with previous polycrystalline values when the observed anisotropies
are taken into account. However, several of the observed properties of hausmannite disagree, some
quantitatively and others qualitatively, with calculations based on the Yafet-Kittel theory. It is concluded
that the concept of canted spins is essentially correct, but that the specific Yafet-Kittel model involves
oversimplifications which limit its applicability.

I. INTRODUCTION

~ONSIDERABI. Y more information can be ob-~ tained from studies of the magnetic properties of
single crystals than from those made with polycrystal-
line samples. The magnetic anisotropy, which is a
sensitive indicator of magnetic symmetry and of
changes in that symmetry, can be determined in
detail only by measurements on single crystals. Further-
more, an accurate determination of the magnetization
of a single crystal can be made independently of the
crystalline anisotropy by applying the external field
along an easy direction. In polycrystalline samples,
however, anisotropy has the eRect of reducing the
apparent magnetic moment. This eRect can be impor-
tant for materials with large anistropy.

We have investigated the magnetic properties of
single-crystal samples of hausmannite (Mns04), ' which
is known to become ferrimagnetic at about 42'K. '
Our measurements show that the c axis is a hard

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S.
Army, Navy, and Air Force.' Obtained through the courtesy of the New York Museum of
Natural History.

2 A. S. Borovik-Romanov and M. P. Orlova, J. Exptl. Theoret.
Phys. (U.S.S.R.) 32 1255 (1957) /translation: Soviet Phys. —
JETP 3, 1023 (1957)g.

magnetization direction and that the c plane also
possesses considerable anisotropy, the respective anisot-
ropy 6elds being approximately 10' oe and 104 oe.
The temperature variations of both these anisotropy
energies are small. On the other hand, the coercive
force at about 15'K is an order of magnitude less than
the 2650 oe observed at 4.2'K. YVe find the spon-
taneous magnetization to be 1.85 tttr/molecule, which

is greater than the values 1.4 tts/molecule' and 1.56
tt&/molecule' previously measured for polycrystalline
samples. Both of the latter values are low because of
the anisotropy effect, and can be brought into good
agreement with our present value by a correction cal-
culated from our anisotropy data. However, our present
value is also less than the 3.0 tetr/molecule predicted by
the Xeel model of ferrimagnetism.

Many other materials with spinel structure exhibit
smaller spontaneous magnetizations than predicted. '
The Vafet-Kittel theory' of spin angles was introduced
to account for such reduced moments. Although
hausmannite has a cubic spinel structure above 1170'C,

'D. G. Wickham and W. J. Croft, J. Phys. Chem. Solids 7,
351 (i958).

4 I. S. Jacobs, J. Appl. Phys. 30, 301S (1959).
5 E. W. Gorter, Philips Research Repts. 9, 295, 321, 403 (1954),
e Y. Yafet and C, Kittel, Phys. Rev, 87, 290 (1952).
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it becomes tetragonally distorted' at lower tempera-
tures, as was explained by Goodenough and Loeb. '
This distortion must affect the magnetic properties in
some manner, but does not detract from the applic-
ability of the Yafet-Kittel model. To the contrary,
Kaplan has recently shown' that their configuration
can only be stable in a distorted spinel.

When our numerical values for the spontaneous
magnetization, anisotropy, and ferrimagnetic Curie
temperature are substituted into expressions derived
straightforwardly from the Yafet-Kittel model, a
distinct discrepancy appears. This discrepancy was
also implicit in the work of Jacobs" on polycrystalline
Mn 304, but was overshadowed by his high-field
evidence for canted spins and by Kasper's" success in
fitting neutron-diffraction data with a modified ordering
of Yafet-Kittel angles. However, neither the tempera-
ture variation of the coercive force nor the peculiar
remagnetization effects described in this paper can be
explained within the framework of the Yafet-Kittel
model. Moreover, this model cannot even account for
the orthorhombic doubling of the unit cell observed

by Kasper, "since the doubled configuration is just one
element in a degenerate set of ground states. These
facts add greatly to the significance of the discrepancy
mentioned above.

There is considerable experimental evidence showing
that the concept of canted spins is essentially correct
in a number of diferent materials. '~" Nevertheless,
some confusion concerning the details of the Yafet-
Kittel theory still remains. In particular, Prince" found
afhrmative evidence for ordered angles in copper
chromite, whereas Pickart and Nathans"" found no
such evidence in the nickel-iron chromite and man-
ganese-iron chromite systems. Furthermore, as noted
above, neither our findings nor Kasper's doubling of
the unit cell" can be explained by the Yafet-Kittel
theory, although hausmannite does possess canted
spins. ""These experimental discrepancies are attribut-
able to the sublattice restrictions of the specific Yafet-
Kittel model, which limit its applicability.

II. SAMPLE CONSIDERATIONS: ANALYSIS BY
CURIE POINT COMPARISON

Single crystals of hausmannite occur in nature as
small pyramids growing out of certain rocks."They are
quite rare, and can be found only in a few scattered
localities, such as at Ohrenstock near Ilmenau, Thur-

7 F. C. Romeijn, Philips Research Repts. 8, 304 (1953).
J. B.Goodenough and A. L. Loeb, Phys. Rev. 98, 391 (1955).' T. A. Kaplan, Phys. Rev. 116, 888 (1959).' I. S. Jacobs, J. Phys. Chem. Solids 11, 1 (1959)."J.S. Kasper, Bull. Am. Phys. Soc. 4, 178 (1959)."P.L. Edwards, Phys. Rev. 116, 287 (1959).

