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It is shown that the Yafet-Kittel triangular spin-con6gurations in the cubic spinel do not minimize the
classical Heisenberg exchange energy. (Only nearest-neighbor A-B and B-B interactions, Jga and Jgg, are
included; one spin-magnitude Sz for the A sites, and one, Sz, for the B sites is assumed. ) A theory of the
classical ground state more general than that of Yafet and Kittel is investigated. This consists of 6rst
determining the largest value, ye, of y=—JssSs/J~eSg for which the Neel configuration is stable with respect
to arbitrary small spin-deviations. (yo is roughly 10% smaller than the value of y found by Yafet and Kittel
for the breakdown of the Neel con6guration. ) A perturbation method for finding the minimum energy
configuration when y —ye is small and positive is then employed. It is concluded, (1) that equilibrium

con6gurations exist which have nonzero angles between spins on the A sites simultaneously with angles
between those on the 8 sites, in contrast with the Yafet-Kittel results; and (2) that there will be long-range-

ordered, canted spin con6gurations in the cubic spinel, contrary to Anderson s suggestion. These conclusions
are discussed in connection with experiments on MnCr204 and Mn304.

I. INTRODUCTION

''N 1948, Neel' suggested that in a large class of
~ - ferrites there exist low-temperature spin-configura-
tions in which the spins on the tetrahedral (A) sites are
antiparallel to those on the octahedral (B) sites. His
considerations were based on the molecular field treat-
ment, assuming antiferromagnetic A-A, 8-8, and A-8
exchange interactions. Later, Yafet, and KitteP showed
that for large enough A-A and/or B Binteraction-s
(compared with the A Bterms), ce-rtain triangular con-
figurations would have lower exchange energy than the
Neel configuration. They also used the molecular field
method, but assumed six independent sublattices in-
stead of two, the larger number corresponding to the
number of cations per primitive unit cell.

However, there are many known examples where the
magnetic unit cell differs from the nuclear cell, so that
there is no substantial reason to expect that the Yafet-
Kittel (YK) assumption should lead to the minimum

energy configuration. In Appendix I we show that,
indeed, the YK configurations do not minimize the ex-

change energy. ' The method used is again the molecular
field theory (at temperature T=0), although we use the
notation of the classical Heisenberg theory, and we re-

move the sublattice assumption, which arbitrarily con-

strains large numbers of spins to be rigidly parallel. We
consider only nearest neighbor A-8 and B-B inter-
actions (with exchange integrals J~n and Jim, re-

spectively) for normal spinels (with one spin-magnitude
S~ on the A sites and one, Sit, on the B's).

Although the basic (YK) concept of noncollinear spins
is undoubtedly correct, the above result forces us to

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.' L. Neel, Ann. Phys. 3, 137 (1948).

2 Y. Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).' A brief account of this result has been 8'ivan pt.'cyiously t.T. A
Kaplan, Phys. Rev. 116, 888 (1959)j.

reconsider the problem of the ground state. ' Some in-

sight into this problem can be gained by a perturbation
calculation of the minimum energy configuration.
BrieRy, the idea of the method is as follows. Neglecting
A-A interactions, the problem can be described in terms
of a parameter y= JttitSir/J~ttSg. The Neel configura-
tion Co is rigorously the minimum energy state when

y= 0, and is expected to remain so as y increases up to
some critical value yo, when y exceeds yp, Co becomes
unstable. If y —yo—=p is small and positive, the minimum

energy configuration is expected to deviate only slightly
from Co. Hence we look for a solution of the extremum
condition giving the deviation from Co as a power series
in q when q&0, such that the deviation approaches zero
as q —+0. Two plausible assumptions, needed for the
rigor of the method, are stated in Sec. II. The critical
value of y is determined in Sec. III and Sec. IV is
devoted to the theory for p small and positive.

The principle conclusions drawn from the analysis are
the following: The deviations are of order g', so that the

angles between the spins and the axis defined by Co in-

crease rapidly with q for small q. Equilibrium configura-

tions exist in which there are simultaneously nonzero

angles between A spins and between 8 spins, as con-

trasted with the rigorous deduction' ' from the YK as-

sumptions. Furthermore, the ground state will exhibit a
long-range-ordered array of canted spins in contrast
with Anderson's suggestion. 4

The neutron diffraction cross section is calculated in

Sec. V, and the relation between the results and experi-

ments on MnCr204 and Mn304 is discussed in Secs. V
and VI.

s P. IV. Anderson (Phys. Rev. 102, 1008 (1956)j did this for the
special case of zero A-B interaction, using an Ising model. He
showed that there will be no long-range ordering of the B spins for
this case in a cubic spinel. Anderson also suggested that long-
range-ordered angles would not exist for nonzero A-B interactions,
basing his discussion on the Yafet-Kittel picture. This is discussed
further below.

~ I'. K. Lotgering, Philips Research Rept. 11, 190 (1956).
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II. GENERAL CONSIDERATIONS

Our problem is to find the set of spin vectors, S;A, S,B,

associated with each point of the tetrahedral and
octahedral sublattices, respectively, that minimizes the
Heisenberg energy,

E=2JABSASBf p ~;" ~, +y p o, o, }, (1)('8
&

7'&

where

Ous/y as p
—+ 0. The latter assumption clearly requires

that Cp be stable when q=0; since E2 can be zero for
certain values of the o- " when p=-0, E4 must certainly
be non-negative for these deviations in order that this
requirement be satisfied. To conclude this section, we
will obtain explicit expressions for E2 and E4, and show
that E4 is non-negative when q=0.

Using (5), (1) can be written in the form

42;r= S;r/S, I'=A, B,

y= JBBSB/JABSA &~ 0,

(2)

(3) 6&~AB~A~B

—h ~g f. . .o,rx. . . . . . .o r„. . .)

JAB and JBB are positive (for antiferromagnetic inter-
actions), and p&;, , l indicates a sum over nearest neigh-
bor (n.n. ) A BorB -Bpairs. W-eneglectA-A interaction
for simplicity and because it is expected to be small.
When y=0, it is easy to see that the Neel configuration
is the ground state. For any nonzero value of y no such
rigor appears possible. '

However, the question of local stability can be
handled; that is, the energy changes for small deviations
from Cp are calculable for any y. To discuss this point
further, consider the deviations from Cp, 0.; and 0., y,

where the spin-axis in Cp is the s axis, and expand the
energy

&=&O+K+&4+

+& ( '"* ' "" )+' ' ' ((i)

where hs ———8+4y (the value of h for Cs), X= the No.
of primitive unit cells (each containing two A's and
four B's),

z 2.yah f. . .o. ,r*. . . a,ry. . .))