'3 E. Prince, Acta Cryst. 10, 554 (1957).' S. J. Pickart and R. Nathans, Phys. Rev. 116, 317 (1959).' S. J. Pickart and R. Nathans, Bull. Am. Phys. Soc. 3, 231
(1958).

'6 C. Palache, H. Berman, and C. Frondel, Disa's System of
Minerology (John Wiley 8r Sons, Inc. , New York, 1944), 7th ed. ,
Vol. 1, pp. 712—715.
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ingia, in Germany. Two hausmannite pyramids from
this deposit were examined by x rays, which showed
them to be good, untwinned single crystals. Both
pyramids were oriented by their x-ray Laue patterns'
and were sliced, one of them parallel to the bc tetragonal
(100) plane, the other parallel to the (001) plane. " The
relative orientations of these two planes are shown in
Fig. 1. Our samples consisted of small disks (approxi-
mately 0.100 inch in diameter and 0.020 inch thick) cut
from the oriented slices by a Raytheon ultrasonic
machine tool.

The question of chemical composition is particularly
important, since both our samples could not be obtained
from the same crystal. A complete chemical analysis
was impossible for want of material, and for the same
reason the sensitivity of an ammonium thiocyanate
color test for iron" failed at 0.1%.The iron content of
our crystals was definitely below this value.

Dana" lists two analyses for different hausmannite
crystals from Ilmenau, Thuringia. One of these crystals
was very pure Mnso4, with only 0.3% impurities (Ba
and Si). The other contained 6.9 wt % Zn as the
major impurity, with about 0.2% Fe, 0.1% Ca, 0.2%
Si, and 0.3% K and Na combined. The absence of
iron in our samples indicates that their analysis would

probably be of the first type, i.e., pure Mn304. Further-
more, the presence of Zn as the only major impurity in
crystals from Ilmenau implies that our samples'
purity could be established through magnetic analysis,
since the presence of zinc on spinel 2-sites has a marked
effect upon the Curie temperature.

"We are indebted to J. W. Sanchez of Lincoln Laboratory for
the x-ray orientation of the crystals."Throughout this paper we shall refer all directions and planes
to the crystallographic bc tetragonal unit cell rather than to the
fc cell, unless otherwise stated. Figure 1 shows the relationship
between these two descriptions. In particular, the bc tetragonal
(100) is identical with the fc tetragonal or cubic (110).

"Made by E. R. Whipple.

—bC TETRAGONAL CELL —- fCTETRAGONAl CELL

/// (oo() PLANE XXX ((oo) PLANK

Fig. 1. The relationship between the bc tetragonal unit cell
and the fc tetragonal cell itetragonally distorted fcc cell). The
lattice parameters for hansmannite are: a =5.75 A and c/a = 1.638.
The sample orientations are indicated by the shaded planes.
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type-one analysis does indeed represent a good
approximation to the composition of our samples, i.e.,
that they do consist of reasonably pure Mn304.
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I'ig. 2. The dependence of the Curie temperature upon zinc
concentration in Zn, Mn1, +Mn23+O4. Weight percent —28.4x.

' K. Dwight, N, Menyuk, and D. O. Smith, J. Appl. Phys. 29,
49i (i958).

"N. Menyuk and K. Dwight, Phys. Rev. 112, 397 (1958).
~2 Prepared by D. G, Wickham of Lincoln Laboratory.
'30btained through the courtesy of the Peabody Museum of

Harvard University.

The ferrimagnetic Curie points of our samples were
determined from graphs of magnetization versus
temperature plotted automatically by a vibrating-coil

magnetometer,
" using an experimental arrangement

similar to that described elsewhere. " The external
fields applied to the samples were kept small in order
to minimize error due to short range order. The tempera-
ture signal was obtained from a calibrated Leeds and
Northrup platinum resistance thermometer in good
thermal contact with the sample, as shown by the lack
of appreciable hysteresis between warming and cooling
curves. Similar determinations were carried out for
polycrystalline samples" of pure Mn304 and of Mn304
with 1.8&0.1, 3.6&0.1, and 5.0&0.2 wt % zinc addi-.
tions, with the results shown in Fig. 2.

We found the ferrimagnetic Curie temperature of pure
Mn304 to be 41.8~0.1'K, in good agreement with the
value of 42.5'K obtained by Sorovik-Romanov. ' The
(001) sample became ferrimagnetic at 41.95&0.1'K,
and the (100) sample at 41.2&0.1'K. In comparison
with these values, the samples with 1.8~0.1, 3.6+0.1,
and 5.0+0.2 wt % Zn addition had Curie points of
39.6~0.2'K, 37.0&0.2'K, and 35.4~0.4'K, respec-
tively. Thus our (001) and (100) samples appear to
contain less than 0.1% and 0.5% Zn, respectively.

A third single-crystal hausmannite pyramid" from
Ilmenau, Thuringia, was examined by x-ray Quores-
cence by E. P. Warekois, who found zinc to be the major
impurity, with other elements also present in smaller
quantities. Furthermore, its ferrimagnetic Curie temper-
ature was found to be about 31.8+0.2'K, which
indicates about 7.7 wt % zinc. This example of the
second type of chemical composition of Ilmenau
crystals described in Dana" substantiates the dichot-
omy reported there. Having inferred that hausman-
nite crystals from Ilmenau are of two distinct types
with zinc as the major impurity, we conclude that the

III. EXPERIMENTAL RESULTS AT 4.2'K

A. Anisotropy in the (100) Plane

Investigation of the (100) sample in an external
Geld of 11 000 oe at 4.2'K showed that hausmannite is
a magnetically hard material. The maximum available
field was able to fully magnetize the sample in one
direction only, and only a tenth as much magnetization
could be obtained at right angles to this direction. An
x-ray determination of these two orientations" estab-
lished the I 001] (tetragonal c axis) to be the hard
direction of magnetization.

To measure the anisotropy, a large external field
was initially applied along the easy $010] direction
and the spontaneous magnetization M, was determined.
The single-domain sample was then rotated, and the
apparent rnagnetizations M were measured with a
known field applied along several other directions.
Since the rotational model is valid under these condi-
tions, the apparent moment is given by:

M/M. = cos (8,—p,),

where the magnetization and the applied field make
angles of 8, and p„respectively, with the c axis. p, is
known, and so 8. can be calculated from the measured
values of M/M, .

Since hausmannite possesses twofold magnetic sym-
metry in the (100) plane, its anisotropy energy can be
expressed in the uniaxial form and

E.=Ex,+EIr=E, sin'8, —HM, cos(8,—p,). (2)

Equilibrium in an external field then requires that

0=BE,/M, =E, sin28, —BM, sin(p, —8,). (3)

B. Anisotropy in the (001) Plane

Relatively small external fields were able to satu-
rate the (001) sample in two orientations 90' apart.
X-ray examination" showed these directions of easy
magnetization to be the bc tetragonal (100] and L010]
axes. However, when the sample is first saturated along
one of these directions, fields greater than 4000 oe

Substitution of our experimental data into Eq. (3)
gives values of E,/M, between —3X10' oe and —~,
with a most probable value of —5)&104 oe. The range is

asymmetrical because of the functional forms of
Eqs. (1) and (3). It arises from extreme variations of
the order of &0.03 in our values for M/M„and
rejects our inability to move the magnetization more
than a few degrees away from its easy direction.
Using the magnetization value given below (see IIID),
it follows that E.= —10' ergs/cc.
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are required to remagnetize it along the other direction.
Furthermore, the realignment of magnetization is a
slow process requiring over an hour at 4500 oe, and
several minutes in fields of 10 000 oe. This and other
peculiarities in the dynamic behavior of hausmannite
will be the subject of a later investigation.

Although all directions in the (001) plane are
relatively "easy" compared to the c axis, we found
considerable anisotropy to be present within this
plane. Its magnitude was calculated from measured
ratios of apparent to saturation magnetizations for
different sample orientations in various external fields.
The sample was cooled through its ferrimagnetic
Curie point with a field of j.0 000 oe applied along an
easy direction, and was never rotated more than 35'
away from this direction. These precautions make it
reasonable to apply the rotational model to our findings.

Kasper's neutron diffraction study" demonstrated
hausmannite to possess orthorhombic magnetic sym-
metry in which the bc tetragonal unit cell is doubled
along a $100) direction. If energy can be gained by this
doubling, then the 90'remagnetization processdescribed
above can be interpreted as a rearrangement of the
magnetic symmetry against some energy barrier. Our
experimental precautions were such as to preserve a
fixed magnetic arrangement, and hence a uniaxial type of
anisotropy is to be expected. Equations (1)—(3) should
therefore apply, with 6, and p, replaced by the angles

and p which now are referred to the easy direction
in the (001) plane.

According to this model, our small-angle data leads
to the value of 5950&350 oe for K,/M, . However,
additional data was obtained by reducing the external
field to zero, rotating the sample 90', and then gradually
increasing the field. The magnetic arrangement should
remain unchanged until a "coercive force" is reached,
and the uniaxial model should apply up to that point.
The above value of K,/M, disagrees w'ith this data.

In order to fit both the small-angle and 90' data,
it is necessary to include the second-order anisotropy
term, i.e.,

Ea,——K, sin'tl +E,' sin'tl, .

The small-angle data then combines E, and E ',
so that

G/M, =K,/M, +2 (K,'/M—,) sin'tl,
=HLsin(&p, —8,)j/sin2tl, . (5)

For p =25' and H=5500 oe, this yields

G/M, =E,/M, +(0.0332%0.0028)E',/M,
= (5950&350) oe,

where the uncertainties arise from a probable error in
M/M, of 0.15%%u~. Consequently the 90' data leads to
estimated values of K /M, =4800+300 oe and K '/M,
=34000%10000 oe, so that multiplication by our
value of M, (see IIID) yields E,= (1.06&0.07) &&10'
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ergs/cc and E,'=(7.5%2)X10s ergs/cc. Theoretical
curves based on these values are compared with typical
data in Fig. 3, which shows the agreement to be good.
Alternatively, if fourfold anisotropy symmetry is
assumed and its magnitude is determined from the
small-angle data, then the theoretical curve does not
agree with the 90' data, as indicated by the dashed line
in Fig. 3. In particular, the magnetization could readjust
by rotation at fields considerably smaller than the
observed "coercive force." Thus our data shows the
anisotropy symmetry to be uniaxial in the (001) plane,
reinforcing Kasper's observation of orthorhombic
doubling. "

C. Coercive Force
It was impossible to obtain good quasi-static 8—II

loops because of the dynamic behavior described above.
Figure 4 shows data typical of both samples. Because of
the peculiar dynamics, this data shows that the coercive
force for magnetization reversal is probably less than
2800 oe. By waiting for longer times at fields between
2000 and 2800 oe and extrapolating the time depend-
ence, we found that the magnetization could eventually
(after about three hours) be reduced to zero by a imld
of 2650 oe, which we will call the 180' coercive force.
The apparent coercivity of 16000 oe obtained by
Jacobs' "with pulsed-6eld techniques probably resulted