(AB)
~Ax ~Bx2 ~Ay ~By2

&i j&

y (BB)
[(O Bx O Bx)2+( OBy OB , )2y7 (7)

2 (i, j&

where E„is of eth order in the deviations. This is ob-
tained by substituting the expansions,

z [1 (O Ax)2 (O
A. y)2),

=1—(1/2) [(o'"*)'+(o'"")'j—
(5)oBz [1 (o Bx)2 , ( oB )2yj —,'.

= —{1—(1/2) [(of'*)'+ (o '")'j— )

into Eq. (1). Then Cs is locally stable if the quadratic
form E2 is positive definite. ' The determination of the
possible signs of E2 is tractable since the translational
symmetry allows one to write E2 as a sum of 6)&6
quadratic forms in the Fourier transforms of the t7;~",
(u= x, y), one form for each point in the Brillouin zone—at worst, a numerical solution could be obtained. It is
with this problem of local stability that we shall be
concerned —xe shall ussNme that Cp is the minimums

energy state if it is locally stable.
As y increases from zero, Cp will remain locally stable

until y reaches a critical value yp, E2 becoming indefinite
when y exceeds yp. To determine the minimum energy
configuration when p=y —yp) 0, a perturbation theory
is investigated (Sec. IV) which is based on our other
assumPtion, namely that the o;r" can be rePresented by
Power series in rt(&~0), such that the o;r" —+ 0 continu

6The only fairly general method for treating this type of
problem rigorously, the method of J. M. Luttinger and L Tisza
/Phys. Rev. 70, 954 (1946)j;J.M. Luttinger /Phys. Rev. 81, 1015
(1952)j, unfortunately seems to fail for the spinel, since there are
spins on nonequivalent lattice sites.

~ Uniform rotation of the spins, with respect to which A is
invariant, are excluded in this definition.

(AB)
1 ~.Ag 2 ~,Ay 2 ~.Bx 2 ~.By 2 2

y(»)
[(O Bx)2+(O By)2 (O Bx)2 (O By)2j2 (8)

and the letters over the summation signs in (7) and (8)
indicate the pertinent n.n. pairs. Comparing (7) and (8),
we obtain the functional relation

g f. . . .rx. . . . . . .o ry. . .)4a i ) J

=(1/4)b2( w r " 0 ) (9)
where

w A (o Ax)2+ (o Ay)2 w B (o Bx)2 (o By)2 (10)

Equation (9) yields the theorem: the possible signs of 84
are identical to those of 82.' Since 82~&0 for y»&Yp, it
follows that 84~&0 when y~&yp.

III. THE BREAKDOWN OF THE NEEL
CONFIGURATION

To study the possible signs of E2, we make the
transformation of variables

o „,""=PaI', ,
k" exp(ik R„,"). (11)

Here the k are rationalized reduced reciprocal vectors in
the first Brillouin zone (the direct lattice is face-
centered cubic); u= x, y; explicit account is taken of the

It is easy to show that this theorem is valid for the deviations
from general collinear configurations on any lattice.
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Tmlx I. Eigenvalues and eigenvectors for k=0. m

c 2/5
m„(0)

0
2(1—4y/3)
2(1—4y/3)
2 (1—4y/3)
4
6

&,(0)

6-~(1, 1, —1, —1, —1, —1)
2 &(0, 0, 1, —1, 0, 0)
2 &(0, 0, 0, 0, 1, —1)
2-1(0,'0,' 1,'1, —1, —1)
2 4(1, —1, 0, 0, 0, 0)
(12) &(2,2, 1,1,1,1)

~y =2/5
= k(t«o))

"o y &2/5

FIG. 1. Qualitative behavior of mi(it) for lt in L110$.

fact that there is more than one site per unit cell: y= 1, 2
when I'=2, y= 1, 2, 3, 4 when I'= 8 (rs labels the unit
cell); R„rr is the position vector for site I', rs, y. (For a
drawing of the six sites per unit cell and a discussion of
some of the pertinent lattice properties, see Kaplan. ')
Since the 0's are real,

uO p u (12)

Let a= 1, 2; P = 1, 2, 3, 4, and define the functions

r) p(k) =(1/3) P exp(ik. ~ p ),
tn=1|pp (k) =cosk epp,

(13)

where ~ ~ connects an A with a nearest neighbor 8p',
and epp connects a Bp with a nearest neighbor Bp.
Although the functions (13) were given by Kouvel, "we
include them in Appendix II for completeness. Substi-
tuting (11) into (7), we obtain"

6

hs=-,' Q Q P 3E„„(k)X„k"*x„s",
k u V ltt=l

(14)

where X,=A, for v=1, 2, X„=B„2for v=3, 4, 5, 6,

0

M(k) =
82*

g4

0

y't is y'f is
y'/is » y'ass

ns y'i is y'f'ss

y'fis y'fs4 y'fs4

'g4

y'fs4 '

y'i s4

2x

x= 1—y, y'= 2y/3, (16)

np—=nip(k) =esp*(k), (17)

9 T. A. Kaplan, Phys. Rev. 109, 782 (1958).To accord with the
present labeling, interchange the numbers on B sites 2 and 3.' J. S. Kouvel, Technical Report 210, Cruft Laboratory,
Harvard, February 1, 1955 (unpublished).

'I In Appendix III, a relation is obtained between the eigen-
values of M and the spin wave frequencies which enables a direct
check of M(k) with Kouvel's results.

since ~ip~= ~sp 'Since M(k.) is hermitean, its eigen-
values, m„(k), are real, and the U„„(k) in

Q„M„„(k)U»(k) =m, (k) U„,(k), (18)

may be chosen unitary [U„„'(k)=U„„(k)*j.Defining

normal coordinates, q, &", by

x'"=Z. U"(k)v",
(14) becomes

(19)

"E.Prince, Acta Cryst. 10, 554 (1957)."A tetragonal distortion will split the triply degenerate set; e.g. ,
if c/u(1 and the J's increase with decreasing ionic separation,
m4(0) will lie lowest (as is physically clear).

(20)

Thus we have the well-known result that the necessary
and sufficient condition for b2~&0 for all values of the
variables is that all the eigenvalues, m„(k), be ~&0.

The problem of determining the m„(k), which are the
roots of a sixth order secular equation whose coefFicients
are given as functions of k, is formidable. However,
since it is only the signs and zeros of the m„(k) that
concern us, considerable simplification is possible. To
begin to get a feeling for the problem consider k=0. The
rrs„(0) and their associated eigenvectors are given in
Table I. These k=0 modes permit straightforward
physical interpretation. For example, Ui(0) clearly
represents a uniform rotation of the spins. The triply
degenerate set (v = 2, 3, 4) or linear combinations thereof,
directly represent the Yafet-Kittel configurations with
angles on the 8 sites; in particular, U4(0) represents the
special Yafet-Kittel configuration invoked by Prince. '2 "
As seen from the corresponding eigenvalue, Co is stable
with respect to these deformations when y& —„', becoming
unstable when y&4, in agreement with the Yafet-
Kittel result. '

For the general stability problem we must determine
ys such that m„(k) &~0 (equality holding only for k=0,
s = 1) for y&ys, and some its„(k) &0 for y)ys. We first
consider symmetry directions for k, [1007, [111j, and
[110j,for which the eigenvalue problem can be simpli-
fied. It can be shown (see Appendix IV) that the
eigenvalues are positive (when k/0) for the first two
directions (for y& 4). For the [110j,we will find nega-
tive eigenvalues for y& —„with all eigenvalues positive
(except at k=O) for y&s. When y= ssthe minimum
eigenvalue branch mi(k) has two zeros, at k=0 and
k= ko, and looks roughly like the curve in Fig. 1; [the
kink probably occurs at the crossing of two branches
which connect with mi(0) and ms(0) at k=O). When
y)-s„mi(ks)&0. All the eigenvalues and eigenvectors
can be easily determined at k= ks when y= -'„and so, by
perturbation theory, the minimum eigenvalue function,
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m~(k), can be det'ermined in the neighborhood of ko."It
is found that the linear terms in mz(k) vanish for y= 3,
leaving a positive definite quadratic form in the
cartesian components of k —ko. A similar calculation for
k near zero yields a similar result. Thus there is strong
evidence that when y= 2, m&(k) &~0, with equality only
at k=O, k=ko and of course at the degenerate points,
ko in $110],etc. This was corroborated by a numerical
check.""Hence we conclude that the nz„(k) &&0 when

y= s, and some m„(k) &0 when y) ~.
Finally, in order to conclude that

=2pp= 3) (21)

it is necessary and sufEcient to show that m&(k) should
never decrease as y decreases. Although this is intuitively

k = (k/V2) (1,1,0)—=k'.

Transforming M(k') to the symmetry basis

fg= (1/v2) (1,1,0,0,0,0),

|t2
——(1/v2)(0, 0,1,1,0,0),

$3 (1/——V2)(0,0,0,0,1,1),

p4 ——(1/v2)(1, —1, 0, 0, 0, 0),

Pg ——(1/v2) (0, 0, 1, —1, 0, 0),

$6——(1/v2)(0, 0, 0, 0, 1, —1),

(22)

(23)

and using the definitions of Appendix II, we obtain

obvious, a proof is given in Appendix V, where a useful,
stronger theorem is proved.

We now investigate in detail the behavior of M(k)
when

2c

M'(k') =
0
0
0

2G

2x+y'f'
2p' c
0
0
0

28

2p g

2x+y
0
0
0

0 0
0 0
0 0
4 —2is/3

2is/3 2x y'f—
0 0

0
0
0
0
0

2 (1—4y/3)

(24)

where
c= cosp, s= sinp, p= ka/4%2,|= 2c' —1, s= (1/3) (4c'—1).

(25)

Since the smallest reciprocal lattice vector in L110] is
2a '(1,1,0), the largest k in this direction is 2~a '(1,1,0)
and therefore 0~& p &~s/2, so that 0~& c~& 1 and

—3~&~~& &. (26)

The eigenvalue corresponding to P6 is just m2(0)
(independent of k). Those arising from the f4 $5—
submatrix can easily be shown to be positive.

To discuss the 3)&3 submatrix, M3, it is convenient to
define

and the A (0.) follow from these equations. Clearly

g(O, s)=ao(s) &0, (31)

Ag(o. o)'—4Ap(0. 0)A2(ao) =0. (32)

The only solution of (32) consistent with (26) is o.o ——s,
which gives the value 3 for y. The zero, sp, when o-= o p is

equality holding only at the end points s= 1 and —3, in
agreement with Eq. (A.11). Since a~(s) and a2(s) are
positive, there is a value o.p, such that for o-&o-p,

g(a,s))0. It follows that g(o.,s) will have two real zeros,
s~ and s2, for 0&0'o, sx and s2 coalescing (to so) when
a'= ap. Thus o-p is determined by

= (3—4X)/y, (27) so = —A y (1/2)/2A p (1/2) = -', . (33)

so that o- monotonically decreases as y increases and
o- =0 when y = ~. Then the determinant, D, of M3 can be
written

Thus when cr=o.p there is a zero eigenvalue at

ko ——(1.161)(Ko/4), (34)
D = (16/9)y'(1 —s)g (O.,s),

where

g(o.,s)=P„=o'a (s)0"=P =p'A (a)s",

(28)

(29)

ao(s) = —(1+3s)(1—s), ai(s) = (3s2+6s+7)/4,
a,(.)= (7+4.)/8, (30)

' The details of this calculation will not be given. We only
remark that the perturbing matrix, V, is an infinite series in
powers of k —kO, so that the standard expressions of perturbation
theory must be modified slightly.

'5It is sufficient to compute only the determinant, D(k), of
M (k), when y = -', . This is so because at k=0 and (as shown below)
at k = kO, the zero eigenvalue is nondegenerate. Since the ns„(k) are
evidently continuous functions of k, D(k) ~& 0, equality only at 0
and k0 implies m„(k) &~0, with the same conditions for equality.

'6 The numerical work was carried out on a cubic mesh with a
spacing of a tenth the maximum value of k .

where Ko ——2~ times the smallest reciprocal lattice
vector in L110]. This is nondegenerate since, when
o'&ao, g(o,s)&0 for sq&s&sg, and trace (M3))0, so
that there is one negative and two positive eigenvalues
in this range of s; since Bm„(k)/80 &&0 (Appendix V), the
two positive eigenvalues must remain positive as o-

increases to a-p.

It can be directly verified that the eigenstate corre-
sponding to m&(ko) =0, written in the basis appropriate
to Eq. (15), is

Uq(ko) = (2/67) l(1, 1, —6co, —6co, 2, s),
for y = -', . (35)

To obtain a physical picture of this mode, we use (11)
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0

3,4

2.