2 3 4
H ( Kilo-Oersteds }

Frg. 3. Experimental values for M/3E, measured at 4.2'K in
the (00&) pla~e at various angles from the magnetically easy
L100) direction. The solid curves show that the data can be
closely fitted by the uniaxial anisotropy given in Eq. (4). The
curve shows that the 90' data cannot be reconciled to a fourfold
anisotropy fitted to the small-angle data.
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FIG. 4. Dependence of the magnetization upon fields applied
along an easy direction at 4.2'K. Data for a 180' field reversal is
shown by solid points and solid arrows. Data for a 90' remag-
netization is indicated by crosses and dashed arrows. The numbers
beside the arrows show the length of time, in minutes, required
for the magnetization to change by the indicated amount.

from the dynamic behavior, even larger fields being
required for reversal by rotation according to the
anisotropy energies given in IIIB.

The 90' data is included in Fig. 4. Once the (001)
sample is magnetized along one easy direction, a field
of about 4600 oe is required to remagnetize it (after an
hour and a half) along the other. The magnetic
symmetry of hausmannite has been shown to be
orthorhornbic with uniaxial anisotropy in the (001)
plane. Hence 4600 oe represents the "coercive force"
required to overcome the energy barrier between the
two equally possible magnetic arrangements at 4.2'K.

of any individual moment will be M.+X H cos(8,—q,),
where X is the molecular susceptibility. The apparent
moment is the average component of the individual
moments ajong the applied field, and can be expressed as

n/2

M —J" (3f,+X H cos(e,—q,)]
0

Xcos(8,—p,) sin@,dq, . (6)

Jacobs polycrystalline data' " shows apparent mag-
netic moments of 1.70 p, ~ and 1.99 p~ at 45 000 oe and
135 000 oe, respectively. Numerical integration of
Eq. (6) gives M=0.9003II,+37 000X at the former
field, and 3f=0.973M,+128 000X at the latter.
Substitution of the experimental values then yields
X =1.72X10 ' ills/oe and M, =1.82 Ils. The suscept-
ibility term would reduce our value to 1.85&0.02 p&,
so that good agreement is obtained by using our most
probable value for E,.

A similar correction raises our original polycrystalline
determination' of 1.4 I'll/molecule at 10 000 oe to 1.86
p&. In this calculation, the anisotropy within the
"easy" plane and an approximation to the coercivity
effects had to be included because of the smaller
applied field.

IV. VARIATIONS WITH TEMPERATURE

The dependence of magnetization upon temperature
is illustrated in Fig. 5. The indicated Curie point was
obtained from low-field data.

Although our present data on the temperature
variation of the coercive force is insufficient to define a
functional relationship, it clearly demonstrates a
decrease from 2650 oe at 4.2'K to 300 oe by about 15'K.
This order-of-magnitude change is in qualitative

D. Spontaneous Magnetization

A held of 10 000 oe was used to compare the magnetic
moments of the two hausmannite samples with that
of a polycrystalline nickel standard. These measure-
ments yielded 1.87&0.02 I'll/molecule for both samples,
based on a saturation moment for nickel of 0.604
Ils/molecule which was adjusted for the extrapolation
from 10000 oe to an infinite field. The magnetization
was then calculated to be 221 cgs/cc by using the
theoretical density of 4.84 g/cc. Although this mag-
netization value was obtained at 10000 oe, Fig. 4
shows it to be a good approximation to the spontaneous
magnetization.

Previous determinations were made with polycrystal-
line samples, which consist of randomly oriented
crystallites. If we neglect the anisotropy within the
easy plane, then the angle between the magnetic
moment of a crystallite and an applied field will be
(8,—p,) as defined in IIIA. The equilibrium condition
relating 8, to &p, is given by Eq. (3), and the magnitude

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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FIG. 5. Dependence of the magnetization upon temperature for
various fields applied along the easy direction. The dotted curve
falls away from the others at about 16'K because 250 oe was less
than the demagnetizing field of our sample. . However, the pro-
nounced hump just below the Curie point is anomalous.
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agreement with Jacobs' findings, '" from which he
infers a similar rapid decrease in the anisotropy energy,
Such an inference is normally reasonable, but proves to
be erroneous in the case of hausmannite.

The small-angle technique was used to evaluate 6
in Eq. (5) at several evaluated temperatures, with the
results shown in Fig. 6. Classical theory" was used to
calculate the temperature variations of the uniaxial
anisotropies E, and E,' separately. These variations
were then combined to give the solid curve in Fig. 6
which indicates qualitative agreement with our data.
It is significant that the anisotropy remains essentially
constant over the temperature range 4.2'K—20'K,
whereas the coercive force decreases by over an order of
magnitude.

Similar attempts were made to determine E, at
30'K and 38'K. As discussed earlier in connection with
the 4.2'K measurement, accurate values for E, could
not be obtained because the available 6elds were much
smaller than the anisotropy field. Within the un-
certainty of our results, there was no indication of a
marked decrease in IC,/M, with increasing temperature.
The presumption is that the temperature dependence
of the anisotropy energy in the (100) plane is qualita-
tively similar to that found in the (001) plane.