2.ff
3.4.

l l 2

3,4

I

t R

2.

= t:«o]

2,]
2.

2$,

Fzo. 2. Configuration C(ko): projection on a (110)plane. A sites
are denoted by o, 8 sites by , the adjacent numbers indicating
the type of sites. The dotted lines indicate the connections of an A1
with its 12 n.n. 8's (the encircled number on the line is the number
of bonds). The origin of the sine wave is at 2 =0, and its wave-
length is X0.

and (19), with all q~~"=0 except for u=x, y=1, and
k= &kp. Choosing the arbitrary phase such that q (lks) *

= —(i/2)q, we obtain

a»*=qU~t(ko) sinks R„» o „~v=0, (36)

q being an arbitrary amplitude. Using (36) and the
wavelength corresponding to (34),

no longer increase with the amplitude of this special sine
wave, and when y exceeds —'„ the second order terms are
negative for C(ks). This may be pictured alternatively
in terms of the configuration space with coordinates
0.,~".The energy has a minimum at the origin, 0, in this
space when y(-,'; when y is (slightly) larger than ss, the
energy, b, increases as one moves away from 0 in many
"directions, "but for certain directions h decreases near
0. When y —-', =g is small and positive, the direction for
the maximum decrease is such that the ratios of the
o,r" are those given by C(kp). We will find the fourth
order terms to be positive, so that a minimum in h will
occur at some point along this direction, thus de-
termining the amplitude. As g —& 0, this point will move
back to 0, the amplitude ~ 0. Thus it is almost intui-
tively obvious that the minimum energy configuration
in the neighborhood of Cs will be C(ks) with a definite
amplitude.

It is the purpose of this section to derive essentially
this result, taking into account the complication intro-
duced by the fact that the set of configurations C(h),
where h is any one of the [110jfamily with magnitude
ko, are degenerate.

It is convenient to express the energy. in terms of the
normal coordinates, q(pk), [Eq. (19)],p now standing
for (v,u). Then the extrema are determined by

Xs/a= (0.861)%2, (37)
ci b/c)q(yk) =0. (38)

we obtain, qualitatively, Fig. 2 (in which only the ratios
of the angles are significant). Clearly, if Xs/u were K2, the
magnetic unit cell could be obtained from the tetragonal
nuclear unit cell by simply doubling the (110) edge.
However the roughly 14%%u~ deviation from this value
extends the unit cell—in fact, there is no repetition
within the crystal along this direction. Nevertheless, the
configuration defined by (36) must be described as
having long range order, as is most directly seen by the
neutron diBraction pattern (Sec. V) which will exhibit
characteristically sharp diffraction peaks corresponding
to the wave vector ks. This configuration seems in-

tuitively reasonable in that there is a tendency for
angles to occur between B spins (in deference to the BB-
interaction), while the A s tend to remain nearly anti-
parallel to their nearest 8 neighbors. Thus we have
determined the critical value, yo ———„for our stability
problem, and have found a spin configuration which
gives a lower energy than the Neel configuration when y
first exceeds yo.

IV. PERTURBATION THEORY FOR MINIMUM
ENERGY SPIN CONFIGURATIONS

In the previous section we saw that when y&3, the
Neel configuration is stable with respect to an arbitrary
set of small spin-deviations. As y increases, a particular
set of deviations C(ks), essentially sinusoidal in space
with a definite wave vector ks, becomes important;
when y reaches 3, the second order terms in the energy

+— p Bent(ytkt y,k4)

where
)&q(ytkt) q(y4k4)+. , (40)

oR(ytkt y.k„)= P M(yt'kt y„'k.)
~ o ~ ys~ I .

X U(q, '7, ; k,) U(q„'q„; k„), (41)

with U„„(k)=U(vp; k) and—
iV(ytkt v„k„)= & 8/&y(ytkt) y(y„k„), (42)

evaluated at x(y,k;)=0. DiBerentiating (40), the equi-
librium conditions (38) become

m, (k)q(yk)*+ — Q mT(yk, asks asks +4k4)
3 t e ~ ogsPso ~ ~

Xq(p, ks)q (Y,k,)q(&4k4)+ =0. (43)
I

We look for solutions of these equations in the form

q(yk) = r) P „=p"q(yk)'"'ri", (r) & 0, 0(n & 1). (39)

The condition e)0 ensures that the g's —& 0 as g —+ 0,
while the restriction, o. & 1, is made for convenience with
no loss of generality. Consider the Taylor series ex-
pansion of h in terms of the variables X,~ used in (14).
Employing (19), we have

h= 8s+-', P rn, (k) iq(yk) i'
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m (k)=g„=o"m (")(k)»" (45)

and from the eigenvectors of (44),

5K(tiki . .y k )=Q„=of BR(p,k, . p k )(")»". (46)

Using these and (39), the equilibrium equations (43)
become

eo W (yo)~a+s

+P P& P a& X () t)~[(2r+1)a+8& 0 (47)

These always possess the trivial solution q(yk) =0 for all

y, k (the Neel configuration); it is, of course, a nonzero
solution for which we look.

We now expand (43) in powers of ». Since 8 is linear
lIl P)

3E~;(k)=M„(o)(k)+»M„o)(k),

so that, with the help of perturbation theory, we may
obtain the expansion

it can be shown that

m, ('&(h) &0, (53)

Setting the coeScient of g& equal to zero gives

Wi(&")+Xi,o()'"=0,

where h is any one of the vectors in the L110j family,
with magnitude ko.

There are two possibilities: (a) Some of the q(1h)&'&

are not zero and (b) all the q(1h)&'& are zero. We will

now show that there exist solutions of lower energy than
Co consistent with (a). Then case (b) is not of interest
since the energy reduction from 8O, if any, will be of
higher order in q than for case (a). Considering, there-
fore, case (a), the coefficient Wi'" of &)

+' is not zero, and
so this term must cancel the lowest order term in the
double sum. The latter is Xi,o'"»o, so that c&+1=3a or

(54)

where

W."+=+ =o' m, (")(k)q(pk)(' —"&*,

or

(48)
and

mi(') (k)q(ik)(o)*+X, o'~=0, (k=O, h), (56)

1
X„(~")=— P& & P m(&I ~,k,".&,k,)( -z-')

P ~ o g j ~ ~ ~ ~ ~ oPzg je ~ ~

m„&"(k)q(yk)(')*+Xi o&' =0, (yk not in 8), (57)

q(yk) "=0 y, k not in g,

q(pk)&o arbitrary, p, k in 3.
(51)

Thus the lowest order terms consist only of the mini-
mum energy normal modes defined at » =0 (see Sec.III).

To determine the amplitudes, which are arbitrary in
Eq. (51), we must consider higher order terms in (47).
Using (51), we have

'Wi(&") =m, &" (k)q(yk) 'o*+m 'u (k)q(yk) &o

m ' (k)q(yk)(" y, k not in 8

m (')(k)q(yk)(o), y, k in $.
(52)

Also, from the properties of the determinant, Eq. (28),

in which P=2r+1 and P(') ~ ~ n, m. eans P ~

with the restriction 0~(P; e, &~s.

Since n) 0, the lowest order term in (47) is Wo(&+»;
(every other term is of higher order). Thus for equi-
librium 5'0(&"~ must be zero, giving

m, «&(k) q(~k) «&*=0. (50)

We found in the previous section that the eigenvalues
for»=0, m~(o)(k), are positive for all y and k, except
when y =1 and k is either 0 or one of the set of twelve
L110js with magnitude ko, in which case the eigenvalues
are zero."Calling this set of 13 modes, 8, it follows from
(50) that

1
Xi,o&"=— Q' OR(yk, 1ki, ikolk, )&')

31 g

q(ik, )(o)q(1k,)&o)q(ik, )(o) (58)

The prime on the summation means the k; go over the
set k=0 and the h's. Equation (56) determines the
q(ik)(o) and (57) the q(yk)(" for yk not in $.

To discuss solutions of (56) we need certain properties
of the cV(tiki .,y4k4). Substituting (11) into (8) and
using the definitions (41) and (42), one finds that

OR(tiki, . ,y4k4) =0 unless g k;=K, (59)

where K= 2or times a reciprocal lattice vector and i goes
from 1 to 4. When the k; are in the set 0, h, the only
possible K in (59) is K=O, since ko divers slightly from
-„Ko LEq. (34)$. Thus in this case the condition (59) is

P k;=0. (6o)

PIa. 3. Sets of four
vectors h;, drawn
from the set 0, h,
satisfying 5 1r.,=0.

The ways in which a set of k's, drawn from the set, 0, h,
can be chosen to satisfy (60) are represented by the
diagrams in Fig. 3 (omitting the case k, =O).

'7 p= j. means y=—(v,u)= (i,u); (the possibilities u=x or y are
implicit).
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A= —~,~»(h) &0

and dropping the subscripts 1 on mr, (62) becomes

(63)

Aq(1k, )&'&*= (2/2)mr(k, , k, , —ko, —ko)&'&

&&q(»o)'"*Iq(»o)'" I' (64)
or

lq(1ko)~ &I =2k/mr(ko, ko, —kp, —ko)i &. (65)

Equation (65) can be satisF&ed only if mr(kp, kp, ko,—ko)"&)0, which shows explicitly the importance of
having Co stable when &=0. mr is simply the value (to
within a positive numerical factor) of the fourth order
terms 84 when the spins are given by mode (pk)
= (1ko) and r&=0. The theorem of Sec. II shows this mr
cannot be negative; we had to use direct computation to
show that it is not zero.

To complete the proof that (65), with all other q's
zero, gives a solution, we must show that (56) is satisfied
for the other k's in our set. Suppose k=hW&ko. Then
the first term in (56) is zero. In the second term, ki, k2,
and k3 must be &ko, but a glance at Fig. 3 shows that
mr(h, ki, k~, ka)'0&, with the k; chosen in this way, must be
zero. The same argument applies when k=0.

To satisfy the extremum equations to order»l, (57)
gives

q(~k) &»*=— p mr(~k, 1k„1k„lk,)&»

3!m,&'& (k)

&&q1ki~ &q1k&& &q1k3i &, (yk not in 8), (66)

where each k;= &ko in the sum. The q(yk) n& for yk in 8
will be determined by terms in (47) of order i&', and
so on.

It should be pointed out that the solution (61), (66),
~ ~ is not the only one. If various numbers of the

The other property needed is that )II(tiki, .y4k4)
=0 unless there are an even number of differentiations
with respect to the x components and likewise for the y
components.

From the latter property it follows that we can obtain
a solution of (56) in which all the y components,
q(1k) &&'&, are zero (i.e., all the spins are parallel to the
x-s plane). We confine ourselves to this case.

From the first property it follows that it is consistent
with (56) to have

q(yk)&'&=0, all (y,k) except (1,ko), (1, —ko). (61)

To show this, we first put k= ko in (56), giving

~,&» (ko)q(1ko) &o&+ (1/3!) p mr(1k0, 1ki, 1k2, 1k3)&o&

kI, k2, k3

&(q(1k,)&'&q(1k,)~'&q(1k, )&0&=0. (62)

If q (]k) ~o& =0 except for k =&ko, the only contributions
to the second term are from diagrams of type 3; i.e., the
set ki, k2, k3 must contain one ko and two (—kp) s.
Defining

q(1h) &0& are assumed to be nonzero, one obtains different
solutions of the extremum conditions, with diGerent
energies. Using (56), the energy, to second order in»,
can be written

h= ~o (iii~P/4)Zh
I q(1h) "I' (67)

Although it appears as though the more modes excited,
the lower the energy will be, this is not generally the
case, since the amplitudes for the nonzero modes are
functions of the number of such modes. "We shall not
investigate all these possibilities to determine which
minimizes (67).

In any case, we have the result that the minimum
energy configuration of the form (39) is, in lowest order,
a linear combination of the modes (yk) in 8, defined at
&=0; the energy, h —bo, is negative and of order p'. As
shown explicitly in Sec. V, such a configuration exhibits
long-range ordering of the x and y spin-components.
Also Eqs. (61) and (65) give an explicit example of an
equilibrium configuration (for sufFiciently small ») which
has angles simultaneously between 2 spins and between
8 spins.

where
e=lPI -I'PI,

p=p„exp(ie R„~)S„,=p(e),

(68)

(69)

e is the neutron scattering vector (incident minus
scattered neutron wave vectors), e=e/Iel, y=1,

"We have investigated the following solutions (all with the y-
components zero): any two q's and their conjugates not zero, and
an arbitrary number of q's not zero, all real and equal. Of these,
(61) is of lowest energy.