V. DISCUSSION

An adequate theoretical explanation for the behavior
of hausmannite must lead to an understanding of
many unusual magnetic properties, e.g. : The low value
of saturation mangetization, the high-field susceptibil-
ity, ' " the strong temperature dependence of the
coercive force relative to that of the magnetic anisot-
ropy, the orthorhombic doubling of the tetragonal
unit cell," and the peculiar dynamic behavior. It must
also be consistent with the ferrimagnetic and asymp-
totic'" Curie points. The 6rst two features suggest an
explanation in terms of Yafet-Kittel angles. "However,
it will be shown that a molecular field calculation
based on the Vafet-Kit tel theory indicates inconsistency
between the saturation moment and the Curie points.
The analysis given here is patterned closely after that
made by Lotgering, " and his notation is adopted
throughout this discussion.

In the molecular field calculation of Yafet and
Kittel, the minimum energy can be obtained with
several distinct spin configurations. Because of this
degeneracy, the six spinel sublattices can be reduced to
four magnetic subsystems. These correspond to two
possible moments, a~ and a2, for the 2-sites and two
possible moments, bi and b2, for pairs of 8-sites. Within
the framework of triangular spin arrangements, this
reduction to four magnetic subsystems remains valid
even af ter tetragonal distortion and orthorhombic

'4 C. Zener, Phys. Rev. 96, 1335 (1954).
'5 P. F. Bongers, thesis, Leiden, 1957 (unpublished)."F.K. I.otgering, Philips Research Repts. 11, 190 (1956).
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theory. The dashed curve shows the results for the X, component,
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When the 8 moments are canted, then the condition
for zero torque in the exchange 6eld requires that

sing= a/(pb), (9)

where a and b are the magnitudes of the moments on
the A; and 8, subsystems and P is the complement of
the half-angle between bi and b2.

In most magnetic spinels, the anisotropy field is
several orders of magnitude smaller than the exchange
field, However, the data presented in this paper shows
hausmannite to possess both a relatively large
anisotropy energy and a relatively small exchange
interaction, as deduced from the ferrimagnetic Curie
point. Hence the validity of Eq. (9) becomes question-
able, and its derivation must be modi6ed to include the

doubling of the bc tetragonal unit cell, as shown in
Appendix I. Consequently, the Lotgering analysis"
can be applied to hausmannite. Appendix I shows that
the molecular fields, as given by Eq. (A-1), ca,n be
rewritten for the four magnetic subsystems in terms of
a modified Lotgering notation. Then the molecular
fields acting on the A; and 8; systems become"

hA, —— n t na;+—n A+—8],
h. ,= —~L—1p b,+ A+ pa],

where A and 8 are the resultant moments of the two
3 and two 8 subsystems, respectively, and the inter-
action strengths are as de6ned in Appendix I. The
exchange energy is then

E. = ——2'Lai. bA1+a2'hA2+bl'hB1+b2'bB2],
(8)= 22t na2 ——,'p'b'+2a. 8+-2,p82].
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The asymptotic Curie temperature is related to the
exchange constants by'6

T,=—n(Cg+2Cg) '(-,'Cg'n+3Cg'P*+4CgCri)) (12)

where C~ and C~ are the Curie constants for Mn'+ on
A-sites and Mn'+ on 8-sites and p*=-', (4p —p'), so
that p*=p in the cubic limit and p*=-', p for extreme
tetragonal distortion. Taking Bongers' experimental
values of C~=3.86, C~=2.88, and T,= —530'K, we
obtain

I= 1700/(2.48n+8.30p*+14.8) . (13)

With b=2.23&&1 'Oemu/mole (see Appendix III), this
yields

K= (0.972n+3.22p*+5.74) && 10 '. (14)

From Appendix III, sing—=cosg=0.356 when 4.7 pii
is used for the moment on the A-sites (a=1.31&&10'
emu/mole), this value being chosen for consistency with
Bongers' observation of a nonspin-only value for C&.
Thus substitution of Eq. (14) into Eq. (10) gives
p=1.64, where n&&10 ' has been neglected compared
with p.

We turn next to the expression for the ferrimagnetic
Curie temperature Tq, derived in Appendix II as
Eq. (3-10). Since experimentally Tz 41.9'K, sub-—-

stitution for e, Cz, P, and ii yields v=56 and n=0.82
for P*=P; v=65 and n=0.88 for P*=-',P. Therefore,

nP) (0.82) (1.64) = 1.35)1. (15)

This result contradicts the requirement for canted
spins, given by Eq. (11).

If the spin-only values are used, then one finds
(P*=P) +=53, P=1.57, n=0.90, and nP)1.42. No
significant improvement can be obtained either by
using Borovik-Romanov's data' for T or by varying
our experimental values well beyond the limits of
experimental error. Even if the data of Jacobs" and
Kasper" were ignored and the 8-site moment were
assumed to dominate, the resulting contradiction would
be just as serious.

Given the Yafet-Kittel theory, the only possible
source of error in the theoretical structure lies in the
calculation of T& by the molecular field approximation.
Only the interaction parameter o. is affected by a change
in T~, and it is found that a consistent value for o,

requires that T~ be raised from 41.9'K to at least
67'K if P*=P, or 76 K if P*=—',P. The molecular field

eGects of anisotropy. The appropriate generalization of
the Lotgering formulation, given in Appendix II, yields

sing =a/[(p+ a)b], (1o)

where N. =K~/Nb' and Eg= —0.7E,=3.3)&10' ergs/
mole, as shown in Appendix III. Furthermore, canted
spins cannot exist, according to Appendix II, unless

nP(1 —n~.

approximation can lead to errors of this magnitude
when applied to systems with J=-~ ' ' but the error
for Mn'+ with J=~ is smaller. "Furthermore, such an
explanation for the inconsistency appears unlikely
since o. wouM be required to lie fortuitously close to
its maximum allowed value and the large tetragonal
distortion would be required to have negligible effect
on the 8—8 interactions.