9 L. Corliss and J. Hastings (private communication).
0 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).

V. NEUTRON DIFFRACTION CROSS SECTION

Corliss and Hastings" studied the normal, cubic
spinel MnCr204 at low temperatures using neutron
diffraction techniques. They found a long-range ordered
magnetic structure, not of the Keel type, with angles
both between the A spins and between the 8 spins. This
was perplexing on the basis of existing theoretical
work. '4' However, as we have seen in the preceding
sections, these general aspects of the experimental re-
sults are consistent with the classical Heisenberg model.

We will calculate the diBraction cross section in this
section although the limitation of the present calcula-
tions to small g prohibits a direct comparison with their
experiment. Our purpose is to show explicitly that our
result (in lowest order) gives rise to extra diffraction
peaks characteristic of long-range ordering of the
"angles, " and that the detailed properties of the spin
configuration for large p must be qualitatively diGerent
from those of the lowest order result in order to agree
with the experiment on MnCr204. The cross section for
elastic magnetic scattering of unpolarized neutrons is
proportional to"
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e+h=K, (74)

(with the restriction that the neutron energy change is
zero). Equation (74) is the same condition obtained for
spirals. ' ""

The series of peaks (74) was not. present in the
MnCr204 experiment. In addition, the experimentally
observed (200) peak does not appear in (71)."Thus we
must conclude that the experimental configuration can-
not be represented by the first few terms in our pertur-
bation series.

VI. SUMMARY AND DISCUSSION

Having shown that the Yafet-Kittel triangular con-
figurations do not minimize the exchange energy in the
cubic spinel, we have investigated a method for de-
termining the classical ground state. This consists of
first determining the maximum value, yo, of y for which
the Neel configuration, Co, is locally stable; and then
looking for solutions, C, of the extremum equations as
series in powers of i1=y—yo() 0), with each spin devi-
ating slightly from its direction in Co when p is sma)l. It
is assumed that the ground state is given by Co for
0&~y~&yo, and by the minimum energy solution C for
y) yo (providing the energy of this solution is lower than

"A. Yoshimori, J. Phys. Soc. Japan 14, 807 (1959);J. Villain,
J. Phys. Chem. Solids (to be published).

22 It is also the same as for spin-wave scattering; an important
difference is that in the latter case the neutron energy does change.

"Although the (200) is one of the series e= K, which applies to
Cp, it vanishes in P,( ) (e) because of a zero structure factor; it will
appear, however, in the next order term, through E,(')(e).

refers to A sites, p=3, 4, 5, 6 to 8 sites. For simplicity
we can assume the spins are all parallel to the x-s plane
since this will not affect the location of the di6raction
peaks. Using (11) and (19),

o „,*=Qg.„exp(ik R,)U,„(k)q„g,

so that with (39), (51), and (54),

o.„~*=q'*Ph exp(ih R )U, i'"(h)giht"+0(it&). (70)

Using (70) to expand the s component of (69) as P,i"(e)
+rtP, &'&(e)+. , we find

Q= (1—e ') f ~P,&'i(e) ~'+2 ReLP '"(e)P,"&(e)*]g)
+ (1—e,')

~
Ph D(e+h)qihi'iF "i(e,h) ~'~&. (71)

Here e, and e, are components of e, (1—e,') ~P, 'oi(e) ~' is
the function Q for the Neel configuration,

D(v)=g„exp(iv R„), (72)

R„are the lattice vectors for one fcc lattice, and

F~o'(e,h)=P~ S~U~i&o'(h) expLi(e+h) y~$ (73)

is the structure factor for the x components in mode
(111).

D(v) is the familiar interference function consisting
of essentially delta-function peaks at v= K. Hence extra
peaks (in addition to those for Co) occur when

Co, of course). These assumptions seem to be plausible
a priori and they lead to physically reasonable results
for the spinel.

We have applied the method in some detail to the
cubic spinel. yo was determined and certain properties of
the solutions C were obtained. Namely, in lowest order
the C are linear combinations of the configurations C(h),
these being of lower energy than Co when y) yo. h is any
of the twelve (110)-vectors with magnitude ko corre-
sponding to a wavelength 0.861av2. The C(h) exhibit
nonzero angles simultaneously between spins on the A
sites and between those on the B sites; the g (or y)
components of the spins on any one face-centered-cubic
sublattice being given by Ph sinh R;, one amplitude fh
for each of the six sublattices. '4 Pictorially, this corre-
sponds to spin-deviations from the Neel configuration
which vary sinusoidally in a L110] direction, with a
wavelength of approximately twice the primitive trans-
lation in this direction, as indicated in Fig. 2.

Now a rigorous deduction' ' from the Vafet-Kittel
assumptions is that in an equilibrium state there can be
angles between A spins or between 8 spins, never both.
Our results show on theoretical grounds that this is
overly restrictive.

The present theory suggests that the ground state, as
defined by the classical Heisenberg energy, is a long-
range-ordered arrangement of canted spins. On the
other hand, Anderson4 showed that there is an enormous
number of ways of placing a given number of +'s and
—'s on the octahedral lattice, all with the maximum
short-range order and, therefore, with the minimum
B Bexchange energy-(assuming nearest neighbor BB-
interactions only). By identifying the +'s and —'s with
the projections on the x-y plane of the canted spins in
the Yafet-Kittel picture, he was led to suggest that there
would be no long-range ordering of these components.
This conclusion is correct in the absence of A-8 inter-
actions, but our calculations show that inclusion of the
latter will remove this degeneracy.

Our general conclusions are in agreement with the
neutron diffraction results of Corliss and Hastings' on
MnCr204, which indicate that there are long-range-
ordered "angles, " with angles simultaneously on the A
and on the 8 sites. However, the results of our calcula-
tions, which were made only in the lowest order of
approximation, do not agree in important detail. This
points up the need for carrying the present calculations
to higher orders, and, more important, to investigate the
correctness of our assumptions.

We should mention the results of Pickart and
Nathans" on mixed ferrite-chromites (which are cubic),
showing no long-range ordering of spin angles. This does

'4 It should be emphasized that in these configurations the
amplitudes Ph are small, the s components never changing sign
within one face-centered-cubic sublattice. This constitutes a basic
difference between these configurations and "spirals" or "helices"
(see references 3 and 21)."S. J. Pickart and R. Nathans, Phys. Rev. 116, 317 (1959).
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not contradict our results, since in these materials there
are two different spin magnitudes placed randomly on
the octahedral lattice, so that the translational sym-
metry, which enters in a basic way into our calculations,
is destroyed.

Our results appear to have interesting possibilities in
connection with recent experiments on hausmannite
(Mn204). The results of Kasper" and Jacobs" indicate
that there are canted spins in this material. . The former
has shown that there is a doubling of the magnetic unit
cell in the L110$direction, and has proposed a particular
model to explain his diffraction intensities. However,
Dwight and Menyuk" have pointed out that there is no
energy difkrence between Kasper's model (which has
angles only on the 8 lattice) and others which do not
double the magnetic cell. Our result that the important
mode, C(h), approximately doubles the cell in L1107 is,
therefore, quite suggestive in this connection. We plan
to investigate the effect on our calculations of the
tetragonal distortion which characterizes Mn304 and
other manganites.

APPENDIX I. PROOF OF INSTABILITY OF
YAFET-KITTEL CONFIGURATIONS IN

THE CUBIC SPINEL

We consider a cubic spinel with nearest neighbor A-8
and B-Binteractions only, so that the energy is given by
Eq. (1). Yafet and Kittel showed that, consistent with
their sublattice assumption, there were a number of
degenerate triangular ground states. To show the in-
stability of these states we clearly need only show the
instability of one of them. For our purposes, then, we
consider the particular configuration (E) invoked by
Prince, "in which the 2 spins all point in the s direction,
8j and 82 are parallel to s&, 83, and 84 are parallel to s3,
where si and s3 make angles 8 and —8 with the negative
s direction, as shown in the figure of reference 3. (Also
refer to Fig. 1 of reference 7, interchanging 82 and 82.)

Since we shall prove instability, we may consider a
limited set of configurations, namely

A g~ Az+g~ Az

where
=So'zp *—(g sii18p+s cos8p)o zzp

8g=82= —83= —84=8)
(A.2)

Sg S27 S3—S4p

"J.S. Kasper, Bull. Am. Phys. Soc. 4, 178 (1959)."I.Jacobs, Bull. Am. Phys. Soc. 4, 178 (1959).
22 K. Dwight and N. Menyuk, following paper /Phys. Rev. 119,

1470 (1960)j.
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and x is a unit vector in the x direction, etc. When the x
components are zero, (A.1) corresponds to configuration
P. For small deviations from P,

A. z~1 (& Az)2/2

~ p'*'= —(~ p")'/ . (A.3)

where

+y Q o.„pB*o„p B*, (A.4)
( nP, n'P')

E'(8) =41V(yC —6p),

p= cos8,

C= 1+2 cos28.

(A.S)

(The notation for the summation indices and other
symbols is defined in the text. ) The angle 8 is chosen to
minimize E (8), leading to the Yafet-Kittel condition,

l =3/(4y), (A.6)

when y) 43; otherwise, p = 1. We shall consider only the
case y&43. Then

3p —Cp= p.

Now consider the deviations

o. A*=1V '*lti cosk. R

„pB*=S &pp cosk R„pB

(A.7)

(A.8)

where k is a rations, lized reducecl reciprocal vector in
$110) (AK), and gi ——&2=—lt 2, ps

——&4=it 2,
. (the p; are

arbitrary amplitudes). Substituting (A.8) into (A.4), we
obtain

where

E' E'(8) =AE'= Q M—@it yP;,

/6p 3c 3s I
M= 3c 2yc' 2yc ~,

(3s 2yc 2y f

(A.9)

(A.10)

with c and s as defined in Sec. III. For AE' to be positive
for any values of the lt;, it is necessary that the determi-
nant, D, of M be positive. But direct calculation gives

D = —18yc'(1—s)', (A.11)

which is (0 for k/0 (y is positive). Hence, there are
values of the lt, such that DE'(0. This completes the
proof of the instability.

It is interesting to note that, since AE= 2Jg ~SgS~AE',
the determinant, D', of the matrix, M', of AE is pro-
portional to (JAB)sy~ (JAB)'JBB. Hence there is an
important difference between the limits 1. y~ ~,

We will show that for certain deviations in this class,
E& the energy of P.

Substituting (A.1) and (A.3) into Eq. (1), keeping
only up to quadratic terms in the x components, yields

E'= E/2JABSASB E'( 8)+——6 jug „(o„".*)'

+(3p Cy)g (zr pB )z2+ P & A zo. Bz

( ne, tnP)
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J~~ —+0, and 2. Y
—+ ~, J~~WO. In the 6rst case,

considering the limit J~~=O, we see that D'=0, so that
there is at least one zero eigenvalue of M'. It can be
shown that, " for general small deviations from the
Y-K-Prince configuration in the limit J~~=0, there are
zero eigenvalues for all k, and no negative eigenvalues.
This is consistent with Anderson's result, 4 the zero
eigenva]ues corresponding to a large degeneracy in the
ground state. In the second limit, we see that D' ~ —~
as J~~ —+ ~, showing that there is at least one negative
eigenvalue, and therefore a state of lower energy than
the Y-K configuration.

APPENDIX II: FUNCTIONS zI p(k), (pp (k)

Writing

APPENDIX III: RELATION BETWEEN SPIN-WAVE
FREQUENCIES, zp„(k), AND THE

EIGENVALUES m, (k)

If E~=6$Jg~SgS~ 82—=cX82, the linearized spin
wave equations of motion are

ir~r*, rr)p, /r)o. r, . o. .r&,rr)p, /r)ir r.

where eg= 1/Sz, ss ———1/Ss. Using the transformation
(11) and Eq. (14) these become

X~s*——(sr/E) BEz/BX„t,"*
=cer P, M„.(k)X,.s&,

X i i,"=—(er/E)BEs/8X, s**
= —cei P, M„.(k)X,,„'.

Writing
X,i,*+zx,i,' C,s exp( —zoot), ——

(A. 14)

2' I or arbitrary deviations in this limit one need consider only
the (4&4) matrix gpp (with gyp==1). This has the interesting
property that the cofactor of every element vanishes identically
for all k. It follows that there are two zero eigenvalues for each k;
the rem@,ining two eisenvalues are easily shown to be positive,

we have, using the definitions given by Eq. (13),

z)i= (1/3)[expi(1, 1, —3)
+expi(1, —3, 1)+expi( 3, 1—, 1)],

Y)s (1/3)[expi( —1, —1, —3)
+expi( 1, 3,—1)+expi(3, —1, 1)7,

(A.12)
zis ——(1/3) [expi( —1, 1, 3)

+expi( 1, ——3, —1)+expi(3, 1, —1)],
z14 ——(1/3) [expi(1, —1, 3)

+expi(1, 3, —1)jexpi( —3, —1, —1)],
and

i is= cos(2,2&0), |is ——cos(2,0&2) &

fi4 =cos (0)2~2) ~

(A.13)
f', 4

——cos(2, —2, 0), ass cos(0——, 2, —2),
i z4 cos(2, ——0, —2).

we have

(&v/c)C, i,
——er P M, „(k)C„k

where e~ = e~, y = 1, 2, or e~ when y =3, , 6. Therefore

, [cp, (k)/c]=Sg —'Ss—'Det[M(k)]
=S~—'Szi—' g, zzz, (k). (A.16)

Equation (A.15) allows us a direct check on our
explicit expression for M(k), Eq. (15). It can be seen
that (A.15), keeping in mind the definition given by
Eq. (2), agrees with Kouvel's" equations (2.5)."