The above analysis indicates an inability of the
Yafet-Kittel theory to account simultaneously for the
observed magnetization and Curie points of hausman-
nite. In addition, the Yafet-Kittel approach can be
generalized to include 24 sublattices, one for each ion
in the orthorhombic unit cell suggested by Kasper,
with a variety of A —A, A —8, and 8—.8 interactions.
When the search for states of minimum energy is
restricted to the triangular spin configurations of the
specific Yafet-Kittel model, considerable degeneracy
is obtained, as shown in Appendix I. In particular, the
lowest energy results from 8 configurations which do
not require cell doubling, as well as from 24 which do.
Within this framework, doubling does not reduce the
energy. Thus the Yafet-Kittel model cannot account
for the observed doubling of the unit cell."Moreover,
it provides no energy barriers of the type required to
explain the temperature dependence of the coercive
force or the dynamic properties of hausmannite.

Prom all the considerations given above, it follows
that the Yafet-Kittel model cannot account satis-
factorily for the magnetic properties of Mn304 ~ However,
Kaplan has recently shown" that their assumptions are
overly restrictive. For a certain range of interaction
strengths in cubic spinels, his results indicate that
minimization of the exchange energy leads to a complex
configuration of canted spins with an approximate
doubling of the unit cell along any single cubic [110]
direction. Since the cubic j110] is the bc tetragonal
L100] his result suggests that a similar treatment of
distorted spinels might account for the observed
doubling of hausmannite. Furthermore, Kaplan has
shown' that first-order pseudo-dipole anisotropy can
tie the spin vectors to the propagation vector for
antiferromagnetic spirals. This same effect in ferri-

magnetic configurations characterized by a wave vector
would give rise to an energy barrier between the bc
tetragonal $100] and 1 010] doubling directions, in

accord with the observed dynamic behavior. Although
the results of Kaplan's calculations for cubic lattices
are suggestive with respect to the magnetic properties
of hausmannite, quantitative interpretation of our
data requires an extension of his work to include

tetragonally distorted spinel structures. This extension
is being pursued.

"J.S. Smart, Phys. Rev. 101, 585 (1956)."P. J. Wojtowicz, J. Appl. Phys. 31, 265S (1960)."J.S. Smart, J. Phys. Chem. Solids 11, 91 (1959)."T. A. Kaplan, preceding paper [Phys. Rev. , 119,1460 (1960)I.
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APPENDIX I

We wish to generalize the specific Vafet-Kittel
model to a tetragonally distorted spinel with an
orthorhombic, doubled unit cell. The complete molec-
ular-field calculation then involves eight A-site sub-
lattices and sixteen 8-site sublattices, with respective

magnetization s a; and b;. There are five distinct
interaction strengths for nearest-neighbor pairs: ei for
the four 3,—8; pairs lying close to the c axis, e2 for
the other eight 2,—8, pairs, Pr for the two 8,—8,
pairs lying in a c plane, Ps for the other four 8, 8, —
pairs, and n~ for the four A;—3, pairs. With these
definitions, the molecular fields can be written as

—h~;=at Ps'"' ag.+n, P~"bs+n, Ps"' bs

hii, n—i Pg——' ag, +ns Pi,"'
as

+P, Ps' bg, +A Pi "&'
bg„

(A-1)

where Ps" and Ps"' denote sums over the appropriate
nearest neighbors for each 3;, and similarly for the 8,
sublattices. The exchange energy is given by

E, = —-', fP;a,"hg;+Q;b,"hiz,], (A—2)

where i runs from 1 to 8 and j from 1 to 16. The true
minimization of this energy lies outside the scope of
the triangular spin arrangements of the Yafet-Kittel
model, and will be the subject of a later investigation.

The Yafet-Kittel theory predicts that the a; moments
must all be parallel when the b, are canted. By inverting
this prediction into an imposed constraint, we obtain
a restricted form of Eq. (A-2) which is the desired

generalization of the specific Vafet-Kittel model.
Equilibrium under the imposed constraints yields
seven relationships among the b, . These further reduce
the complexity of Eq. (A-2), so that the exchange

energy, after some straightforward but tedious algebra,
can be written as

E. =2ctr Q; (a,);—Pr Q, (b,)'+2(n, +2ns)a; 8
+Ps Z.(8.)'+(Pi —Ps) Z.Q. (8-)' A-3
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Fio. 7. Illustration of the grouping of 8-sites into subcells. (a)
Definitions of B„,as the resultant moment of two nearest neighbors
in the same c plane and of B„as the resultant moment of a subcell.
(b) Relationships between the B„,and B„given by the solution
of Eq. (A-3) for hausmannite, e.g. , for P&)P&.

If any arbitrary fixed value is assumed for B=Q„B„,
then the lowest energy is obtained when P„(8,)' is a
minimum, This condition requires B,=sB, so that

Because of the relationships among the b; due to the
imposed constraints, the four 8-sites in one chain
along the direction of orthorhombic doubling of the
unit cell can be omitted, with the four sites in the
other chain counted twice. This permits a grouping
of the 8-sites into four subcells forming a chain along
the doubled direction, as illustrated in Fig. 7(a).
Thus, in Eq. (A-3), 8„, is the resultant moment of
two 8-sites which lie in the same c plane (s=1,2) in
the rth subcell; B„ is the resultant moment of the
four 8-sites in the rth subcell, B„=g,B„„and 8 is
the resultant moment of all the 8-site sublattices,
B=P„B,=P;b, .

To minimize Eq (A-3), w. e first chose any permissible
value for 8 and four arbitrary values for the B„such
that Q„B„=B. With these specific choices, the lowest

possible energy is obtained by minimizing the 6fth
term of Eq. (A-3). If P,)P,, P„P, (8„,)' must be a
minimum; if Pt(P&, it must be a maximum. Since
the B„=g,B„have been fixed, the two extrema,
respectively, require 8„,=-,'B„or 8„=2b,. Theformer
case corresponds to hausmannite and is illustrated
in Fig. 7(b). The latter case requires all the b, in a plane
to be parallel, corresponding to copper chromite. "

With 8„,= —,
' B„we can rewrite Eq. (A-3) in the form

E, =16nra —16PrbP+2(ni+2ns)a; 8
+-,'(~+~.) Z, (8.)'
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Eq. (A-4) becomes

E,„=16n&a,'—16Pib,'+2 (ni+2n2) a,"B
+-'.Le+p.) B'

Because of its relationship to B„„the net moment B
is parallel to the resultant moment of any c-plane
nearest-neighbor pair, and its magnitude depends only
on the half-angle P between the moments of two such
neighbors. Hence Eq. (A-5) can be solved uniquely for
this angle P.

From the discussion above, it is evident that, for
fixed interaction strengths and fixed sublattice mag-
netizations, the exchange energy of Eq. (A-3) depends
only on the resultant moments of c-plane nearest
neighbor pairs. Hence the unique lowest energy can be
obtained with many possible orientations of the
individual moments compatible with the required
resultant, i.e., the ground state is highly degenerate.
If the 1, are all restricted to lie in a particular plane
and one b; is fixed, then the lowest energy results from
any of 32 distinct ways of ordering independent pairs.
Only 24 of these configurations yield a doubled unit
cell. Hence the particular configuration suggested by
Rasper" is degenerate not only with other arrange-
ments requiring a doubled cell, but also with ones which
do not cause doubling.

Any molecular field calculation will necessarily give
the same results for any of these degenerate ground
states. Moreover, the 32 con6gurations mentioned
above include two which correspond to the same six
sublattices considered by Lotgering. "Because of this
twofold degeneracy, the four 8-lattices reduce to two
B-subsystems, and the molecular fields can be expressed
in terms of the resultant A-site moment A=+;a;, the
moments on two A-site subsystems a&——4a, (~ a&~ =a),
the resultant 8-site moment B=g, b;, and the moments
on the two 8-site subsystems b&=8b;(~ b&~ =b). The
molecular fields given in Eq. (A-1) can then be re-
formulated within the framework of the Lotgering
notation, as given by Eq. (7), with n=~i(ni+2n2),
nn=ni, nP=4(Pi+P2), and nP'=~Pi for hausmannite

t nP gP2 nP —
g (2P2 —Pi) for copper chromite], and

Eq. (8) is identical with Eq. (A-5). The only difference
between the original formulation" and Eqs. (7) and

(8) lies in the distinction between P and P' arising from
the tetragonal distortion. The preceeding discussion
shows that, once this distinction is made, the Lotgering
analysis is completely applicable to hausmannite with
its tetragonal distortion and orthorhombic, doubled
unit cell.

APPENDIX II

We wish to include the anisotropy energy in a molec-
ular-field calculation for canted spins, assuming that
only the 8-sites have angled moments and that they
are coplanar with the c axis and the A-site moment.
However, we do not assume a rigid system, i.e., the
net 8-site moment 8 need not be coltiiqar wj.th the

FIG. 8. Definition of angular coordinates used in this analysis.
b1 and 12 are the individual 8-site moments, 8 is their vector sum,
and A is the net A-site moment. In Appendix II, we further
define (——,'7t. =h and —,'x —q =5+c.

0=4nab sing cos(i7+$)
+2Pnb' sin2$ —2E'q cos2$ sin2$

—2bH sing cos(p+$).
(8-4c)

For an external held perpendicular to the c axis, q = ~~,
and the solution of Eq. (8-4) gives i7 = (=-,'7r and

sing= cosP= (nab —~bH)/—(.Pnb'+Eii)
(8-5)= (a—-,'H/n)/fb(P+. )],

where z is written for Eii/(nb'). Assuming that the
A-site moment dominates, " the net magnetization i.s

net A-site moment A when external fields are applied.
Figure 8 shows a possible configuration and defines the
angles used in this analysis. Explicit evaluation of
Eqs. (7) and (8) in terms of these angles yields

E„=nna' —-,'P'nb'+2Pnb' cos'P
8-1

+4nab cosiP cos(0+ $),

and the magnetic energy in an external field is given by

EII —2aII cos(p —6——)—2bH cosf cos(q+(). (8-2)

In order to write down the anisotropy energy, we
introduce two positive anisotropy constants E& and
E~ for the A- and 8-sites so that

Err =E~ cos'8+Xii[sin'($ —f) +si (n$+ g)]. (8-3)

The sum of these three energies constitute the total
energy, E=E„+Ez+Et,.