The reason we have discussed the stability problem in
terms of the zzz, (k) instead of the physically more
interesting a&~(k) is that the latter may be positive or
negative whether or not the Weel configuration is stable.
(The meaning of the sign of the a&~ (k) has been discussed
previously. )' We might add that the symmetry vectors
used to factor the secular equation for k in symmetry
directions (Sec. III and Appendix 4) will also factor
(A.15).

APPENDIX IV' FACTORIZATION OF THE SECULAR
EQUATION FOR k IN L1001 AND Llll)

Our purpose is to outline the calculations which show
that M(k), for k in [100] and [111], are positive
definite matrices when y( p, and kWO.

For k in [100]we transform M to the basis

(1/v2)(0, 0, 1, 0, 0, —1), (1/v2)(0, 0, 0, 1, —1, 0),
(1/W2) (1,1,0,0,0,0)

(1/K2) (0,0, 1,1,1,1), (1/V2) (1, —1, 0, 0, 0, 0),
(1/2)(0,0,1,1,1,1).

M then consists only of submatrices on the diagonal
with dimensionalities 1, 1, 2, 2. The two 1)&1 s are de-
generate with the eigenvalue 2(1—4y/3) and the re-
maining eigenvalues are easily shown to be positive.

For k in [111],the basis

(1/v2) (0, 0, 0, 1, —1, 0), (1/v/'6) (0, 0, 0, 1, 1, —2),

(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),

(1/v3)(0, 0,0,1,1,1),

yields two degenerate eigenvectors (the first two) with
eigenvalue 2(1—4y/3); the determinant of the remain-
ing 4/4 submatrix can be shown by straightforward
calculation to be positive.

APPENDIX V MONOTONE BEHAVIOR
WITH y OF THE m„(k)

We shall show that the zzz„(k) for all p, k, never in-
crease with increasing y. For any k we can write our

' It should be noted that in Eqs. (2.6) [see reference 10j,
there are misprints involving factors of 2,
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matrix as
M(y) =M.+yM&, (A.17)

Clearly
M(3) U(3) =~(y) U(3)

~(y) = (U(y), MU(y) )/(U(3), U(3) ).
Letting prime indicate differentiation with respect to y,

where M, arises from the A Bin-teractions, yMb from
the 8 Bint-eractions (M, and M& are independent of y).
The eigenvalue equation, in vector notation, is

we have

B—nt„(k) ~&0, all t, k.
By

(A.19)

re'(y) = (U(y), MbU(y) )/(U(y), U(y) ). (A.18)

But Eq. (7) shows that the B Bin-teraction is negative
semidefinite; since the right-hand side of (A.18) repre-
sents the 8-8 interaction energy for some set of devia-
tions, it follows that

PHYSICAL REVIEW VOLUME 119, NUM BER 5 SEPTEM B ER 1, 1960

Magnetic Properties of Mns04 and the Canted Spin Problem*
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The magnetic properties of single crystals of hausmannite (Mn304) have been investigated between
4.2'K and the ferrimagnetic Curie point at 41.9'K. The c axis was found to be the hard direction of mag-
netization and the c plane was found to possess considerable anisotropy, with respective anisotropy fields
of about 10' oe and 104 oe. These anisotropy energies decreased slowly with increasing temperature, whereas
the coercive force at 15'K was about an order of magnitude less than at 4.2'K. The spontaneous magnetiza-
tion is 1.85 pn/molecule, which agrees with previous polycrystalline values when the observed anisotropies
are taken into account. However, several of the observed properties of hausmannite disagree, some
quantitatively and others qualitatively, with calculations based on the Yafet-Kittel theory. It is concluded
that the concept of canted spins is essentially correct, but that the specific Yafet-Kittel model involves
oversimplifications which limit its applicability.

I. INTRODUCTION

~ONSIDERABI. Y more information can be ob-~ tained from studies of the magnetic properties of
single crystals than from those made with polycrystal-
line samples. The magnetic anisotropy, which is a
sensitive indicator of magnetic symmetry and of
changes in that symmetry, can be determined in
detail only by measurements on single crystals. Further-
more, an accurate determination of the magnetization
of a single crystal can be made independently of the
crystalline anisotropy by applying the external field
along an easy direction. In polycrystalline samples,
however, anisotropy has the eRect of reducing the
apparent magnetic moment. This eRect can be impor-
tant for materials with large anistropy.

We have investigated the magnetic properties of
single-crystal samples of hausmannite (Mns04), ' which
is known to become ferrimagnetic at about 42'K. '
Our measurements show that the c axis is a hard

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S.
Army, Navy, and Air Force.' Obtained through the courtesy of the New York Museum of
Natural History.
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magnetization direction and that the c plane also
possesses considerable anisotropy, the respective anisot-
ropy 6elds being approximately 10' oe and 104 oe.
The temperature variations of both these anisotropy
energies are small. On the other hand, the coercive
force at about 15'K is an order of magnitude less than
the 2650 oe observed at 4.2'K. YVe find the spon-
taneous magnetization to be 1.85 tttr/molecule, which

is greater than the values 1.4 tts/molecule' and 1.56
tt&/molecule' previously measured for polycrystalline
samples. Both of the latter values are low because of
the anisotropy effect, and can be brought into good
agreement with our present value by a correction cal-
culated from our anisotropy data. However, our present
value is also less than the 3.0 tetr/molecule predicted by
the Xeel model of ferrimagnetism.

Many other materials with spinel structure exhibit
smaller spontaneous magnetizations than predicted. '
The Vafet-Kittel theory' of spin angles was introduced
to account for such reduced moments. Although
hausmannite has a cubic spinel structure above 1170'C,
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