For equilibrium, the derivatives BE/M, BE/8$, and
cjE/8P must all vanish, giving, respectively,

0=4nab cosP sin(i7+$)
+E~ sin28+2aH sin(p —i7),

(8-4a)

0=4nab cosP sin (i7+$) —2K' sin2$ cos2$
—2bH cosf sin(p+$),

(8-4b)
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3f=2a—2b sing. From this relation together with Eq.
(8-5), we find the high-field susceptibility to be

X= BM/BH = Ln(p+Q j—'. (8-6)

Furthermore, in the absence of an external Geld, Kq.
(8-5) becomes

sintp= coslp= a/p(p+K) j . (8-7)

The energy for the canted spin arrangement in zero
field can be obtained by substituting from Eq. (8-7)
into Eqs. (8-1) and (8-3);

Eg nna' ——',P'e—b'-2na'—/(P+~). (8-8)

If the moments on the two kinds of A-sites and on the
two kinds of 8-sites are separately antiparallel, then
the total energy E= nnam i~p'n—b'. Co—mparison of
this energy with E& shows that canted spins cannot
exist unless

(8-9)

On the basis of Jacobs' findings" it is reasonable to
assume that hausmannite passes from the ferrimag-
netic state into one where the A-sites are paramagnetic
with antiferromagnetic B-sites, before reaching a truly
paramagnetic state. According to this assumption, the
A-site moment vanishes at the ferrimagnetic Curie
point T~, so that the molecular field approximation
gives 3E~ (C~/Tq) ~h~~.——Using Eqs. (7) and (8-7)
with the definition of f to evaluate

~
h~ ~, we find

From Eq. (8-3) it follows that

cosg= tta 2—e 'H sin(p+b) j/Lb(P+a cos28) j, (C-4)

where ~=K s/( nb'). Comparison with Eq. (8-5) shows

that the high-field susceptibility depends essentially
upon the component of H along the net magnetization,
with a small correction in the denominator to account.
for the varying e6'ectiveness of the anisotropy. From
Eq. (C-2) one obtains

2ae= ba sin—25 cos2$ secP+n 'H cos(p+b), (C-5)

which yields, upon substitution into Eq. (C-1),

{Es(nab) ' cos2$ sec)LE~ cos25+aH sin (@+5)j
Kg+2K—s cos2@ sin28= H cos(q+8) {2bcosg —2a

+b(eab) 'LE~ cos2b+aH sin(q+b)$). (C-6)

When a=0, the terms in the square brackets cancel. In
the general case (e&o), these terms are of the order of
an anisotropy energy E~ and a magnetic energy eH,
and are divided by a factor cab, which is an exchange
energy. Assuming that Kz/(nab)«1 and aH/(nab)«1,
it follows that

sin28 —(2a—2b cosset) (E~ 2Es cos2$) '—H cos(p+b)
= (K~ 2K' cos2$—) 'HM cos(y+b). (C-7)

For the experimental anisotropy, equilibrium is given

by Eq. (3). Putting 8.=-,'s.=b, we can rewrite this
equation in the form

Tg =nCgL(P+~)
—'——',n 1 (8-10)

since M&=2a and 3f&=b as shown by Lotgering. "
APPENDIX III

sin2h= (—E ) 'HM cos(p+b),

so that comparison with Eq. (C-7) yields

—Ec E~ 2' cos2IP. —

(C-8)

(C-9)
To determine the relationship between the observed

anisotropy E, and the anisotropies E& and IC& intro-
duced in Appendix II, we must consider the general
case of an arbitrarily directed external field. Let
$= ~s+b and 0= 2s b e, where th—e an—gle b represents
a rigid rotation and e represents the deviation from
rigidity. When e is assumed to be small, only the 6rst
terms in the expansions for sine and cos~ need be re-
tained. The difference between Eqs. (8-4a) and (8-4b)
then becomes

2aH(cos (p+8) —e sin (p+5)j—E~ (2a cos25+sin2b)
=2bH cosP cos(p+b) 2Es sin28 cos2$. (—C-1)

Similarly, Eqs. (3-4b) and (3-4c) can be rewritten as

0=2eabe cosf+Ks sin28 cos2$
bH cosP cos(y+b), —(C-2)

0= L
—2nab+bH sin (q+b)

+2(Pnb'+Ks cos25) cosg sing.
C-3

Because the tetragonal distortion arises from the Mn'+

ions on the B-sites, it is reasonable to attribute almost
all of the anisotropy to E~. In order to evaluate
cosg= (2b) '(2a —3E), we need the molar values, which
are given'6 by: b=Epsgjs=2. 23X10' emu/mole, a
=2Ãpagj~=1. 40X10' emu/mole for spin-only, and
a= 1.31X10' emu/mole for 4.7 ys, as is frequently ob-
served for Mn'+ ions on 3-sites. Experimentally,
M=1.85 Xps ——1.034X10' emu/mole, so that cosP
=0.396 for spin-only and cosg=0.356 for 4.7 ps on the
A-sites. In either case, cos2$——0.7 and Es= 0.7K, —
=0.7X10' ergs/cc =3.3X10' ergs/mole.

Finally, the approximation used in deriving Kq.
(C-7) must be examined. Taking n—50, the term
nab —15X10' ergs/mole. ConsequentlyK&/(nab) =0.02,
so that little error will be caused by neglecting E&/(nab)
even if Eg is not much smaller than E~. For H = 10' oe,
aH/(nab) =0.01 and its neglect will similarly not cause
appreciable error.


